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In this exploration, we reflect on the wave transmission of three-dimensional (3D) nonlinear electron—positron magnetized
plasma, counting both hot as well as cold ion. Treated equation acquiesces to nonlinear-modified KdV-Zakharov—Kuznetsov
(mKdV-ZK) dynamical 3D form. The model is integrated by the ¢°-model expansion scheme and invented few families of ion
acoustic solitonic propagation results in term of Jacobi elliptic functions. Various shock waves, bullet like bright soliton, dark
soliton, singular soliton, as well as periodic signal solutions, are formed from the Jacobi elliptic solution for different parametric
constraints. Some of the solutions are illustrated graphically and analyzed width and height due to change of exist parameters in the
solutions. Figures are provided to explain the wave natures and effects of nonlinear and fractional parameters are presented in the

same two-dimensional (2D) plots.

1. Introduction

The exploration on nonlinear evolution models (NEMs) has
a verity of significant functioning in science and engineering
applications. It is proverbial that NEMs are frequently used
to illustrate various imperative happenings and progressions
in abundant technical scientific fields, resembling epidemiol-
ogy, stratified internal waves, meteorology, solid-state phys-
ics, plasma physics, ocean engineering, ion acoustic, fiber
optics, and more others [1-4]. Therefore, the study of accu-
rate exact solutions to realize internal properties of NEMs
demonstrates a crucial task for understanding of the majority
nonlinear substantial happenings or acquiring novel occur-
rences. More scientists expended efforts to release inventive
proficient procedures designed for explanation of interior
properties of NEMs amid with constant coefficients has
been established such as a distinct arithmetic structure [5],
IRM-CG technique [6], transformed rational function
method [7], fractional residual technique [8], new multistage
procedure [9], new analytical method [10], extended tanh

scheme [11], Hirota-bilinear scheme [12-14], multi exp-
expansion technique [15, 16], the Kudryashov and the
extended sine-Gordon schemes [17], variable separation
method [18], MSE method [19], the nonlinear capacity
[20], Jacobi elliptic function [21], the pitchfork bifurcation
[22], ansatz method [23], higher order rogue wave [24], frac-
tional natural decomposition method [25], generalized expo-
nential rational function scheme [26], numerical and three
analytic schemes [27], 1/G'-expansion scheme [28], the
@°-model method [29, 30], and so on. All of the above tech-
niques provide sinusoidal and hyperbolic results. To acquire
the solutions, which cover all sinusoidal and hyperbolic solu-
tion even express more complex phenomena, Jacobi elliptic
function [21] and the @°-model expansion [29, 30] schemes
are exceptional. These two methods are highly important as
it gives Jacobi elliptic function solutions. The sinusoidal and
hyperbolic solutions are exceptional suitcases of the Jacobi
elliptic function. Owing to this fact, we sport light on the
(34 1)-D nonlinear mKdV-ZK model in bellow [31-34].
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U, + pU Uy + Ugyy + Uy + Uy, = 0, (1)

where p is the nonlinear coefficient and U is the electric field
potential. The model is utilized in controlling properties
of dimly nonlinear ion-acoustic patterns within electron—
positron magnetized plasma, counting the hot—cold mecha-
nism of each type [30-33]. The model also arises in diverse
branches of physical areas like plasma physics, optical system,
fluid flows, and quantum mechanics. Due to importance of
the model, huge effort has been paid on the mKdV-ZK model:
Xu [31] applied an elliptic equation technique and derived
only five elliptic solution; Kumer and Verma [32] found
dynamics of invariant solutions via extended (G'/G)-expan-
sion method of the model; Lu et al. [33] constructed analytical
wave solutions via Lie symmetry analysis scheme; Seadawy
[34] analyzed the stability and derived stable solutions of the
mKdV-ZK model, etc. Dynamical scientists were considered
more plasma models [35-38] to analyze plasma fluid, and
represented the systems of equation into KP-Burgers [35],
ZK and eZK [36], and ZK and mZK [37, 38], with proper
explanations of each plasma parameters. The Jacobi elliptic
function solution of mKdV-ZK model in fractional differen-
tial form is still unexplored in the literature. Owing to this fact,
this research is willing to increases the complex nonlinear
dynamics in term of Jacobi elliptic function of the model
as well.

2. Sketch of the @°-Model Expansion Method

An analytical technique of deriving Jacobi elliptic solutions is a
recent @°®-model expansion scheme, which was first invented
via Zayed et al. [29]. Due to its effectiveness and novel finding
efficient, we aim to execute it on a nonlinear evolution equa-
tion (NLEE) whose key steps are given as follows:

Step I: Let us reflect on the following general NLEE in the
form given as follows:

R(6.,0,,6,.6,,.0,.6,.....)=0, (2)

where R is an expression of ©(x, t), as well as various order
partial derivatives, involving nonlinearity.

