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Convolution representation manifests itself as an important tool in the reduction of partial differential equations. In this study, we
consider the convolution representation of traveling pulses in reaction-diffusion systems. Under the adiabatic approximation of
inhibitor, a two-component reaction-diffusion system is reduced to a one-component reaction-diffusion equation with a
convolution term. To find the traveling speed in a reaction-diffusion system with a global coupling term, the stability of the
standing pulse and the relation between traveling speed and bifurcation parameter are examined. Additionally, we consider the
traveling pulses in the kernel-based Turing model. The stability of the spatially homogeneous state and most unstable wave
number are examined. The practical utilities of the convolution representation of reaction-diffusion systems are discussed.

1. Introduction

Many phenomena are described bymathematical and physical
models, including traffic flow, stripe of dune, bubble in the
granular medium, and plasma flow [1–5]. Among these
phenomena, spatio-temporal patterning is one of the attrac-
tive topics in the field of nonlinear physics. To describe these
patterns by a simple mathematical model, many reaction dif-
fusion (RD) systems have been proposed. In pattern formation
in RD systems, the Turing instability is a key concept; the
difference in diffusion rates of the activator and inhibitor leads
to lateral inhibition. The Turing pattern is caused by lateral
inhibition around the excited region: short-range activation
and long-range inhibition [6]. Recently, the reduction of a
two-component RD system to a one-component RD equation
with a convolution term has been considered. Considering
that the system converges to a stationary state, the inhibitor
is expressed in the form of convolution using the activator.
The convolution representation using a weight function, called
a kernel, has a nonlocal effect on the activator. AMexican-hat-
type function is often used as a kernel [7–9]. TheMexican-hat-
type kernel creates a suppressive region far from the central
enhanced region, which imitates the lateral inhibition around

the excited region, resulting in pattern formation [10]. In the
1970s, the convolution term was introduced in the time evolu-
tion equation of the membrane potential in a neural model
[11]. This term caused a nonlocal effect on the membrane
potential via the neighbour cells in the network. To choose
adequate parameters in a model, the traveling wave was calcu-
lated self-consistently. Inspired by this study, traveling waves
in a neural network have been considered [12, 13].

Among many Turing patterns in nature, the pigmenta-
tion on the skin of zebrafish has been well-reported
[14–17]. Fish pigmentation shows many patterns such as
spot, stripe, and labyrinth. Critical pigment cells are yellow
and black, which form interaction networks, resulting in
Turing patterns. This pattern formation has been modeled
using a multicomponent RD system. Given the variety of
patterns found on the skin of zebrafish, the dependence of
pattern formation on the kernel function was studied
recently [18]. The multicomponent RD system was reduced
to a single-component activator equation with a convolution
term, called as kernel-based Turing model (KT model). The
Mexican-hat-type kernel composed of two Gaussian func-
tions with reverse sign was employed. Generally, patterns
are sensitive to the shape of a kernel; amplitude, width,
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distance between centers of a source, and the peak position
of the distribution. Therefore, variations in observed pat-
terns in nature are due to variations in the kernel. Addition-
ally, we can predict spatial patterns in two dimensions by
using the KT model. That is, we first obtain the most unsta-
ble mode (wave number) and the corresponding eigenvalues
through linear stability analysis. Considering this informa-
tion in the kernel, we can predict what pattern will occur
when the spatially homogeneous state becomes unstable
[19]. From these perspectives, the KT model is expected to
be a promising equation for pattern formation. Generally,
the KT model is valid when the system converges to a sta-
tionary state; transient patterns cannot be described by the
KT model.

Aside from the static stationary patterns, many tempo-
rally changing patterns exist: stripe patterns in nematic
liquid crystal, traveling band in colloidal suspension, travel-
ing waves in shallow-water, and fluidized granular media
[20–24]. Although these dynamical patterns were modeled
and analyzed by many mathematical methods, not many
studies focused on the traveling waves in the RD equation
using the kernel function [25–28]. The interaction of travel-
ing pulses and fronts in one dimension described by convo-
lution representation was studied [29]. The interaction
between two adjacent waves decayed exponentially with an
increase in the distance between them. Although the asymp-
totic behavior of interacting traveling waves was considered,
an explicit traveling wave solution using convolution repre-
sentation was not given. Stationary traveling waves in one
and two dimensions have been observed in experiments
[30–32], traveling waves in the RD equation with the convo-
lution representation should be investigated.

In this study, we consider the procedure to transform
traveling pulses in RD systems into convolution representa-
tion, employing a mathematically tractable RD system.
Accordingly, we consider two types of RD systems. The first
one is a one-dimensional RD system with a global coupling
term. An experimental setup corresponding to the global
coupling term has been considered: the current filaments
in gas-discharge and p-n-p-n diode systems and the chemi-
cal reaction on catalytic ribbon surface. In electric circuit
systems, although the current filament distributes on the
electrode, the total current is feedback-controlled [33, 34].
Similarly, in the chemical reaction on the catalytic ribbon,
the spatial average temperature of the surface is kept
constant [35]. These feedback controls are modeled by
space-averaged terms called global couplings. Although the
stability of standing pulse in these systems has been studied,
the properties of traveling pulse solutions have not been
clarified yet. For the second RD system, we consider a usual
two-component RD system with cubic nonlinearity. We
derive the KT model from this system and consider localized
pulses from the perspective of Turing instability. The
remainder of this paper is organized as follows. In Section
2, we introduce an RD system with a global coupling term.
We consider the stability of the standing pulse solution
and show the relation between the traveling speed and bifur-
cation parameter. Using these results, we demonstrate the
choice of an adequate speed in the kernel representation of

traveling pulse. In Section 5, we consider pulse solutions in
the KT model. To confirm the validity of numerical simula-
tions, the stability of the spatially homogeneous solution is
examined. Finally, the application of our study to experi-
ments and further extensions is discussed in Section 8.

