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This work conducts a numerical investigation of convection heat transfer within two composite enclosures. These enclosures
consist of porous and nanofluidic layers, where the porous layers are saturated with the same nanofluid. The first enclosure has two
porous layers of different sizes and permeabilities, while the second is separated by a single porous layer. As the porous layer
thickness approaches zero, both enclosures transition to clear nanofluid enclosures. The study uses the Navier–Stokes equations to
govern fluid flow in the nanofluid domain and the Brinkman–Forchheimer extended Darcy model to describe flow within the
saturated porous layer. Numerical solutions are obtained using an iterative finite difference method. Key parameters studied
include the porous thickness (0:0≤ S≤ 1:0), the nanoparticle volume fraction (0:0≤ϕ≤ 0:05), the thermal conductivity ratio
(0:5≤Rk ≤ 10), and the Darcy number (10−5 ≤Da≤ 10−2). Key findings include the observation that the highest heat transfer is
achieved at the highest concentration, regardless of the porous layer configuration, permeability value, or thermal conductivity
ratio. Specifically, an augmentation in values of NuI up to 22% is obtained as concentration is adjusted from 1% to 5%. Similarly, an
augmentation in values of NuII up to 25% is obtained as concentration is adjusted from 1% to 5%.

1. Introduction

Convection heat transfer is a process in which heat is trans-
ferred by the movement of the working fluids. The working
fluid can be water, gas, or nanofluids. Nanofluids are colloi-
dal suspensions of nanoparticles in a base fluid. The nano-
particles can be made of a variety of materials, such as metals,
oxides, or semiconductors. Nanofluids have been shown by
Choi [1] to have enhanced thermal conductivity compared to
the base fluid. Bourantas et al. [2] concluded that the role of
nanofluids has promising future applications in cooling tech-
nology. Mahdi et al. [3] summarized that as the volume
concentration of nanoparticles increased, published studies
reported a prominent improvement in heat transfer. Duwairi
et al. [4] showed that the use of nanofluids combined with
porous media improves the performance of the evacuated
tube when compared to the use of water alone. The nanofluid
can be applied to the composite enclosures. Composite
enclosures are porous materials that contain a high volume
of voids or pores. These pores can be filled with air, water, or
other fluids. Porous materials can have a significant impact

on heat transfer, as they can provide additional pathways for
fluid flow and heat conduction [5–8].

Convection heat transfer in composite enclosures has
gained significant attention due to its relevance in various
engineering applications. The combination of porous and
nanofluid layers in these enclosures offers unique thermal
characteristics and presents an opportunity for enhanced
heat transfer performance. The focus of this study is to inves-
tigate the convection heat transfer behavior in two composite
enclosures where the porous layers are saturated with the
same nanofluid. The choice of using porous layers is moti-
vated by their ability to control and manipulate fluid flow,
while nanofluids, which are colloidal suspensions of nanopar-
ticles in a base fluid, exhibit promising thermal properties.
Efficient thermal management is essential for maintaining
comfortable indoor environments and reducing energy con-
sumption in buildings and HVAC (heating, ventilation, and
air conditioning) systems. Composite enclosures with porous
and nanofluid layers can be utilized in insulation materials,
walls, and windows to enhance heat transfer control. The
findings from this study can guide the development of
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improved building materials and HVAC systems, leading to
energy savings and increased occupant comfort. The composite
enclosures with porous and nanofluid layers are also relevant in
solar energy applications. By optimizing the convective heat
transfer process within these enclosures, the efficiency of solar
collectors and heat exchangers can be improved. This can lead
to enhanced energy conversion and utilization, making solar
energy systems more viable and sustainable.

Many studies have been published on the theoretical and
experimental study of nanofluid flow and heat transfer in
composite enclosures. Chamkha and Ismael [9] have
arranged the porous layer and nanofluid layer side by side.
Later, Ismael and Chamkha [10], Tahmasebi et al. [11], and
Mehryan et al. [12] attached a solid wall to the porous layer
side. Alsabery et al. [13, 14] found the increase in the porous
layer has a significant impact on heat transport. Toosi and
Siavashi [15] concluded that at heating intensity, it is not
suggested to use a nanofluid with a porous medium. Al-
Zamily [16] concluded that as the thickness of the porous
media layer decreases, so does the maximum streamfunction.
The interaction of the corrugated surface with the combina-
tion of permeabilities and nanoparticles has been studied by
Nguyen et al. [17], Alsabery et al. [18], and Kadhim et al.
[19]. Miroshnichenko et al. [20] studied the effect of porous
layers on natural convection in an open enclosure and found
the thermal augmentation with nanoparticle concentration
for low left nanofluid layer thickness values. Al-Srayyih et al.
[21] and Chamkha et al. [22] filled the composite enclosure
with a hybrid nanofluid and applied a local thermal nonequi-
librium model for the heat transfer between the nanofluid
and the solid phases. Raizah et al. [23] focused on the con-
vective flow inside nonrectangular enclosures. Recently, Seli-
mefendigil and Chamkha [24] found significant changes in
the average Nusselt number, which are obtained by varying
the location of the porous medium. Ghalambaz et al. [25]
and Ghalambaz et al. [26] investigated the thermal perfor-
mance of nanoencapsulated phase change material suspen-
sion in the composite enclosure. Recently, Aly and Alsedais
[27] concluded that at lower Darcy parameters, the existence
of a porous sheet in the right region inhibits the suspension
flow in this region.