Step 2: Assembling wave adaptation relation is given as

follows:

O(x, t)=0O(r), 7= p(x — vt), (3)
where 7, u, v signify traveling variable, wave number, and phase

velocity, respectively. Equation (3) is reduced to Equation (2)
into the nonlinear ODE as shown below:

H(6.0.6".....) =0. (4)

in which derivatives due to 7 are signified with prime.
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Step 3: Assume a trial solution of Equation (4) subsists
and can be written in a series as follows:

6(r) = L. 5'0). )

where g;, (i=0,1,2,........ , N) is to be evaluated. Using bal-
ance law, N can be achieved [26-28], and S(7) suits the
assisting nonlinear ordinary differential equation (NLODE):

S/Z (T) =Ty + 7'282 (T) + 7'484 (T) + 1’636 (T),

§"(z) = 1,8(z) + 21, S (7) + 3r65° (7)), (6)

where 7; (i=0,2,4,6) is in variables that can be revealed
afterward.

Step 4: An answer to Equation (6) is in the following form:

S =20 )

under setting 0<f U?(z) + k and U(z) are elliptic function
that comes from:

UR(e) = £y + £U%(2) + £,U%(0), (8)

where #; (i=0,2,4) is unspecified constants and particular
values of these will be evaluated, while f and k come from:

f= 74(f2—72)
(Cr =) +3600, = 20,(6, - 1) 9)
3f07'4

k:

(Cr =)+ 300, —20,(6,— 1)

with the constraint condition:

13(€2 = 1,)[9¢0Cs = (€, = 12) (26, +15)]

10
+37’6[—f%+r%+3f0f4]2:0. ( )

Function m—1 m— 0 Function m—1 m—0
ds(z, m)
cos (7) sc(z,m)
1 sd(z, m)
ne(z, m)

sn(r,m) tanh(z) sin (7) csch(z) csc()
) sinh(z) tan(7)

sinh(z) sin (7)
cosh(z) sec(r)
cs(z,m) csch(z) cot(r) cd(z,m) 1 cos (7)
1

(11)

Step 5: According to Zayed et al. [29], it is recognized that
the Jacobi elliptic function solution of Equation (8) exhibits
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for 0<m<1, otherwise it will be sinusoidal or hyperbolic
function solutions for m — 0<or m — 1. Determination
of solutions of Equation (2) will be completed taking advan-
tages of Equations (7) and (8) into Equation (5).

3. Implementation of the p°-Model
Expansion Scheme

Let us reflect on the well-known nonlinear evolution model
mKdV-ZK EEquation (1) in [31-34], and we can convert it
to an ODE with the wave mapping relation given as follows:

T=06,X + 6,y + 63z + wt, (12)

where w represents wave velocity and &, 8,,0; are wave
numbers in the x, y,z directions, respectively. Accomplish
Equation (10) with Equation (12) yields:

wUl —|—pU251 U/ + 5:I’U/” + 515%UW +615§UW =0.
(13)

Integrating Equation (13) one time with respect to 7
leads to:

5
wU+/J?1U3 + (846,824 6,82)U" =0. (14)

Making use of balance principle between U” with U3
gives N = 1. Inserting N = 1 into Equation (5)
we acquire:

U(z) = g + 9:8(7) + 9,8 (7), (15)

where g,. g,, and g, are constants.

We attain subsequent equations in reserving Equation
(15) together with Equations (6)—(14), as well as putting
the coefficients of each S'(z), i=0, 1, ....., 6 are equal to zero.

1
SO(T) :2g2r0§16§ + 292”0515§ + 292”05% + gl)(s%gg +wg, =0,
§'(2):pdigog, + 819112 + 81859,1, + 6,839,172 + wg, =0,
§*(2): 81909, + PE1gogt + 481 g,1, + 461839, + 46,539,7
+wg, =0,
1
§(2) 30191 + 2917101 + 2951909192 + 201726,5
+2g,1,6,82 =0,
§4(2): 0819095 + P51 g1 g, + 651914 + 651839,14
+ 6515§g2r4 = 0,
§°(2):p81g,g5 + 3619,76 + 36,859,76 + 36,839,176 = 0,

1
8o (r) :§p5%g§ + 853g,7 + 85,539,16 + 85,53g,76 = 0.

(16)

Solving the above equations, lead the subsequently results.