2. RD System with Global Coupling

We first introduce a two-component RD system with a
global coupling term in one dimension [36]. Activator u
and inhibitor v satisfy the following time evolution equa-
tions:

τε
∂u
∂t

= ε2
∂2u
∂x2

+ f u, vð Þ,

∂v
∂t

= ∂2v
∂x2

+ g u, vð Þ,
ð1Þ

where

f u, vð Þ =H u − að Þ − u − v,

g u, vð Þ = u − μv,

a = a0 + α
ð
u + vð Þdx − s0

� �
,

ð2Þ

where HðxÞ is the step function satisfying HðxÞ = 1 for x > 0
and HðxÞ = 0 for x < 0: We choose ε and a0 such that
0 < ε≪ 1 and 0 < a0 < 1/2, respectively. τ, μ, and s0 are posi-
tive constants. When the magnitude of global coupling α = 0,
a is a constant, a0, and the RD system (1) is a local coupling
system, called the McKean model. By contrast, when α > 0,
the RD system (1) is a global coupling system; when α is
large, the second term of a controls such that the width of
excited region is s0 in the limit ε⟶ 0:

Let us briefly summarize the solution of the RD system
(1) [37]. First, we consider the case α = 0. When τ is large,
there is a stationary pulse solution, the standing pulse.
Although the pulse has left and right interfaces in the limit
ε⟶ 0, these interfaces become a transition layer (inner
layer) with a width OðεÞ for finite εð≪1Þ. On decreasing τ,
the standing pulse is destabilized through the oscillatory
bifurcation; the interfaces oscillate symmetrically with
respect to the center of the pulse (breathing motion). On
decreasing τ further, the pulse is secondarily destabilized
through the translational bifurcation, resulting in the travel-
ing pulse. The velocity of the traveling pulse increases as
decreasing τ. By contrast, when α > 0, on decreasing τ, the
standing pulse is primarily destabilized through the transla-
tional bifurcation; the oscillatory bifurcation is suppressed
strongly for large α. The global coupling term in the defini-
tion of a suggests the strict restriction of

Ð ðu + vÞdx ~ s0
for large α. This condition prohibits the breathing motion
of the interface, and the translational bifurcation occurs pri-
marily on decreasing τ.
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3. Convolution Representation of the
RD System

For smaller τ, the RD system (1) has traveling pulse solu-
tions. We consider the convolution representation of the
stationary traveling pulse solution of the RD system (1). In
the moving coordinate z = x − ct, where cð≥0Þ is a traveling
speed, the time evolution equations of uðz, tÞ and vðz, tÞ are

τε
∂u
∂t

= ε2
∂2u
∂z2

+ τεc
∂u
∂z

+H u − að Þ − u − v,

∂v
∂t

= ∂2v
∂z2

+ c
∂v
∂z

+ u − μv:

ð3Þ

In the interval ½−L, L�, the stationary solution of v in the
system (3), subject to periodic boundary conditions, is given
in the form of cyclic convolution. The detailed derivation is
given in Appendix A, and the final expression is

v zð Þ = 1
2 λ+ − λ−ð Þ

1
sinh λ+Lð Þ sinh λ−Lð Þ

×
�ðz

−L
eλ+ z−L−yð Þ sinh λ−Lð Þ − eλ− z−L−yð Þ sinh λ+Lð Þ
n o

u yð Þdy

+
ðL
z

eλ+ z+L−yð Þ sinh λ−Lð Þ − eλ− z+L−yð Þ sinh λ+Lð Þ
n o

u yð Þdy
�
,

ð4Þ

where λ±=ð−c ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 + 4μ

p Þ/2. Using Equation (4), the time
evolution of uðz, tÞ is

τε
∂u
∂t

= ε2
∂2u
∂z2

+ τεc
∂u
∂z

+H u − að Þ − u − v

= ε2
∂2u
∂z2

+ τεc
∂u
∂z

+H u − að Þ − u − J ∗ u zð Þ,
ð5Þ

where J corresponds to a kernel and the cyclic convolution
J ∗ uðzÞ is defined as

J ∗ u zð Þ =
ðL
−L
J z − yð Þu yð Þdy, ð6Þ

with

J zð Þ = 1
2 λ+ − λ−ð Þ

1
sinh λ+Lð Þ sinh λ−Lð Þ

Á eλ+ z−sgn zð ÞLð Þ sinh λ−Lð Þ − eλ− z−sgn zð ÞLð Þ sinh λ+Lð Þ
n o

,

ð7Þ

where sgn is a sign function, satisfying sgn ðxÞ = 1 for x > 0
and −1 for x < 0. For sufficiently large L with c = 0, kernel
Equation (7) is approximately J ~ exp ð− ffiffiffi

μ
p jzjÞ/2 ffiffiffi

μ
p

, the
kernel for diffusion. When c = 0 with μ = 1, we note that
Equation (7) recovers the results in ref. [38]. Equation (5)
yields a time evolution of uðz, tÞ for a given initial condition
uðz, t = 0Þ until uðz, tÞ converges to a stationary solution; it

is valid for given c, τ, and α, for which the RD system (3)
has a stationary traveling pulse. Unlike the Korteweg-de
Vries (KdV) equation [39], traveling speed c is not arbitrary.
To find the adequate value of c for given τ and α, we perform
stability analysis of the standing pulse in the RD system (1).