In summary, prior research has highlighted the potential
of composite enclosures with porous and nanofluid layers for
enhanced convective heat transfer. The studies discussed in
the above literature review have focused on different aspects
of these composite enclosures, including the effects of porous
structures and their location and nanofluid characteristics.
However, no information has been obtained for a systematic
comparison of composite enclosures that have two porous
layers, and one is separated by a porous layer. The present
study aims to contribute to this body of knowledge by
numerically investigating the convection heat transfer behav-
ior in two composite enclosures. The first kind of composite
enclosure has two porous layers with varying sizes and per-
meabilities. This configuration allows us to explore the influ-
ence of different porous structures on the convective heat
transfer process. The second composite enclosure, on the
other hand, is partitioned by a porous layer, providing an

additional element to investigate the impact of porous bar-
riers on fluid flow and heat transfer. The first and second
composite enclosures can be employed in architectural and
HVAC system planning. These porous materials are effective
in purifying fluids from impurities, mitigating noise, main-
taining temperature, and lessening the necessity for mechan-
ical heating and cooling. In HVAC systems, porous
substances can serve as heat exchangers or evaporative cool-
ers. Configuration options I or II can be customized to fit
particular requirements. To optimize material efficiency, it is
important to ensure that the combined heat and mass vol-
ume of the porous material remains consistent, irrespective
of the construction design. Investigating the heat transfer
characteristics in such complex configurations can provide
valuable insights into the interactions between the porous
layers, fluid flow patterns, and heat transfer rates, leading
to a more comprehensive understanding of convective heat
transfer in composite enclosures. The analysis in this study
focuses on investigating the effects of various dimensionless
parameters on convective heat transfer in both enclosures.

2. Mathematical Formulation

A schematic diagram of two composite enclosures with sides
of length L is shown in Figure 1. Two porous layers with
various sizes and permeabilities are attached to enclosure I.
The enclosure II is partitioned or divided by a porous layer.
Both porous layers have the same thickness at s. When the
porous layer approaches zero, both enclosures evolve into
clear-fluid enclosures, and while the porous thickness goes
to s, both enclosures are fully filled with a saturated porous
medium. The hot wall is set to the left. Opposite the hot wall
is the cold wall. The other two walls are maintained at insu-
lated condition. Both sides are filled with nanofluid, Al2O3,
and water.

All interfaces between the fluid and porous layers are per-
meable, and the wall enclosures are impermeable. Thermophy-
sical properties of the nanofluid in the flow field are assumed to
be constant except for the density variations causing a body force
term in the momentum equation. The Boussinesq approxima-
tion is invoked for the nanofluid properties to relate density
changes to temperature changes, and to couple in this way the
temperature field to the flow field. The Brinkman–Forchheimer
equation is used to model the porous medium flow. Vertical
fluid/porous layer interfaces are permeable. All external bound-
aries are impermeable. Influences of thermophoresis, radiation,
viscous dissipation, and Joule heating are neglected. A solid,
porous matrix and a saturating fluid are in a state of thermal
equilibrium, as modeled by Elliott et al. [28]. Under these
assumptions, the governing equations for steady natural convec-
tion flow using conservation of mass, momentum, and energy
can be written as follows:

∂uf
∂x

þ ∂vf
∂y

¼ 0; ð1Þ

uf
∂uf
∂x

þ vf
∂uf
∂y

¼ −
1
ρnf

∂pf
∂x

þ μnf
ρnf

∂2uf
∂x2

þ ∂2uf
∂y2

� �
; ð2Þ
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uf
∂vf
∂x

þ vf
∂vf
∂y

¼ −
1
ρnf

∂pf
∂y

þ μnf
ρnf

∂2vf
∂x2

þ ∂2vf
∂y2

� �
þgβnf Tf − Tc

À Á
;

ð3Þ

uf
∂Tf

∂x
þ vf

∂Tf

∂y
¼ αnf

∂2Tf

∂x2
þ ∂2Tf

∂y2

� �
: ð4Þ

Subscript nf represents the nanofluid, and symbol g is
gravity acceleration. Tf is the fluid temperature in the clear-
fluid part. The variables ðuf ;  vf Þ are the fluid velocities in the
clear-fluid part. Symbols g is the acceleration due to gravity,
μnf ;  ρnf ;  βnf and αnf are dynamic viscosity, the density, ther-
mal expansion and thermal diffusivity of the nanofluids,
respectively. The thermophysical properties of the materials
used in this work are shown in Table 1.