Set 1:

w==8ir, — 8,841, — 6,812, go=0,9, = g1,
1 /’519% (17)

=0,ry=1y, 1y,=—— , 16 =0.
92 2 2> T4 65%+5%+5§ 6

Set 2:

. 192819y — 3681101y = 7281831014 = 7281831014 — 36831014 = 728585104 — 3653707,

3

9o=90 91=0.9,=

Pa;

P9o01
1232 g + 185trgry + 36838311, + 365253r0r + 1885r0r4 + 3683831014 + 1883707
Ty =—— ’
6 p6195(87 + 55 + 53)
3 52 52 52 2
S C ks ki

2 P8195

Using the constraints Set I, as well as combining Equa-
tions (7) and (15) along with the Jacobi elliptic functions
from the previous table, the following exact solutions are
uttered.

LIf £o=1,¢,= - (1+m?), £,=m?,0<m<]1, then
U(z) =sn(r,m) or U(z)=cd(z, m), therefore, solu-
tion is:

sn(z, m) or
U“_gll Flan(e.m)P k) )
B cd(z, m)
U,=g [ Flcd(e,m)? + (20)




such that 7=8,x+ 6,y + 32+ wt and f, k are specified by:

1 2 -3
_ ( ‘1‘;“ "‘:2)”4211{2 1y (21)
1-m"+m* —r; -

f

under the constraint —r3(—1-m?—r,)(—1+2m?-r,)
(=2+m?>+r,)=0.

The above Equation (19) turns into a shock wave solu-
tion for m — 1, given as follows:

/—1+r?tanh(z) ] ’ (22)

V(- 2+ ) an (7))

Us=g,

such that —r3(2+r,)[-1 + r,)>=0.
The above Equation (19) turns into a periodic solution
for m — 0, given as follows:

/=1 + r3sin () ] , (23)
V(3 = 2+ 1y)sin’(7))

Ua=9, l

such that r2( = 1+41,)[(=2 = r,) (=1 +1r,)] =0.

2.If ty=1-m?, £, =2m* -1, ¢, = —m?, me(0,1),
afterward U(z) = cn(z, m) and solution yields:

cn(z, m)

Uys=g; [ Flen(r, m)? +k

: (24)

in which f,k are come from f=(-1+2m?—-r)r,/1-
m*+m* —r} k=3(-1+m?)r,/1 —m*+m*—r?, under
constraint r2( -1+ 2m? —r,)[(=2 + m? + 1,) (1 + m? + 1,)]
=0.

The above result Equation (24) turns into a periodic
solution for m — 0, given as follows:

/=1 + 13 cos gr) (25)

N Ve s e

such that r2( =1 —1r,)[(-=2 + 1) (1 +1,)] =0.

3.1 6y=m> -1, 6, =2—-m? £,= —1,0<m<]1, then
U(7) = dn(z, m) and solution yields:

dn(r,m)
f(dn(z,m))* + k '

(26)

Uy;=g l

in which f,k are specified with f=(—2+4m?+r,)r,/1 -
m?*+mt—ri k= -3(-1+m?)r,/1 —m?+m* —r3, under
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the constraint r3(2 = m? —ry)[ = (=1 4 2m? + r,) (1 + m* +
7'2)] =0.

4. If,fozmz, fzz —(1+m
U(z) =ns(z,m) or U(z) =

2), ¢,=1,me(0,1), then
dc(z, m) and solution yields:

B ns(t, m)

U”_gl[ Flnstt.m)) + k| @7)
B dc(z, m)

U”_gl[ Flde(e.m) 2 k| 28)

with f, k are specified via f = (1 +m? +1,)ry /1 —m? + m* —
3 k= —3m*ry/1—m? +m* — 3, with condition r?(—1-
= 1) = (=1 + 20 — 1)
(=2 +m? +1,)]=0.

The above result Equation (27) turns into a singular dark
soliton m — 1, given as follows:

\/=1+r%coth(r) (29)

Ui = ’
110 = g1 V=(=1+r7,+ (2+r,) csch*(z)r,)

such that r2( =2 —1,)[-1 4+ r,]> =0.

5If o= -m? ,=2m*—1,¢0,=1-m>,0<m<]1,
then U(z) = nc(z, m); therefore, solution is:

ne(z, m)

f(nc(z,m))* +k

, (30)

Ui =49 [

with f,k are specified via f= —(—1+2m?—r,))r,/1 -
m2+m* =13, k=3m?r,/1-m? +m* — 12, with condition r3( —
142m? —1)[(=2 + m?> + 1) (1 + m* +1,)] =0.