4. Stability Analysis Using a Singular
Perturbation Method

For the RD system (1), the stability of the standing pulse is
examined using the singular perturbation method [37, 40].
The exponential growth of perturbation to the standing
pulse solution ðη0, �vðxÞÞ is determined by the roots of
F±ðzÞ = 0. Here, l = 2η0 is the standing pulse width, and
�vðxÞ is a stationary solution, symmetric with respect to
x = 0, of the RD system (1) in the limit ε⟶ 0: The brief
derivation of the stability formula F±ðzÞ is given in
Appendix B, and the final expression is

F± zð Þ = −z + 4
τ

� 1
2 ffiffiffiffiffiffiffiffiffiffi

μ + 1p 1 − e−2
ffiffiffiffiffiffi
μ+1

p
η0

� �
−

1
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z + μ + 1p 1 ± e−2
ffiffiffiffiffiffiffiffiffi
z+μ+1

p
η0

� �
+ 1 ± 1ð Þα

�
:

ð8Þ

In the derivation of Equation (8), we assumed that
perturbations were supplied to the stationary position,
and the left and right interface positions were shifted as
l1ðtÞ = −η0 + ξ1ðtÞ and l2ðtÞ = η0 + ξ2ðtÞ, respectively. We
consider two modes of perturbation: the symmetric per-
turbation with respect to the center of the pulse −ξ1 =
ξ2 = ξ and antisymmetric one ξ1 = ξ2 = ξ. F+ and F− corre-
spond to the symmetric and antisymmetric cases, respec-
tively. We observe that F−ð0Þ = 0, which corresponds to
the translational invariance. When F−ðzÞ is degenerated
at z = 0, that is,

F− 0ð Þ = dF− 0ð Þ
dz

= 0, ð9Þ

the standing pulse is destabilized through the translational
bifurcation; condition (9) gives τt as

τt = μ + 1ð Þ−3/2 1 − e−2
ffiffiffiffiffiffi
μ+1

p
η0

� �
− 2η0

ffiffiffiffiffiffiffiffiffiffi
μ + 1

p
e−2

ffiffiffiffiffiffi
μ+1

p
η0

h i
:

ð10Þ

Meanwhile, when F+ðzÞ = 0 has a pair of the imaginary
solutions ±ik with real number k, the standing pulse is desta-
bilized through the oscillatory bifurcation; interfaces oscillate
symmetrically with respect to the center of the pulse. This
condition gives τo, which is given by the solution

F+ ikð Þ = 0: ð11Þ

Using these formula, we consider the dependence of
bifurcation of standing pulse on τ and α in Section 7.
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5. Traveling Pulse Solution of the KT Model

In the above discussion, we considered the convolution rep-
resentation of traveling pulse in an RD system where the
inhibitor was expressed by using kernel integral in the
stationary state. By contrast, there is another type of RD
equation with convolution representation: the KT model.
The Mexican-hat-type kernel is employed in this model.

Let us consider the following RD system with a cubic
nonlinear function in the activator:

ε
∂u
∂t

= ε2
∂2u
∂x2

+ f u, vð Þ,

∂v
∂t

= ∂2v
∂x2

+ g u, vð Þ,
ð12Þ

where

f u, vð Þ = u 1 − uð Þ u − a0ð Þ − v,
g u, vð Þ = u − μv,

ð13Þ

where a0 is a constant in the range 0 < a0 < 1. We consider
the stationary pulse solutions in the interval ½−L, L� under
periodic boundary conditions. We use the Mexican-hat-
type kernel, which causes the activation in the short range
while suppressing it in the long range.

To consider the traveling pulse, we introduce the moving
coordinate z = x − ct, where c is a traveling speed. Following
a similar procedure as in Section 3, the RD equation with a
convolution term, the KT model, is proposed

ε
∂u
∂t

= ε2
∂2u
∂z2

+ εc
∂u
∂z

+ u 1 − uð Þ u − a0ð Þ + J ∗ u zð Þ, ð14Þ

where

J ∗ u zð Þ =
ðL
−L
J z − yð Þu yð Þdy, ð15Þ

with kernel J

J zð Þ = 1
2d1 λ+ − λ−ð Þ

1
sinh λ+Lð Þ sinh λ−Lð Þ

× eλ+ z−sgn zð ÞLð Þ sinh λ−Lð Þ − eλ− z−sgn zð ÞLð Þ sinh λ+Lð Þ
n o

−
1

2d2 bλ+ − bλ−

� � 1
sinh bλ+L

� �
sinh bλ−L

� �
× e

bλ+ z−sgn zð ÞLð Þ sinh bλ−L
� �

− e
bλ− z−sgn zð ÞLð Þ sinh bλ+L

� �� �
,

ð16Þ

where λ± = ½−ðc/d1Þ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc/d1Þ2 + 4ðμ/d1Þ

q
�/2 and bλ± = ½−ðc/

d2Þ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc/d2Þ2 + 4ðμ/d2Þ

q
�/2. When c = 0, Equation (16)

recovers the kernel of a standing pulse in ref. [38]. To make
the Mexican-hat-type kernel, we assume that d1 = 1 and d2 is

under condition d1 < d2. The KT model (14) is the time evo-
lution equation of uðz, tÞ with an initial condition uðz, t = 0Þ,
which is valid until uðz, tÞ converges to a stationary solution.
In the KT model, parameters d1, d2, and c are not restricted,
except for condition d1 < d2.

In Section 3, Equation (6) represents stationary solution
of vðzÞ, and Equation (7) corresponds to its kernel, which is
composed of a single term. By contrast, in the KT model, the
kernel Equation (16) is composed of two similar terms
with the reverse sign. Because d2 > d1, the second term
of Equation (16) operates suppressively on u far from
the center of the pulse. For a larger d2, a suppressive
region of the kernel is wider.