The fluid flow and energy equation of the porous layer
using the Brinkman–Forchheimer model are as follows:

∂up
∂x

þ ∂vp
∂y

¼ 0; ð5Þ

up
ϵ2

∂up
∂x

þ vp
ϵ2
∂up
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¼ −
1
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∂2up
∂x2

þ ∂2up
∂y2

� �

−
ν

K
up −

CFffiffiffiffi
K

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2p þ v2p

q
ϵ3=2

up;

ð6Þ

up
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þ vp
ϵ2
∂vp
∂y

¼ −
1
ρnf

∂pp
∂y

þ μnf
ρnf

∂2vp
∂x2

þ ∂2vp
∂y2
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À Á
−
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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ð7Þ

u
∂Tp

∂x
þ v

∂Tp

∂y
¼ αm

∂2Tp

∂x2
þ ∂2Tp

∂y2

� �
; ð8Þ

where Tp is the fluid temperature in the porous layer. The
variables ðup;  vpÞ are the fluid velocities in the porous layer.
The thermal diffusivity of a solid matrix is αm, ϵ is the poros-
ity, K is the porous permeability, and CF ¼ 1:75=

ffiffiffiffiffiffiffi
150

p
is the

Forchheimer coefficient. The boundary conditions are as
follows:

up ¼ vp ¼ 0;   
∂Tp

∂y
¼ 0  on the bottom and topwalls enclosure I;

ð9Þ

uf ¼ vf ¼ 0;   
∂Tf

∂y
¼ 0  on the bottom and topwalls enclosure II;

ð10Þ

TABLE 1: Thermophysical properties of the nanofluids used in this
work.

Materials Water Al2O3

Specific heat capacity, Cp (J kg −1 K −1) 4,179 765
Density, ρ (kgm −3) 997.1 3,970
Thermal conductivity, k (Wm −1 K −1) 0.613 40
Thermal expansion coefficient, β (K −1) 21× 10−5 0:85× 10−5
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FIGURE 1: Schematic representation of the enclosure I (a) and enclosure II (b).
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up ¼ vp ¼ 0;   Tp ¼ Th;   on the left enclosure I; ð11Þ

uf ¼ vf ¼ 0;   Tf ¼ Th;   on the left enclosure II; ð12Þ

up ¼ vp ¼ 0;   Tp ¼ Tc;   on the right enclosure I; ð13Þ

uf ¼ vf ¼ 0;   Tf ¼ Tc;   on the right enclosure II; ð14Þ

uf ¼up;   vf ¼ vp;   Tf ¼ Tp;
∂uf
∂x

¼ ∂up
∂x

;   
∂vf
∂x

¼ ∂vp
∂x

;   kf
∂Tf

∂x
¼ kp

∂Tp

∂x
  on the all interfaces;

ð15Þ

where the density of the nanofluids suspension, ρnf , is given
as follows:

ρnf ¼ 1 − ϕð Þρbf þ ϕρsp; ð16Þ

where ϕ is the solid volume fraction or concentration of
nanoparticles suspended in the host. The thermal diffusivity
of the nanofluids is defined by the following:

αnf ¼
knf

ρCpð Þnf
; ð17Þ

where the effective heat capacity of the suspension is evalu-
ated as follows:

ρCpð Þnf ¼ 1 − ϕð Þ ρCpð Þbf þ ϕ ρCpð Þsp: ð18Þ

The thermal expansion coefficient of the suspension can
be evaluated by the following:

βnf ¼ 1 − ϕð Þ βð Þbf þ ϕβsp: ð19Þ

The dynamic viscosity of the suspension in this context is
as follows:

μnf ¼ 1 − ϕð Þ−5=2=μbf ð20Þ

The effective thermal conductivity of the suspension is
estimated by the following formula:

knf ¼
ksp þ 2kbf − 2ϕ kbf − ksp

À ÁÂ Ã
kbf

ksp þ 2kbf þ ϕ kbf − ksp
À Á : ð21Þ

The governing equations given above are in terms of the
so-called primitive variables, i.e., velocity, temperature, and
pressure. The solution procedure discussed in this work is
based on equations involving the streamfunction, ψ f , the
vorticity, ωf , and the temperature, T , as variables which
are defined as u¼ ∂ψ f =∂y, v¼ − ∂ψ f =∂x, and ωf ¼