The above result turns into a solitary wave solution for
m — 1, given as follows:

/=1 + 7% cosh(z) (31)

3+ (1-1,) cosh2(z))ry |

U=9g \/(

such that r2(1 —r,)[ =241, + 73] =0.

6. Iff(): —1, fzzz—mz, £4: —(l—mz), mG(O,l)
,then U(z) = nd(z, m); therefore, result is:
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nd(r, m)
f(nd(z,m))* +k

. (32)

Uiz =9 l

with f,k are specified via f=(—=2+m?+r,)ry/1—m?> +
m* —r2 k=3r,/1-m?+m*—r3, with condition r}(2-

m?—r)[ = (=1+2m* = r,))(1 + m* +r,)] =0.

7.1660=1,,=2-m?, £,=1-m?, me(0,1), after-
ward U(z) = sc(z, m); therefore, result is:

sc(r, m)
f(sc(z,m))* + k

, (33)

Uiiu =9 [

with f and k are specified via f=(-2+m?+r,))r,/1 -
m*+m* —ri k= -3r,/1-m?*+m* —r, with condition
22-m?—r)[-(-1+2m?> = r,)(1 + m> +1,)] =0.

The above solution turns into a solitary wave solution for
m — 1, given as follows:

Uiis =9

=1+ 2 sinh(z) ] ’ (34)

V(3 + (1 = ry) sinh?(7))r,

such that r2(1 —r,)[ =241, + 73] =0.
The above solution turns into a periodic solution for
m — 0, given as follows:

Uiis =9

=1+ r}tan(z) (35)
V3= (=24 1) tan(z))r |

such that r2(2 — r,)[1 + r,]> =0.

8. Iff():l, £2:2m2—1, f4: —m2(1 —mz), mG(O,l),
afterward U(7) = sd(z, m); therefore, solution is:

sd(z, m)
f(sd(r,m))* + k

, (36)

Ui =9 [

with f,k are specified via f=(—1+42m? —r,))ry/1 —m?> +
m* =13, k= —3ry/1-m*+m* -, with condition rj(—
L2m? =n)[(=2+m? + ) (1 +m* + ;)] =0.

9.1f ty=1-m? ¢, =2-m?, £,=1,me (0,1), after-
ward U(7) = cs(r, m); therefore, result is:

cs(z, m)

f(es(z,m))? + k

: (37)

Uiis =9, l

here f and k are specified by f = (=2 +m? +1,)ry /1 —m?> +
m* =12 k=3(-1+m*)r,/1 —m?*+m* —r, with condi-
tion r2(2—m? —1,))[— (=1 +2m? = 1,)(1 + m> 4+ 1,)] =0.

The above Equation (37) turns into a periodic solution
for m — 0, given as follows:

/—1+ ricot (7) (38)

U119: 1 ’
R Y/ F s el )

such that r2(2 —r,)[(1 + r,)?] =0.

10. Iff(): —mz(l —mz), f2:2m2— 1, f4: 1,m€ (0, 1),
afterward U(z) = ds(z, m); therefore, solution is:

here f, k are specified viaf = — (= 1+ 2m? —r,)ry/1 —m? +
m*—r2 k= =3m?(—1+m?)ry/1 —m? +m* — 13, such that
ri(=14+2m* =n)[(=2 + m? 4+ 1,)(1 + m* +1,)] =0.

1L If fg=1-m2/4, p=14+m?/2, £4=1-m?/4, m€E
(0,1), afterward U(z) = nc(r, m)%sc(z, m)

or U(z) =cn(r,m){1 & sn(z, m)}~!; therefore, solution
is:

. l ne(z, m) % sc(z, m) ’ (40)

\/f(l’lc('r, m) + sc(z,m))* + k

or

cn(z, m)

Vfer? (z, m) + k{1 £ sn(z, m)}?

U1,22_g1[ ] (41)

with f and k are specified by f = = 8(1+m? —2r,)r,/1 +
14m? +m* = 1613, k=12( = 1+ m?)r,/1 + 14m?> + m* — 1613,
such that r3(1/2(1 + m? = 2r,)[1/16(1 — 6m + m? + 4r,) (1+
6m + m?) +4r, )] =0.

The above solution turns into a periodic solution for
m — 0, given as follows:



6
Uy = g (sec (7) + tan (7))/(1673 — 1)(=1 + sin (7))
b 2,/(=5 + 4r, + (1 + 4ry)sin (7))7;4 ’
(42)
[ /(1672 = 1) cost ]
Uips =g )
24/((2 = 4r,) cos? 7 + 3(1 + sin(7))?)r,

(43)

such that 73(1/2 —r,)[1/16(1 + 4r,)*] =0.