6. Linear Stability of the Homogeneous
Solution of the KT Model

In this section, we consider the Turing instability in a
two-component RD system (12). There is a spatially
homogeneous solution of the RD system (12); u = v = 0.
The KT model corresponding to the RD system (12) is
proposed as

ε
∂u
∂t

= ε2
∂2u
∂x2

+ h uð Þ, ð17Þ

where

h uð Þ = u 1 − uð Þ u − a0ð Þ + v uð Þ = u 1 − uð Þ u − a0ð Þ + J ∗ u xð Þ,
ð18Þ

and J is given by Equation (16) with c = 0.
We consider the pulse solution of the KT model (17) in

the interval ½−L, L� under periodic boundary conditions. To
clarify the mechanism of the pulse solution occurrence in
the KT model (17), we consider the linear stability of the
spatially homogeneous solution. The growth rate of instabil-
ity is obtained through linear stability analysis. A brief deri-
vation is given in Appendix D, and the eigenvalue is

λ = 1
ε

−
εkπ
L

� �2
+ 2LJk − a0

" #
, ð19Þ

where Jk is

Jk =
1
2L −

1
d1 λ+ − i kπ/Lð Þð Þ λ− − i kπ/Lð Þð Þ

24
+ 1
d2 bλ+ − i kπ/Lð Þ
� � bλ− − i kπ/Lð Þ

� �
35,

ð20Þ

and k represents the wave number that takes the values of

0, ±1, ±2,⋯. λ± and bλ± are given in Section 5. Although
the above eigenvalue is derived for the stationary state with
c = 0, the formulation is valid in the moving coordinate sys-
tem with finite c. The linear stability analysis of the spatially

4 Advances in Mathematical Physics



homogeneous solution in the two-component RD system
was considered in refs. [6, 7]. The eigenvalue was given by
a quadratic function in terms of k2 resulting from the diffu-
sion terms of the activator and inhibitor in the system. By
contrast, in the stability analysis of the KT model, the diffu-
sion of the inhibitor is considered in the kernel function.
This results in a different expression of an eigenvalue. Using
this formula, we consider the validity of the pulse solutions
in the KT model in Section 7.

7. Numerical Results

In this section, we consider the numerical results. In the
calculation of the RD system (1), the time evolution of u
using kernel representation Equations (5) and (14), we fix
ε = 5 × 10−2, a0 = 0.275, μ = 0.3, and d1 = 1 and choose dif-
ferences Δx = 1 × 10−2 and Δt = 5 × 10−5. The calculation of
spatial direction is performed using an implicit method,
Crank-Nicolson method, under periodic boundary condi-
tions. Here, x is in the range of x ∈ ½−L, L�.

We first show the profiles of u and v of the stationary
pulses in the RD system (1) in Figure 1. The standing pulse

is symmetric with respect to x = 0 and remains in the same
position. Although the standing pulse is stable for large τ,
it is destabilized through the translational bifurcation on
decreasing τ. The traveling pulse moves to the right direc-
tion with a constant speed. The traveling speed and pulse
width are determined self-consistently in the RD system (1).

To consider the stability of the stationary standing pulse,
we show the dependence of the pulse width on α [37].
We consider the symmetric standing pulse with respect
to x = 0, the position of interface is x = ±η0, and the pulse
width l = 2η0. There are two cases depending on s0, as shown
in Figure 2. When α = 0, η0 = �η0, on increasing α, η0 changes
and converges to η∗0 . The stability of the standing pulse is
calculated using F±. The result is shown in Figure 3. When
α = 0, the standing pulse is first destabilized through the
oscillatory bifurcation on decreasing τ. By contrast, for large
finite values of α, the oscillatory bifurcation is suppressed,
and the standing pulse is first destabilized through the trans-
lational bifurcation on decreasing τ. The suppression of the
oscillatory bifurcation by global coupling results from the
conservation of the pulse width. Under strong global cou-
pling, although the deviation of the pulse width is strictly
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Figure 1: Profiles of the pulse in the RD system (1) under periodic boundary conditions. Solid and dashed curves represent u and v,
respectively. L = 50. (a) Standing pulse. τ = 0.4 and α = 0. (b) Standing pulse. τ = 0.4, α = 3, and s0 = 1.4. (c) Traveling pulse. τ = 0.1 and
α = 0. (d) Traveling pulse. τ = 0.1, α = 3, and s0 = 1.4.
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prohibited, the translational motion with the same width is
allowed. We briefly summarize the stability of the standing
pulse solution of the RD system (1). When α = 0, the RD sys-
tem (1) is a local coupling system, and standing pulse solu-
tions exist for large τ. On decreasing τ, the standing pulse
solutions are destabilized through the oscillatory bifurcation,
and the interfaces oscillate (breathing motion). On decreas-
ing τ further, the standing pulses with breathing motion
bifurcate secondarily to traveling pulse solutions. By contrast,
when α > 0, the RD system (1) is a global coupling system.
Although standing pulse solutions exist for large τ, the
standing pulse is destabilized through a translational bifurca-
tion on decreasing τ because the oscillatory bifurcation is
suppressed. Thus, the traveling pulses primarily occur on
decreasing τ.