ð∂vf =∂xÞ− ð∂uf =∂yÞ. The streamfunction satisfies the conti-
nuity equation. The vorticity equation is obtained by elimi-
nating the pressure between the two momentum equations,
i.e., by taking y-derivative of the first momentum and sub-
tracting from it the x-derivative of the second momentum.
This gives the following:

∂ψ f

∂y
∂ωf

∂x
−
∂ψ f

∂x
∂ωf

∂y
¼ νnf

∂2ωf

∂x2
þ ∂2ωf

∂y2

� �
− βnf g

∂Tf

∂x

� �
;

ð22Þ

∂ψ f

∂y
∂Tf

∂x
−
∂ψ f

∂x
∂Tf

∂y
¼ αnf

∂2Tf

∂x2
þ ∂2Tf

∂y2

� �
; ð23Þ

∂2ψ f

∂x2
þ ∂2ψ f

∂y2
¼ −ωf : ð24Þ

The momentum and energy equations of the porous part
in terms of streamfunction-vorticity formulation are as fol-
lows:

∂ψp

∂y
∂ωp

∂x
−
∂ψp

∂x
∂ωp

∂y
¼ νnf

∂2ωp

∂x2
þ ∂2ωp

∂y2

� �
− βnf g

∂Tp

∂x

� �
;

ð25Þ

∂ψp

∂y
∂Tp

∂x
−
∂ψp

∂x
∂Tp

∂y
¼ αnf

∂2Tp

∂x2
þ ∂2Tp

∂y2

� �
; ð26Þ

∂2ψp

∂x2
þ ∂2ψp

∂y2
¼ −ωp: ð27Þ

The following nondimensional variables are introduced:

X ¼ x
L
;  Y ¼ y

L
;  Ω¼ ωL2

αbf
;  Ψ ¼ ψ

αbf
;

S ¼ s
L
;  Θf ¼

Tf − Tc

Th − Tc
;  Θp ¼

Tf − Tc

Th − Tc
;

Da ¼ K
L2

;  Prbf ¼
νbf
αbf

;  Rabf ¼
gβbf Th − Tcð ÞL3Prbf

ν2bf
:

ð28Þ

By using the dimensionless parameters, the equations
now become the following:

∂Ψ f

∂Y
∂Ωf

∂X
−
∂Ψ f

∂X
∂Ωf

∂Y
¼ Prbf

1 − ϕð Þ0:25 1 − ϕð Þ þ ϕ
ρsp
ρbf

� �
2
4

3
5 ∂2Ωf

∂X2 þ ∂2Ωf

∂Y2

� �

þ Rabf Prbf 1 − ϕð Þ þ ϕ
βsp
βbf

" #
∂Θf

∂X

� �
;

ð29Þ
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∂Ψ f

∂Y
∂Θf

∂X
−
∂Ψ f

∂X
∂Θf

∂Y
¼

knf
kbf

1 − ϕð Þ þ ϕ
ρCpð Þsp
ρCpð Þbf

2
4

3
5 ∂2Θf

∂X2 þ ∂2Θf

∂Y2

� �
;

ð30Þ

∂2Ψ f

∂X2 þ ∂2Ψ f

∂Y2 ¼ −Ωf : ð31Þ

The dimensionless momentum and energy equations of
the porous part in terms of streamfunction-vorticity formu-
lation are as follows:

∂Ψ p

∂Y
∂Ωp

∂X
−
∂Ψ p

∂X
∂Ωp

∂Y
¼ ϵPrbf

1 − ϕð Þ0:25 1 − ϕð Þ þ ϕ
ρsp
ρbf

� �
2
4

3
5 ∂2Ωp

∂X2 þ ∂2Ωp

∂Y2

� �

− 
ϵ2Prbf

1 − ϕð Þ0:25 1 − ϕð Þ þ ϕ
ρsp
ρbf

� �
2
4

3
5Ωp

Da

þ 

ϵ2Prbf

1 − ϕð Þ0:25 1 − ϕð Þ þ ϕ
ρsp
ρbf

� �
2
4

3
5CF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂Ψ p

∂Y

� �
2 þ ∂Ψ p

∂X

� �
2

r
ffiffiffiffiffiffi
Da

p Ωp

þ ϵ2Rabf Prbf 1 − ϕð Þ þ ϕ
βsp
βbf

" #
∂Θp

∂X

� �
;

ð32Þ

∂Ψ p

∂Y
∂Θp

∂X
−
∂Ψ p

∂X
∂Θp

∂Y
¼

knf
kbf

1 − ϕð Þ þ ϕ
ρCpð Þsp
ρCpð Þbf

2
4

3
5 ∂2Θp

∂X2 þ ∂2Θp

∂Y2

� �
;