12.If £y=—-(1-m?)?/4, £, =14+m?/2, £,= —1/4,
me (0,1), afterward U(r) =mcn(z, m)tdn(z, m);
therefore, solution is given as follows:

| etz < e
1 \/f(mcn(r, m) + dn(z, m))2 Tk

, (44)

with f, k are specified via f = — 8(1+m?* = 2r,)r,/1 + 14m* +
m* = 1613, k=12(-1+ m?)*ry/1 + 14m* + m* — 1613, such
that  r3(1/2(1 + m? = 2r,)[1/16(1 — 6m + m* + 4r,)(1 +
6m + m*) +4r, )| =0.

13. I £y =1/4, £,=1-2m?/2, £,=1/4,0<m<]1, then
U(r) =sn(z,m)/1 + cn(r, m); therefore, solution is
given as follows:

sn(z, m)
Ui = 91 , (45)
’ V.

fsn?(z,m) + k{1 £ cn(z, m)}?

with f and k are specified by f =8(— 1+ 2m? +2r,)ry/1 —
16m? +16m* — 1613, k= — 12r,/1 - 16m?* 4+ 16m* — 1673, such
that r3(1/2-m?* —r,)[1/16 +2m* = 2m* + (1/2 — m*)ry +
r3]=0.

The above solution turns into a dark bright solitary wave
solution for m — 1, given as follows:

tanh(z)\/-1 + 1677 ‘|

Uiy =9, [

(46)

such that r2(—1/2 —r,)[— 1/16(1 — 4r,)*] =0.
The above solution turns into a periodic for m — 0,
given as follows:

g l sin (7)y/—1 + 1672 ]
124/ + cos (7)) + 2(1 = 2r,) sin® (2))ra |
(47)

such that r3(1/2 —r,)[1/16(1 + 4r,)*] =0.

2¢/(3(1 + sec h())? = 2(1 + 2r,)(tan h(2))?)r, |
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14. If £4=1/4, 6, =1+m?/2, £,=(1 —m*)*/4, me
(0,1), afterward U(z) =sn(z, m)/cn(z, m)xdn(z, m);
therefore, result is given as follows:
sn(z, m)

Vfon2 (z,m) + k(cn(z, m) + dn(z, m))*|’
(48)

Uiz =9, [

here f and k are specified via f = —8(1+ m? = 2r,)ry/1 +
14m?* + m* — 1613, k= —12r,/1 + 14m* + m* — 1613, such
that r3(1/2(1 +m? = 2r,))[1/16(1 — 6m + m* + 4r,)(1 +
6m + m*) +4r,] ) =0.

The above solution turns into a solitary for m — 1, given
as follows:

Uiso =9

sinh (7)4/—=1+ r? ]’ (49)

/(3 + (1 = ry)sinh?(7))ry

such that r2(1 —r))[—2+ 1, +13] ) =0.
The above solution turns into a periodic solution for
m — 0, given as follows:

V=g l sin (z)y/—1 + 1672 ]
WIS /B cos (0))F + 2(1 = 21y) sin(2)ry |
(50)

such that r2(1/2 —r,)[1/16(1 + 4r,)*] =0.

Combining Set 2 with Equations (7) and (15) together
with elliptic functions from the previous table, one reach
exact results of Equation (10) in the following:

LIty =1, 6, = —(1+m?), £,=m> me(0,1), after-
ward U(r) =sn(z, m) or U(r) =cd(z, m) leads solu-
tion as:

or
sl 2 o

with 7 =38,x + 8,y + 832 + wt and f, k are given by f = (1+
m2 41,1y /1-m? +m* =13 k= —3r,/1 - m* +m* —r2, under
restriction —r3(=1-m?—r,)(=1+2m* —r,)(=2+m? +
r,) = 0. Equation (51) turns into a bright soliton for m — 1,
given as follows:
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Uys = g0 {1 +%< (-1 4 r3) tanh*(7) )} (53)

r3 \3-(2+nr,) tanh?(7)

such that —r2(2+r,)[-1 + r,]* =0.
Equation (51) turns into a periodic solution for m — 0,
given as follows:

B S

such that r2( = 1+1r,)[(=2 = ;) (=1 + r,)] =0.

2.If, £y=1-m? ¢,=2m>-1,¢,= -m?, me(0,1)
after that U(z) =cn(z, m), thus solution is given as
follows:

ry \flen(z,m))* +k

here f, k are specified via f=(—142m? —r))ry/1 —m?> +
mt =12 k=3(-1+m*)r,/1 —m?>+m*—r3, under con-
straint r3( = 1+2m? —1,)[(=2 + m> + 1r,) (1 + m> + 1,)] =0.