Although the traveling speed of the soliton solution of
the KdV equation is an arbitrary parameter, that of the RD
system is determined self-consistently. To obtain a station-
ary traveling pulse solution by using Equation (5), it is nec-

essary to choose an adequate value of c for given τ and α.
Accordingly, we first consider the dependences of velocity
c on τ and l, where l is defined as the interval of two inter-
faces in the limit ε⟶ 0: The relation between c, τ, and l
is calculated self-consistently by using Cðvi, aÞ (given by
Equation (B.1)), where vi represents vðzÞ evaluated at inter-
face positions z = z±. The brief derivation of vðzÞ is given in
Appendix C. The dependence of c on τ is shown in
Figure 4(a). For α = 0, the traveling pulse appears subcriti-
cally at τc ~ 0:2072; the traveling pulse appears suddenly
with a finite value of c, which increases with decreasing τ
[41–44]. By contrast, for α = 3 with s0 = 1.4, the traveling
pulse appears supercritically at τc ~ 0:312 with c = 0. The
dependence of c on l is shown in Figure 4(b). For α = 0,
c increases with increasing l. By contrast, for α = 3, c
increases in small range of l, which is almost constant.
This property results from the strong global coupling in
the RD system (1); the oscillatory instability is suppressed
strongly [36, 37]. By the definition of a, Equation (2), the
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Figure 3: Bifurcation diagrams of a standing pulse. The data are obtained by the singular perturbation method in the limit ε⟶ 0: Solid and
dashed curves represent τt and τo, respectively. (a) s0 = 0.5. (b) s0 = 1.4.
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Figure 2: η0-α relation of a standing pulse of the RD system (1). (a) s0 = 0.5. (b) s0 = 1.4.
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pulse width l is s0 for large α in the limit ε⟶ 0: From these
results, the value of c for chosen τ and α is restricted such that
the standing pulse is destabilized through the translational
bifuraction; here, τ is less than τt . Additionally, τ should be
less than τc to find the value of c on τ-c relation, as shown
in Figure 4(a). For α = 0, the value of c is chosen on the upper
branch with solid curve in Figure 4(a); the upper (lower)
branch is stable (unstable) [41, 44]. In the case of α > 0, the
lower branch disappears, and the value of c is chosen on
the dashed curve in Figure 4(a). The dependences of c on τ
and l are confirmed by the simulation of the RD system (1).
The data points are in good agreement with theoretical
curves, except for a small value of c. This discrepancy results
from the fact that ε is chosen small but a finite value in the
RD system (1).

Thus, we have considered the stability of the standing
pulse and its dependence on α, τ, and s0 in the two-
component RD system (1). Consequently, the standing pulse
is destabilized by decreasing τ. Based on this knowledge, we
consider the traveling pulse in a one-component RD equa-
tion with a convolution term (5). The kernel J given by
Equation (7) is shown in Figure 5. When c = 0, the kernel
is symmetric with respect to z = 0 and is positive for all z.
We note that the kernel is not a Mexican-hat type. Although
there is no suppressive region in the kernel, the convolution
term J ∗ u operates suppressively on u in Equation (5) owing
to its sign: minus sign as −J ∗ u. On increasing c, the kernel
becomes asymmetric with respect to z = 0 and remains a
positive value (see dashed curve in Figure 5). The convolu-
tion term J ∗ u maintains the traveling pulse solution for
c > 0. As examples of the pulse, choosing the adequate
values of c and τ, the profiles of u and v of the stationary
pulse in Equation (5) are shown in Figure 6. Initial condi-
tion uðz, t = 0Þ was given by a small positive excitation at
z = 0. Comparing the profiles of u and v in Figure 6 with
that in Figure 1, we note that these agree well with each
other. Thus, both the standing and traveling pulses in the

RD system (1) are recovered by using Equation (5) with
an adequate value of c determined by Figure 4(a). We note
that the pulse solutions calculated by using Equation (5) are
valid in the stationary state and the profiles in the transient
state do not agree with those in the RD system (1).

Let us consider the pulse solutions of the KT model (14).
The profiles of the kernel Equation (16) are shown in
Figure 7(a). The kernel of the KT model is composed of
two similar terms with reverse sign, and its profile is a
Mexican-hat type. Although the kernel is positive around
the center, it is negative far from the center. Using the KT
model (14), the profiles of u in the stationary state are calcu-
lated, where the initial condition uðz, t = 0Þ was given by a
random number with an amplitude of juðz, t = 0Þj ≤ 0.1.
The stationary profiles of u are shown in Figure 7(b). When
c = 0, the profile represents the standing pulse (solid curve).
When c is chosen positive, the profile represents the
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Figure 5: Profiles of the kernel given by Equation (7) under
periodic boundary conditions. L = 20. Solid and dashed curves
represent cases of c = 0 and 4, respectively.
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traveling pulse with the right direction in the moving coor-
dinate z = x − ct (dashed curve). For sufficiently large c, there
remains only one traveling pulse in the system. The pulse
number depends on c and d2, as shown in Figure 8(a). As
increasing c and d2, asymmetry of the pulse is remarkable,
and the interval of pulses is larger due to the strong lateral
inhibition; the number of pulses in the system is reduced.
To confirm the validity of the occurrence of the pulse solu-
tion in the KT model, the stability of a spatially homoge-
neous solution ðu = 0Þ is considered by using Equation
(19). The dependence of eigenvalue λ on wave number k is
shown in Figure 8(b). When λ is positive, the corresponding
wave number destabilizes the homogeneous solution. The
figure suggests that the homogeneous solution is unstable
for k = 2, 3,⋯, 6. The most unstable mode, by which the
maximum eigenvalue is attained, is k = 3 for both c = 0 and
0.5. In our simulation of the KT model (14), we obtain three
(two) standing (traveling) pulses for c = 0ð0:5Þ, as shown in
Figure 7(b). Thus, the number of pulses obtained by the sim-
ulation is reasonable, and the occurrence of pulses results
from the Turing instability.