ð33Þ

∂2Ψ p

∂X2 þ ∂2Ψ p

∂Y2 ¼ −Ωp : ð34Þ

The nondimensional velocity values are zero in the walls.
The boundary conditions for the nondimensional tempera-
tures on the outside walls of both enclosures are as follows:

Θ 0;Yð Þ ¼ 1;  Θ 1;Yð Þ ¼ 0 ; ð35Þ

∂Θ X; 0ð Þ
∂Y

¼ ∂Θ X; 1ð Þ
∂Y

¼ 0 : ð36Þ

The continuity of the heat flux at the solid–fluid inter-
faces in both enclosures is as follows:

∂Θf

∂Y
¼ Rk

∂Θp

∂Y
; ð37Þ

where Rk ¼ kp=kf is the thermal conductivity ratio. At the
same time, the continuity of the temperature at the
solid–fluid interfaces is represented by the following:

Θf ¼ Θp: ð38Þ
The heat transfer rate across the enclosure is an impor-

tant parameter in heat transfer applications. The total heat
transfer rate in terms of the average Nusselt number, ðNuÞ at
the solid–fluid interfaces is defined as follows:

Nu ¼ knf
kbf

Z
1

0
−
∂Θ
∂X

dY: ð39Þ

3. Numerical Method and Validation

An iterative finite difference procedure is employed to
solve Equations (29)–(34) subject to the boundary con-
ditions Equations (35)–(38). The numerical solution will
be preceded by giving the finite difference equation
(FDE) of the streamfunction equation for the bounded
enclosure and the partitioned enclosure. The FDE of the
streamfunction written in the Gaussian SOR formulation
is as follows:

Ψ kþ1
i; j ¼Ψ k

i; j þ
λr

2 1þ ΔX
ΔY

À Á
2

À Á Ψ k
iþ1; j þ Ψ kþ1

i−1; j

h

þ ΔX
ΔY

� �
2
Ψ k

i; jþ1 þ Ψ kþ1
i; j−1

� �

−2 1þ ΔX
ΔY

� �
2

� �
Ψ k

i; j þ ΔXð Þ2 −Ωi;j

À Á
k

�
:

ð40Þ

The FDE of vorticity and energy in the clear fluid and
porous fractions could be written in the same way. The grid-
points distribution at the porous layer and clear-fluid layer is
shown in Figure 2, where NSþ 1 is the number of nodal
points in the horizontal axis inside the porous layer. Follow-
ing this setting then, the conditions at the fluid-porous inter-
face are:
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Θp

À Á
kþ1
i;j ¼ Θf

À Á
k
i;j

Θp

À Á
kþ1
i;j ¼ 1

Rk

� �
− Θf

À Á
k
i;jþ2

��

þ 4 Θf

À Á
k
i;jþ1 − 3 Θf

À Á
k
i;j

�
þ 4 Θf

À Á
k
i;j−1 − Θf

À Á
k
i;j−1

i
=3:

ð41Þ

The conditions at the fluid-porous interface for enclosure
II could be written in the same way.

The upwind scheme was employed to ensure solution
stability when addressing the convective terms in the
momentum and energy equations. An accurate formula of
the second order is used to establish the boundary condition
for the vorticity. As an illustration, the vorticity along the
porous (1≤ i≤NSþ 1 and NX −NSþ 1≤ i≤NXþ 1) and
fluid (NSþ 1≤ i≤NX −NSþ 1) part is represented as fol-
lows:

Ω¼ −
8Ψ 1;j − Ψ 2;j

À Á
2 ΔY2ð Þ : ð42Þ

Similar expressions can be written for other walls as well.
The conditions on the interfaces are as follows:

Ω¼ 4Ωf iþ 1; jð Þ −Ωf iþ 2; jð Þ þ 4Ωp i − 1; jð Þ −Ωp i − 2; jð Þ
6

:

ð43Þ

Regular and uniform grid distribution is used for the
whole enclosure. The effect of grid resolution was examined
in order to select the appropriate grid density, as demon-
strated in Table 2 for S¼ 0:3, Da¼ 10−4, Rk ¼ 2, and ϕ¼
0:05. The data indicate that a 111× 111 grid can be used in
the final computations. Verification of the current stream-
lines and isotherms was made against that of Beckermann
et al. [5] when the porous layer is attached on the right part at
Ra¼ 3:028× 107, Da¼ 1:296× 10−5, Pr¼ 6:97, Rk ¼ 1:383,

and S¼ 0:5 (see Figure 3). Thus, it is decided that the present
code is valid for further calculations.