Equation (55) turns into a periodic solution for m — 0,
given as follows:

oo+ (T )

4

such that r2( =1 —r,)[(=2 + 1,)(1 + 1r,)] =0.

3.If tg=m*-1,¢6,=2-m?, £,= —1,me (0,1), after
that U(z) = dn(z, m), leads to solution as follows:

4r,
Uy = gp [1 +-2 ( (57)

Ty

here f,k are specified via f=(-2+m?+1,)ry/1—m> +
mt—r2 k= -3(-1+m?)r,/1 —m?+m* —r3, under con-
straint r3(2 = m? —1,)[ = (=1 + 2m? + 1r,) (1 + m* + r,)] =0.

4. 1f, £y=m* ¢, = —(1+m?), £,=1,me (0,1), after
that U(z) = ns(z, m) or U(z) =dc(z, m) gives:

or

here f, k are agreed with f = (1 +m? +ry)ry/1 —m* + m* —
13, k= —3m*ry/1—=m? +m*—r3, under restriction (-
1-m?—r)|[= (=14 2m? —r,) (=2 + m? +r,)] =0.

Equation (58) turns into a dark soliton for m — 1, given
as follows:

47'6
Uz.10 = 9o 1+r_2
4

(=1 +13) cot h?(7) )}
(1-r)=2+r)csch*(r))]’
(60)

such that r2( =2 —r,)[~1 + r,]* =0.

51f, o= —m?, £, =2m*—1, £y=1-m?*, me(0,1),
next U(7) = nc(z, m), leads to solution as follows:

T4 ne(t,m))* +k

here f and k are given by f= — (= 1+2m?—r,))r,/1 -
m?+m* —r} k=3m?r,/1—m?+m*—r3, under restric-
tion r2( = 1+2m? —1,)[(=2 + m? + 1,)(1 + m? + r,)] =0.

Equation (61) turns into a solitary wave solution for m — 1,
given as follows:

Vo2 =60 [1 i <—3( = a %Ofoffﬁzf)ﬂ - )

Ty

such that r7(1 —r,)[ =241, +13] =0.

6. Ifty=~-1,¢,=2-m* ¢£,= - (1-m?), me(0,1),
afterward U(z) = nd(z, m); therefore, result is given as
follows:

here f,k are agreed with f=(-2+m?+r))ry /1 —-m>+
m* =12, k=3r,/1-m?+m*—r3, under constraint rj(2 -
m?*—r)[— (=14 2m* =) (1 + m* +r,)| =0.

7.0, y=1,¢,=2-m? £,=1-m?, me(0,1), in
that case U(7) =sc(z, m) leads to:



here f and k are agreed with f = ( =2+ m? +1))ry/1 —m?> +
mt—r3 k= -3r,/1-m*>+m* -7},  under restriction
2(2=m? =)= (=1 +2m? = 1y)(1 + m?> +r,)] =0.

Equation (64) turns into a solitary wave solution for m — 1,
given as follows:

emal (S o

such that r2(1—r,)[ =2+ 1, + 2] =0.
Equation (64) turns into a periodic solution for m — 0,
given as follows:

ti=at+ (o Tt

such that r2(2 — r,)[1 + r,)> =0.

8. 1f, £y=1, £, =2m* -1, 4= —m>(1-m?), me (0,1)
, next, U(z) =sd(z, m) leads to:

vl 5 (e ) )

here f, k are given as f = (= 1 4+2m? —ry)ry/1 —m* + m* —
r3 k= =3ry/1—m?+m* -1, under constraint r7( -1+
2m? —1)[(=2 +m? + 1) (1 + m? + )] =0.

Equation (51) turns into a solitary wave solution for m — 1,
given as follows:

T

such that r2( -2 —1,)[1 — r,]*=0.
Equation (67) turns into a periodic solution for m — 0,
given as follows:

el (A 0

such that r2(2 — r,)[1 + r,)> =0.

9.1f, Lo=1-m? ¢, =2-m? ¢£,=1,me(0,1), after
that U(z) =cs(z, m); therefore, solution is given as
follows:
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T4 cs(z,m))? + k

here f,k are specified via f=(-2+m?>+1,))ry/1 —m> +
m* =12 k=3(-1+m*)r,/1—m?>+m* —rZ, under con-
straint r2(2-m? —1y)[ = (=1 4+ 2m* = r,)(1 + m? + ;)| =0.

Equation (70) turns into a periodic solution for m — 0,
given as follows:

amal (S o

such that 2(2 — r,)[(1 + r,)?] =0.