8. Conclusions

In this study, we considered the convolution representation
of traveling pulses in a two-component RD system and the
KT model. For analytical tractability, a McKean-type nonlin-
earity was adopted in a two-component RD system (1) with
Equation (2). Under the assumption that the relaxation of an
inhibitor was fast, a two-component RD system was reduced
to a one-component RD equation with a convolution term
given by Equation (5). To obtain the stationary standing
pulse or traveling pulse by using Equation (5), it was neces-
sary to proceed with numerical calculations until an activa-
tor u converged to a stationary state. When the RD system
(1) did not converge to a stationary state, our formulation

was not valid. Additionally, the transient state calculated
by using Equation (5) did not agree with that calculated by
the RD system (1). In the one-component RD equation with
a convolution term given by Equation (5), the traveling
speed c was unknown a priori. To find an adequate value
of c, the stability analysis of the standing pulse of the RD sys-
tem (1) and τ-c relation was necessary. The fluctuation of
parameter τ around the bifurcation point in the case of the
strong global coupling was much smaller than that in the
case of local coupling. This is because that the oscillatory
instability was strongly prohibited under a strong global
coupling and the standing pulse was primarily destabilized
through the translational bifurcation. Using an adequate
value of c for a chosen τ, we could obtain the stationary
traveling pulse solution.

By contrast, in the previous studies of the KT model
[18, 38], it was shown that a stationary standing pulse
occurred using a symmetric Mexican-hat-type kernel. As
the extension to the traveling pulse, we have shown that
the traveling pulse was described by the asymmetric
Mexican-hat-type kernel. The spatially homogeneous solu-
tion was destabilized through the Turing instability, and
the stationary standing or traveling pulses occurred. In a
multicomponent RD system, the Turing instability is caused
by different magnitudes of the diffusion of activators and
inhibitors. In the KT model, the kernel was composed of dif-
ferent magnitudes of a Gaussian-type function with a reverse
sign, which formed the Mexican-hat-type kernel. The differ-
ence between d1 and d2 created a lateral inhibition, resulting
in the localized standing or traveling pulses. The number of
pulses in the system corresponded to the most unstable mode
of the wave number. Because there is no restriction on
parameters d1, d2, and c in the KT model, it is necessary to
choose them by considering other types of information, for
example, matching patterns in the model with experimental
observations. Another method to determine the parameters
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L = 60: (b) Dependence of eigenvalues λ on the wave number k given by Equation (19). Symbols • and ∘ represent eigenvalues in the
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is to match the most unstable wave number obtained through
the linear stability analysis with observation. The most unsta-
ble wave number is determined self-consistently by d1, d2, c,
and L under the periodic boundary conditions.

We discuss the practical utilities of the convolution
representation of RD systems. First, we discuss the global
coupling system in the experiments. The current filament
in the gas-discharge system [45, 46] corresponds directly to
the theoretical model [36]. The total current in these gas-
discharge systems is calculated by the integral of the current
density over the electrode. The external resistor R0 in the
circuit corresponds to the magnitude of global coupling α.
On decreasing R0, the total current is increased, and the
sequence of transition of current filament occurs; on
decreasing R0, the spatially homogeneous filament is desta-
bilized to a localized filament, an oscillatory filament (a
rocking current filament; antisymmetric oscillation keeping
a total current constant), and finally, a traveling filament.
The difference between the experimental setup and theo-
retical model is that the integrand is the sum of the
activator and inhibitor in the theoretical model [36].
Although this assumption is unpractical, the physics
remains the same. When the traveling pulse is described
by using a one-component RD equation with a convolu-
tion term, an adequate traveling speed c is obtained fol-
lowing our procedures.

Second, we consider the m-component RD system. There
are many experimental setups that show traveling waves in
one and two dimensions, such as nematic liquid crystal, cam-
phor boat, and action potential in nerves [47–49]. Reducing
the multicomponent RD system to a single-component RD
equation with a convolution term (the KT model), it is neces-
sary to determine di (i = 1, 2,⋯,m), c, and L in the kernel. The
stability condition of the spatially homogeneous solution is
obtained by following similar procedures with this study.
The most unstable wave number coincides with the number
of waves in the system. Thus, di, c, and L can be chosen such
that the numerical results by the KT model match with the
observed pattern. The multicomponent RD system or compli-
cated cascade reactions can be reduced to an equivalent KT
model, and the parameters in the kernel are determined by
the above procedures.

Appendix

A. Derivation of the Kernel Function of a
Traveling Pulse

In this appendix, we briefly derive the kernel of a traveling
pulse in an RD system (1). The equations of an RD system
are

τε
∂u
∂t

= ε2
∂2u
∂x2

+ f u, vð Þ,

∂v
∂t

= ∂2v
∂x2

+ g u, vð Þ,
ðA:1Þ

where f ðu, vÞ =Hðu − aÞ − u − v and gðu, vÞ = u − μv. In the
moving coordinate z = x − ct, Equation (A.1) is

τε
∂u
∂t

= ε2
∂2u
∂z2

+ τεc
∂u
∂z

+ f u, vð Þ,

∂v
∂t

= ∂2v
∂z2

+ c
∂v
∂z

+ g u, vð Þ:
ðA:2Þ

In the stationary state, the left-hand side of Equation
(A.2) is zero. We derive the stationary solution vðzÞ in the
interval ½−L, L� under the periodic boundary conditions.
The stationary solution vðzÞ is obtained by applying the
variation of parameters as

v zð Þ = C1e
λ+z + C2e

λ−z + 1
2 λ+ − λ−ð Þ

Á
�ðz

−L
eλ− z−yð Þ − eλ+ z−yð Þ
� �

u yð Þdy

+
ðL
z

eλ+ z−yð Þ − eλ− z−yð Þ
� �

u yð Þdy
�
,

ðA:3Þ

where λ± = ð−c ± ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 + 4μ

p Þ/2 and C1,2 are coefficients.
Imposing the periodic boundary conditions, vð−LÞ = vðLÞ
and dvð−LÞ/dz = dvðLÞ/dz, on Equation (A.3), we can deter-
mine C1ð2Þ as