4. Results and Discussion

The analysis in the undergoing numerical investigation is
performed in the following range of the associated dimen-
sionless groups: the thickness of the porous medium, 0≤ S≤
1, the nanoparticles volume fraction (0:0≤ϕ≤ 0:05), the
thermal conductivity ratio (0:5≤Rk ≤ 10), and the Darcy
number (10−5 ≤Da≤ 10−2). The Prandtl number value and
the Rayleigh number value are fixed at Pr¼ 4:62 and Ra¼
106. Here, the Rayleigh number, Ra¼ 106 to keep the con-
vection in the laminar regime and the applicability of Bous-
sinesq approximation. The Darcy number, 10−5 ≤Da≤ 10−2

to cover a pore-level in the Darcy and non-Darcy models.
The nanoparticles concentration (0:0≤ϕ≤ 0:05) is an opti-
mal range of volume fraction for alumina nanomaterials
where the rate of thermal transfer is maximized. Beyond this
optimal range, an excessive concentration of nanoparticles
can lead to aggregation or other negative effects, which might
reduce the heat transfer performance. The flow and temper-
ature distribution are presented in terms of streamlines and
isotherms. The heat transfer rate is presented by the average
Nusselt number.

Figure 4 depicts the effects of the porous thickness for
enclosure I and enclosure II on the streamlines for Da¼
10−4, Rk ¼ 2, and ϕ¼ 0:05. Without a porous layer (S¼
0:0), a skewed and stretched vortex is found in the center
of the enclosure. The eye of the vortex in the first enclosure
becomes a circled one as porous thickness increases, and
later, the eye is elongated vertically. The eye of the vortex
in the hot part of the second enclosure is found in the lower
portion, while the eye in the cold part is found in the upper
portion of the enclosure. The reduction in vortex strength for
both enclosures indicates the influence of the porous layer
thickness. The circulation strength in the second enclosure is
higher than that in the first enclosure for the same porous
thickness. This attributes to the convective flow by heating
the left wall in the enclosure I is retarded by the porous layer.
Figure 4 also shows the spatial displacement and changing of

TABLE 2: Grid sensitivity check for the enclosure I and enclosure II at
S¼ 0:3, Da¼ 10−4, Rk ¼ 2, and ϕ¼ 0:05.

Grid size NuI NuII

21× 21 2.4953 6.2870
31× 31 2.5023 6.2710
41× 41 2.5051 6.2646
51× 51 2.5066 6.2611
61× 61 2.5074 6.2590
71× 71 2.5080 6.2579
81× 81 2.5283 6.2139
91× 91 2.5287 6.2134
101× 101 2.5288 6.2128
111× 111 2.5487 6.1706
121× 121 2.5485 6.1705

j = NY + 1

j = 1
i = 1 i = NS + 1 i = NX – NS + 1 i = NX + 1

FIGURE 2: Grid-points distribution in the porous layer (j≤NSþ 1,
j≥NX −NSþ 1) and clear-fluid layer (j≥NSþ 1, j≤NX −NSþ 1).
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the core vortex of the convective cells by varying the porous
size. Almost double eyes are created in the enclosure without
a porous layer. There is more intensive nanofluid motion in
the clear-nanofluid case owing to the direct nanofluid heat-
ing of the left layer and no obstruction in the middle for flow
movement.

Figure 5 depicts the effects of the porous thickness for
enclosure I (left) and enclosure II (right) at Da¼ 10−4, Rk ¼
2, and ϕ¼ 0:05. When there is no porous layer (S¼ 0), the
warm nanofluid rises and moves away from the heated sur-
face, leading to heat loss to the surrounding walls. Conse-
quently, the nanofluid cools, becomes denser, and descends

back toward the heat source, resulting in distorted isotherms.
These isotherms are more widely spaced near the heated
surface. In enclosure I, some of the heat released from the
hot surface crosses the porous wall and travels with the
nanofluid in the center. As the nanofluid approaches the cold
wall, some of the heat flow is terminated, while the rest
reaches the lower part of the cold wall. As the cold nanofluid
sweeps the lower wall, the direction of the heat flow is
reversed. Enclosure II exhibits a similar behavior, where
some of the heat released by the hot surface travels with the
nanofluid and crosses the porous partition, reaching the cold
surface. Subsequently, some of this heat is reversed, but to a

|ψ|max = 22.64

θ = 1.0

0.5

0.0

FIGURE 3: Comparison of the current streamlines and isotherms (left) against that of Beckermann et al. [5] when the porous layer is attached
on the right at Ra¼ 3:028× 107, Da¼ 1:296× 10−5, Pr¼ 6:97, Rk ¼ 1:383, and S¼ 0:5.
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lesser extent compared to enclosure I. Increasing the porous
thickness in both enclosures results in less distortion of the
isotherms. The isotherms become more closely packed, indi-
cating a decrease in the temperature gradient. The heat in the
enclosure I is conducted almost vertically across all porous
thicknesses. The heat in enclosure II is predominantly con-
ducted in a nearly vertical direction across all porous
thicknesses.