10. If, Zy=-m*(1-m?), 6,=2m>—1,¢6,=1,me
(0,1), afterward U(z) =ds(z, m), leads to:

here f,k are specified via f=(1-2m?+r,)ry/1—m?+
m* =12 k= —-3m*(—1+m*)r,/1 —m* +m* —rZ, under
constraint r2(—142m? —r,)[(=2 + m? + ;) (1 + m?> + ;)]
=0.

11.If, o =1-m?/4, ,=1+m?/2, {4 =1-m>/4, m€E
(0, 1), afterward U(z) = nc(z, m)+sc(z, m) or, U(z) =
cn(z,m)/1 + sn(r,m), thus solution is given as

follows:
o= a1+ 2 (e e 7))
(73)
or
Uz24 = 9o {1 + % (fcnz(r, m)cizézirrﬂl:)sn(f, m)}zﬂ ’
(74)

here f,k are comes from f= —8(1+m?-2r)r,/1+
14m? + m* — 1613, k=12(- 1+ m?)ry/1 + 14m* + m* — 1673,
under constraint r2(1/2(1 + m? —2r,)[1/16(1 — 6m + m?* +
4r,)(1 + 6m + m?) +4r, )] =0.

Equation (74) reduces to a periodic solution for m — 0,
given as follows:
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re <(16r§ — 1)(=1 + sin (z))(sec (z) + tan (T))z)},

Usas = go| 1 +3
225 90{ 2 (=5 + 4r, + (1 + 4r,) sin (7))

(75)
or
(1673 — 1)cos*(z)

V26 = 9o {1 +:—§ ((2 — 4ry)cos?(z) + 3(1 + sin (r))zﬂ ’
(76)

such that r3 (1 —r,) [£ (1 + 4r,)?] =0.

12.If, o= = (1 —m?)?/4, £, =14+ m?/2, £, = —1/4,
€(0,1), afterward U(r) =mcn(z, m)+dn(z, m),
thus solution is given as follows:

4r¢
Usoy =90 |1 +—
Ty

(men(r, m) + dn(z, m))? ﬂ
f(men(z,m) £ dn(z,m))?> +k/) |’

(77)

here f and k are given by f= —8(1+m?—2r,))r,/1+
14m? + m* — 1613, k=12(=1 + m?)?ry/1+ 14m> + m* — 1673,
under restriction r3(1/2(1 4 m? — 2r,)[1/16(1 — 6m + m?* +
4r,) (1 +6m+m?*) +4r, ) | =0.

13.If, £y=1/4, t,=1-2m>/2, £,=1/4.me (0,1).
afterward U(z) =sn(z,m)/1 + cn(r, m), thus solu-
tion is given as follows:

( sn(z,m) )2
4r¢ 1+cn(z,m)
Usps = 9o |1 +—

——— | | (78)
z, 2
e \f () + k

here f and k are agreed with f =8(— 1+ 2m? +2r,)r,/1 —
16m> +16m* - 1613, k= — 12r,/1 - 16m? + 16m* — 1677, under
restriction  r3(1/2 —m? —1,)[1/16 +2m?> — 2m* + (1/2 -
m*)r, + 13 =0.

Equation (78) reduces to a dark bright solitary wave
solution for m — 1, given as follows:

B s (-1 4 1672) tan h?(z)
Uz20 = 9o [1 + r2 (3(1 +sech(r))? = 2(1 + 2r,) tanh?(z) ) |’

(79)

such that r2( = 1/2 - r,)[1/16(1 — 4r,)?] =0.
Equation (78) reduces to a periodic solution for m — 0,
given as follows:

re (=1 + 1673) sin?(7)
= 1 -y
Uz30 go{ + r2 (3(1 +cos (7))? + 2(1 = 2r,)sin*(z) ) |
(80)
such that r2(1/2 - r,)[1/16(1 + 4r,)*] =0.
14. If, £y =1/4, fzzl_i_mz/z, f4:(1 —m2)2/4, me

(0,1), afterward U(z) =sn(z, m)/cn(z, m)+dn(z, m)
then solution takes the form given as follows:

sn(z,m) 2
4rg (cn(r,m)idn(r,m))
U2’31 ~ 9 o 7 sn(z,m) 2

4 f(cn(r,m)idn(r,m)) +k

. (81

here f and k are given by f= —8(1+m?-2r,)r,/1+
14m* +m* — 16r3, k= —12r,/1 + 14m* + m* — 1672, under
constraint 72(1/2(1 + m? = 2r,))[1/16(1 — 6m + m? + 4r,)
(1+6m+m?)+4r,])=0.