C1 =
1

4 λ+ − λ−ð Þ
1

sinh λ+Lð Þ
ðL
−L

eλ+ L−yð Þ + e−λ+ L+yð Þ
� �

u yð Þdy,

C2 =
−1

4 λ+ − λ−ð Þ
1

sinh λ−Lð Þ
ðL
−L

eλ− L−yð Þ + e−λ− L+yð Þ
� �

u yð Þdy:

ðA:4Þ

Substituting Equation (A.4) into Equation (A.3), we
finally obtain vðzÞ as

v zð Þ = 1
2 λ+ − λ−ð Þ

1
sinh λ+Lð Þ sinh λ−Lð Þ

×
�ðz

−L
eλ+ z−L−yð Þ sinh λ−Lð Þ − eλ− z−L−yð Þ sinh λ+Lð Þ
n o

u yð Þdy

+
ðL
z

eλ+ z+L−yð Þ sinh λ−Lð Þ − eλ− z+L−yð Þ sinh λ+Lð Þ
n o

u yð Þdy
�
:

ðA:5Þ

We note that Equation (A.5) is in the form of cyclic
convolution. Defining the convolution J ∗ hðzÞ = Ð L−LJðz −
yÞhðyÞdy with kernel J , vðzÞ is expressed as
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v zð Þ = 1
2 λ+ − λ−ð Þ

1
sinh λ+Lð Þ sinh λ−Lð Þ

×
ðL
−L

n
eλ+ z−sgn z−yð ÞL−yð Þ sinh λ−Lð Þ

− eλ− z−sgn z−yð ÞL−yð Þ sinh λ+Lð Þ
o
u yð Þdy

≡
ðL
−L
J z − yð Þu yð Þdy,

ðA:6Þ

where JðzÞ is given by Equation (7) and sgn is a sign
function, satisfying sgn ðxÞ = 1 for x > 0 and −1 for x < 0.
In the derivation of Equation (A.3), we assumed that
vðz, tÞ is in the stationary state. This assumption corresponds
to the adiabatic approximation; v is a fast variable compared
to u and is regarded as a stationary state.

B. Stability Formula by a Singular
Perturbation Method

In this appendix, following the singular perturbation
method [40], we derive briefly the stability formula F± given
in Section 4. In a stationary state, we consider symmetric
solution with respect to x = 0. Here, ð�uðxÞ, �vðxÞÞ denotes
the stationary standing pulse solution of the RD system (1)
in the limit ε⟶ 0, the interfaces are located at x = ±η0,
and the pulse width is 2η0. Perturbations are supplied to
the standing pulse solution; we assume that the left and
right interface positions are shifted as l1ðtÞ = −η0 + ξ1ðtÞ
and l2ðtÞ = η0 + ξ2ðtÞ, respectively.

The velocity of the pulse is given (for derivation, see ref.
[42]) by

C v, að Þ = 1
τ

2 1/2 − a − vð Þ
a + vð Þ 1 − a − vð Þ½ �1/2 , ðB:1Þ

where a = a0 + αð2η0 + ξ2 − ξ1 − s0Þ. Using Equation (B.1),
the equations of motion on the left front at x = l1 and the
right front at x = l2 are given by

dl1
dt

= −C v l1ð Þ, að Þ,
dl2
dt

= C v l2ð Þ, að Þ,
ðB:2Þ

respectively, and vðl1ð2ÞÞ corresponds to v evaluated at the
interface position x = l1ð2Þ. We expand vðxÞ around the inter-
face position, as v = v0 + v1ðtÞ + v2ðtÞ, where v0 corresponds
to v at x = ±η0 in the stationary state. The velocity Cðv, aÞ is
expanded around v0 with â0ð= a0 + αð2η0 − s0ÞÞ as

C v, að Þ = C v0, â0ð Þ + ∂C
∂v

����
0
v1 + v2ð Þ + ∂C

∂a

����
0
â1, ðB:3Þ

where Cðv0, â0Þ = 0 and â1ðtÞ = αðξ2 − ξ1Þ and Aj0 represents
A evaluated using v = v0 with a = â0. After several calcula-
tions, we obtain

v0 ±η0ð Þ = 1
μ + 1 e

−
ffiffiffiffiffiffi
μ+1

p
η0 sinh

ffiffiffiffiffiffiffiffiffiffi
μ + 1

p
η0,

v1 −η0 + ξ1ð Þ = 1
2 ffiffiffiffiffiffiffiffiffiffi

μ + 1p 1 − e−2
ffiffiffiffiffiffi
μ+1

p
η0

� �
ξ1, 

v1 η0 + ξ2ð Þ = −
1

2 ffiffiffiffiffiffiffiffiffiffi
μ + 1p 1 − e−2

ffiffiffiffiffiffi
μ+1

p
η0

� �
ξ2,

v2 −η0 + ξ1ð Þ = 1
2π

ð
dq
ðt
0
D 1ð Þ

q t − t ′
� �

e− q2+μ+1ð Þt′−iqη0dt ′,

v2 η0 + ξ2ð Þ = 1
2π

ð
dq
ðt
0
D 1ð Þ
q t − t ′
� �

e− q2+μ+1ð Þt′+iqη0dt ′,

ðB:4Þ

where Dð1Þ
q is given by

D 1ð Þ
q t − t ′
� �

= − eiqη0ξ1
À
t − t ′

Á
− e−iqη0ξ2

À
t − t ′

Á� �
: ðB:5Þ

To express Equation (B.2) in a linear form of ξ1 and ξ2,
we define the Laplace transformation of ξðtÞ as

bξ zð Þ =
ð∞
0
ξ tð Þe−ztdt: ðB:6Þ

Using the facts that

∂C
∂v

����
0
= ∂C
∂a

����
0
= ∓

4
τ
, ðB:7Þ

where ∓ sign in Equation (B.7) corresponds to the value at
x = ±η0, respectively, we consider two modes of perturba-
tions: the symmetric perturbation with respect to the center
of the pulse −ξ1 = ξ2 = ξ and antisymmetric one ξ1 = ξ2 = ξ.
We apply the Laplace transformation to Equation (B.2)
and finally obtain

−ξ 0ð Þ =
�
−z + 4

τ

1
2 ffiffiffiffiffiffiffiffiffiffi

μ + 1p 1 − e−2
ffiffiffiffiffiffi
μ+1

p
η0

� ��
−

1
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z + μ + 1p 1 ± e−2
ffiffiffiffiffiffiffiffiffi
z+μ+1

p
η0

� �
+ 1 ± 1ð ÞαÞ

�bξ zð Þ ≡ F± zð Þbξ zð Þ,

ðB:8Þ

where F+ and F− correspond to the symmetric and antisym-
metric cases, respectively.