Figure 6 provides a visual representation of the flow fields
and thermal distribution within enclosure I, highlighting the
effect of the Darcy number while maintaining constant
values of S¼ 0:5, Rk ¼ 2, and ϕ¼ 0:05. The strength of the

flow initially decreases and then increases as the Darcy num-
ber increases. In the Darcy regime (Da¼ 10−5), no flow cir-
culation cells are formed on both porous sides. The eye flow
takes on an elliptical shape, elongated vertically. However, as
the Darcy number increases, the elliptical shape is com-
pressed. At Da¼ 10−5 and Da¼ 10−4, the isotherms within
the porous layers appear almost parallel to the hot and cold
surfaces. However, at Da¼ 10−2, the isotherms within the
porous layers are distorted. These observations can be attrib-
uted to the interplay between the Darcy number, the stream-
line penetration within the porous sides, and the fluid side.
Increasing the Darcy number reduces the drag within the

S = 0.125

S = 0.25

S = 0.50

S 
= 

0
S 

= 
1

FIGURE 4: Streamlines evolutions by varying porous thickness for enclosure I (left) and enclosure II (right) at Da¼ 10−4, Rk ¼ 2, and ϕ¼ 0:05.

8 Advances in Mathematical Physics



porous layers, allowing for increased streamline penetration
and resulting in distorted isotherms. The streamlines and
isotherms exhibit symmetry with respect to the midplane
that equally divides the heated and cooled sections. This
symmetry suggests equal fluid velocities as the fluid rises in
the left layer and reverses in the right layer, indicating a
balanced convective flow.

Figure 7 illustrates the streamlines and isotherms, pro-
viding insight into the influence of the Darcy number on the
flow fields and thermal distribution within enclosure II,
while keeping S¼ 0:5, Rk ¼ 2, and ϕ¼ 0:05 constant. Two
distinct eye circulations can be observed at Darcy numbers,

Da¼ 10−5 and Da¼ 10−4. In the hot portion, the eye flow
exhibits a counter-clockwise direction, while in the cold
portion, it follows a clockwise direction. The eye flow of
the hot partition predominantly occurs in the lower part,
while the eye flow of the cold partition is observed in the
upper part. As the Darcy number increases to Da¼ 10−2,
the eye flows of the cold and hot partitions merge into a
single flow. This unified flow conducts heat more inten-
sively from the hot fluid, benefiting from the higher perme-
ability of the enclosure. Conversely, at low permeability
values, the isotherms within the partition appear almost
parallel to the hot and cold surfaces, indicating that the

S = 0.125

S = 0.25

S = 0.50

S 
= 

0
S 

= 
1

FIGURE 5: Isotherms evolutions by varying porous thickness for enclosure I (left) and enclosure II (right) at Da¼ 10−4, Rk ¼ 2, and ϕ¼ 0:05.
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partition acts as a thermal barrier, impeding heat transfer
between the two sides. However, at higher permeability
values, the isotherms within the partition become distorted,
indicating that the porous part functions as an additional

heat-conducting channel, facilitating heat transfer between
the hot and cold regions [29].

Figure 8 illustrates the variations in the average Nusselt
number for both enclosures as a function of the porous

ðaÞ

ðbÞ

ðcÞ
FIGURE 6: Streamlines (left) and isotherms (right) evolutions for several Darcy number of the enclosure I at S¼ 0:5, Rk ¼ 2, and ϕ¼ 0:05: (a)
Da¼ 10−5; (b) Da¼ 10−4; (c) Da¼ 10−2.
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thickness, while maintaining a constant value of Rk ¼ 2 and
ϕ¼ 0:05 and considering different values of S. It can be
observed that the average Nusselt number decreases with
increasing porous thickness for all permeabilities, with the

lowest value obtained in the Darcy regime. Interestingly, for
the second enclosure, the average Nusselt number remains
constant with increasing porous thickness up to S¼ 0:75
when Da¼ 10−3. This phenomenon can be attributed to the

ðaÞ

ðbÞ

ðcÞ
FIGURE 7: Streamlines (left) and isotherms (right) evolutions for several Darcy number of the enclosure II at S¼ 0:5, Rk ¼ 2, and ϕ¼ 0:05: (a)
Da¼ 10−5; (b) Da¼ 10−4; (c) Da¼ 10−2.
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increased drag within the porous layer and the reduced pen-
etration of streamlines with higher S values. As the Darcy
number increases, there is less drag and more streamline
penetration, leading to enhanced momentum exchange
between the two layers. However, in the case of the second
enclosure, as the Darcy number continues to increase, a sig-
nificant number of streamlines pass through the porous par-
tition, which has high heat resistance. This results in a
balance between the increased permeability of the porous
layer and the heat resistance, ultimately resulting in a con-
stant average Nusselt number.