Equation (81) reduces to a solitary solution for m — 1,
given as follows:

(82)

Un=go|l+—
2,32 90[ +r§ 3+ (1-r,)sinh?(7)

4r6( (=14 2) sin h?(z) )}

such that r2(1—r,)[-2+r, +13] ) =0.
Equation (81) reduces to a periodic wave solution for
m — 0, given as follows:

B s |
(83)

such that r2(1/2 - r,)[1/16(1 + 4r,)*] =0.

4. Results, Discussions, and
Numerical Illustration

We foremost explored the influence of nonlinearity constant
on soliton states and changing energy states. Such nonline-
arity intensities have a noteworthy influence on the ampli-
tude, width, and stability of solitons, even on dipole and
tripole solitons. We investigated the stability of bright and
dark solitons by linear stability analysis. Jacobi elliptic wave
solution reduces to periodic wave and solitary wave for dif-
ferent parametric states. Few of the solutions are numerically
illustrated as superperiodic wave by Equation (19), as shown
in Figure 1(a), with g, =2,p=-1,6,=06;=1,0,=2,t=
0,z=1 as m=0.9,r,=1.19, it exhibits shock wave, as
shown in Figure 1(b), due to change of m=1,r, = —2 and
except unity of m (with m=0.8,r, = —1.64) the solution
expressed periodic wave, as shown in Figure 1(c). The peri-
odic wave with m=0.7,r,=1.51, g, =2,p= —-2,6, =6, =
6, =1,t=0,z =1 of the solution, as shown in Equation (27),
depicted in 3D, as shown in Figure 2(a), and different chang-
ing of nonlinear intensity, as shown in Figure 2(c). A single
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FiGUre 1: 3D surface: (a) superperiodic wave of (15) as m = 0.9, (b) shock wave of (15) as m — 1 or (17), and (c) periodic wave of (16) as m =
0.8.
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FiGUREe 2: 3D surface: (a) periodic wave of (22) as m=0.7, (b) dark soliton of (22) as m — 1 or (24), and (c) 2D shape of (22) as m=0.7.
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Fiure 3: 3D surface: (a) singular bright soliton of (26) as m=1, (b) of (38) as m — 0 or (24), and (c) 2D shape of (26) and (38) as

nonlinearity varies.

1,y=0,z=1, as shown in Figure 3(a). Singular periodic
wave solutions are visualized via Equation (44) for r, =0.5,
p=-2,9,=06,=2,6,=6;=1,y=0,z=1, as shown in
Figure 3(b) and its 2D plots for varying nonlinearity are

dark soliton is achieved from the same Equation (27) just
taking m = 1 retaining the rest parametric values are same, as
shown in Figure 2(b). Singular bright peak soliton comes via
Equation (31) as m=1,r,=p=—-2,9,=06,=2,6,=06;=
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FiGURE 4: 3D surface: (a) bright soliton of (48) as m =1, (b) dark solitonvia (50) as m — 1, and (c) periodic wave of (59) as m =0.

presented in Figure 3(c). Bright soliton visualized in Figure 4(a)
via Equation (52) with r, = -=2,p=6,=ry=2,r,=3g, =
01 =083 =1,y=0,z=1; dark soliton visualized in Figure 4(b)
via Equation (55) with r, = =2,p=6,=ry=2,r,=3g, =
01 =083=1,y=0,z=1, and beside this periodic wave visual-
ized in Equation (64) with r,= -2.6,=ry=2,p=r,=
go=01=03=1,y=0,z=1. Rest of the other solutions are
similar to the illustrated solutions, with and without singular-
ities are explained in this research.

5. Conclusions

This paper had achieved ion-acoustic soliton solutions to
mKdV-ZK model in homogeneous magnetized plasma
media via the ¢°-model expansion scheme. We successfully
utilized and invented novel families of ion-acoustic solitons
propagation due to Jacobi elliptic forms. Various shock
waves, bullet type bright, dark, bright-dark solitons, as well
as periodic wave solutions are formed starting the Jacobi
elliptic results on different parametric constraints. Some
obtained results are numerically illustrated in Figures 1-4
and analyzed the effect of nonlinearity on the change of
height and weight of the wave form in 2D, 3D plots. The
activities and the transmission of such solutions are dis-
cussed in a rating index waveguide for selecting suitable
parameters. To best our knowledge, the achieved dynamical
natures, in contrast with other’s results in literature, are
innovative in dissimilar structures. Such critical behaviors
can be crucial to recognize attribute of the mKdV-ZK model
those are used to explain various phenomena in nonlinear
sciences.
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