C. Traveling Pulse in the Limit of ε⟶ 0
In this appendix, we show the traveling pulse solution of
the RD system (1). In the limit ε⟶ 0, the RD system
(1) is greatly simplified. Putting z = x − ct, the traveling
pulse vðz, tÞ satisfies a time evolution equation

∂v
∂t

= ∂2v
∂z2

+ c
∂v
∂z

− μ + 1ð Þv +H u − að Þ: ðC:1Þ
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The stationary traveling pulse solution is obtained under
the boundary conditions vðzÞ⟶ 0 in the limit jzj⟶∞,
vðz± − 0Þ = vðz± + 0Þ, and dvðz± − 0Þ/dz = dvðz± + 0Þ/dz.
The positions of left and right interfaces are denoted by z−
and z+, respectively, and the final expression of vðzÞ is

v zð Þ =

C1e
λ+z z < z−ð Þ,

C2e
λ−z + C3e

λ+z + 1
μ + 1 z− ≤ z ≤ z+ð Þ,

C4e
λ−z z+ < zð Þ,

8>>>><>>>>:
ðC:2Þ

where λ± = ð−c ± ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 + 4ðμ + 1Þp Þ/2 and Ci (i = 1, 2,⋯, 4)

are given by

C1 =
λ−

λ+ − λ−

1
μ + 1 e−λ+z+ − e−λ+z−

� �
,

C2 =
−λ+

λ+ − λ−

1
μ + 1 e

−λ−z− ,

C3 =
λ−

λ+ − λ−

1
μ + 1 e

−λ+z+ ,

C4 =
λ+

λ+ − λ−

1
μ + 1 e−λ−z+ − e−λ−z−

� �
:

ðC:3Þ

The corresponding stationary solution uðzÞ is given by
uðzÞ =Hðu − aÞ − vðzÞ, and the pulse width l is l = z+ − z−.

D. Stability Analysis of the Homogeneous
Solution of the KT Model

In this appendix, following similar procedure used in ref.
[38], we derive the linear growth rate of instability of the
spatially homogeneous solution in the KT model (17). In
our choice of parameters, there is a spatially homogeneous
solution of the RD system (12); u = v = 0. We denote as
u0 = 0 and v0 = 0. We note that, in the moving coordinate
z = x − ct, the system has a spatially homogeneous solution
ðu0, v0Þ.

In the moving coordinate z = x − ct, the KT model (17) is

ε
∂u
∂t

= ε2
∂2u
∂z2

+ εc
∂u
∂z

+ h uð Þ, ðD:1Þ

where hðuÞ is given by Equation (18) and v in the RD system
(12) is expressed by using kernel J in the KT model as

v zð Þ = J ∗ u zð Þ =
ðL
−L
J z − yð Þu yð Þdy, ðD:2Þ

where JðzÞ is given by Equation (16). We note that J satisfies

ðL
−L
J z − yð Þdy = 0: ðD:3Þ

Using this relation, J ∗ u0 = 0, for an arbitrary spatially
homogeneous solution u0. To consider the linear stability
of Equation (D.1), we put uðz, tÞ = u0 + φðz, tÞ with a small
deviation φðz, tÞ. The corresponding deviation of J ∗ uðzÞ
is given by

J ∗ u zð Þ =
ðL
−L
J z − yð Þu yð Þdy = J ∗ φ z, tð Þ: ðD:4Þ

We define the Fourier transformation of φðz, tÞ as

φk tð Þ =F φ z, tð Þð Þ = 1
2L

ðL
−L
φ z, tð Þe−i kπ/Lð Þzdz,

φ z, tð Þ = 〠
∞

k=−∞
φk tð Þei kπ/Lð Þz ,

ðD:5Þ

where k = 0, ±1, ±2,⋯. Applying Fourier transformation to
Equation (D.1), and putting φkðtÞ = φkð0Þeλt , we obtain the
eigenvalue λ as

ελ = −
εkπ
L

� �2
+ iεc

kπ
L

� �
+ ∂h

∂u

����
u0,v0ð Þ

 !
+ 2LJk

∂h
∂v

����
u0,v0ð Þ

 !

= −
εkπ
L

� �2
+ iεc

kπ
L

� �
− a0 + 2LJk,

ðD:6Þ

where Jk is

Jk =F J zð Þð Þ = 1
2L −

1
d1 λ+ − i kπ/Lð Þð Þ λ− − i kπ/Lð Þð Þ

"

+ 1
d2 bλ+ − i kπ/Lð Þ
� � bλ− − i kπ/Lð Þ

� �
35,

ðD:7Þ

where λ± and bλ± are given in Section 5. Because a pure
imaginary number does not affect the stability of the solu-
tion, omitting the second term of Equation (D.6), we finally
obtain the growth rate of instability of the spatially homoge-
neous solution as

λ = 1
ε

−
εkπ
L

� �2
+ 2LJk − a0

" #
: ðD:8Þ
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