The variations of the average Nusselt number for enclo-
sure I and enclosure II with respect to the Darcy number are
depicted in the upper and lower parts of Figure 9, respec-
tively, while maintaining a constant value of Rk ¼ 2 and S¼
0:5. It is evident that as the Darcy number increases, the

average Nusselt number also increases for all concentrations
in both enclosures. The profiles of the average Nusselt num-
ber exhibit different trends between enclosure I and enclo-
sure II. Initially, as the Darcy number increases, NuI shows a
slow response, but after reaching a sufficiently high Darcy
number, the NuI grows rapidly. Conversely, NuII shows a
rapid response to an increasing Darcy number, but after
reaching a sufficiently high value, its growth slows down.
Both NuI and NuII increase with increasing nanoparticle
concentration, with the increase being more pronounced at
higher Da values in the case of enclosure II. An augmenta-
tion in values of NuI up to 22% is obtained as concentration
is adjusted from 1% to 5%. Similarly, an augmentation in
values of NuII up to 25% is obtained as concentration is
adjusted from 1% to 5%. This can be attributed to the signif-
icant impact of the solid concentration of nanoparticles at

S
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FIGURE 8: Variation of NuI and NuII with S for different Da at Rk ¼ 2 and ϕ¼ 0:05: (a) enclosure I; (b) enclosure II.
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FIGURE 9: Variation of NuI (a) and NuII (b) with Da for different ϕ at Rk ¼ 2 and S¼ 0:5: (a) enclosure I; (b) enclosure II.
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high permeability in the second enclosure. Here, the pres-
ence of nanoparticles further enhances heat transfer by pro-
moting thermal conductivity and disrupting the thermal
boundary layer, particularly in the case of enclosure II, where

the porous layer acts as an additional heat-conducting
pathway.

Figure 10 illustrates the variations of the average Nusselt
number for enclosure I and enclosure II as a function of the
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FIGURE 10: Variation of NuI (a) and NuII (b) with Rk for different ϕ at S¼ 0:5 and Da¼ 10−4: (a) enclosure I; (b) enclosure II.

TABLE 3: Variations of the average Nusselt number with the Darcy number for various values of the governing parameters.

Rk 0.5 5.0

Da 10−5 10−3 10−2 10−5 10−3 10−2

ϕ S EnI EnII EnI EnII EnI EnII EnI EnII EnI EnII EnI EnII

0.01

0.1 2.86 4.32 4.33 6.57 5.29 6.61 5.91 4.27 11.48 6.42 16.25 6.46
0.3 1.39 2.67 3.86 6.58 5.42 6.68 4.82 3.02 14.28 6.21 26.42 6.35
0.5 0.94 1.87 3.91 6.58 5.51 6.77 4.13 2.43 14.52 6.01 26.45 6.28
0.7 0.72 1.48 3.98 6.60 5.60 6.89 3.61 2.64 14.08 5.85 26.10 6.29
0.9 0.62 0.93 4.06 5.53 5.70 6.66 4.04 4.05 13.45 6.40 25.77 8.21

0.02

0.1 3.05 4.50 4.53 7.00 5.55 7.04 6.29 4.48 11.94 6.84 16.93 6.89
0.3 1.48 2.73 3.98 7.00 5.65 7.12 5.13 3.18 14.67 6.61 27.47 6.76
0.5 1.00 1.90 4.04 6.99 5.74 7.21 4.40 2.57 14.91 6.38 27.51 6.68
0.7 0.77 1.50 4.11 7.01 5.83 7.34 3.84 2.81 14.46 6.19 27.12 6.69
0.9 0.66 0.96 4.19 5.80 5.93 7.05 4.31 4.31 13.79 6.72 26.75 8.70

0.03

0.1 3.22 4.67 4.71 7.42 5.77 7.46 6.66 4.67 12.36 7.25 17.57 7.30
0.3 1.56 2.79 4.08 7.41 5.84 7.55 5.42 3.34 14.99 6.99 28.36 7.17
0.5 1.05 1.93 4.14 7.39 5.93 7.64 4.65 2.71 15.23 6.74 28.40 7.08
0.7 0.81 1.52 4.20 7.39 6.02 7.76 4.06 2.95 14.77 6.52 27.96 7.07
0.9 0.69 1.00 4.29 6.07 6.12 7.43 4.53 4.54 14.05 7.00 27.56 9.12

0.04

0.1 3.38 4.84 4.88 7.86 5.98 7.91 7.04 4.87 12.78 7.68 18.24 7.74
0.3 1.63 2.85 4.16 7.84 6.00 7.99 5.72 3.50 15.28 7.40 29.19 7.59
0.5 1.10 1.96 4.22 7.81 6.09 8.09 4.89 2.84 15.50 7.12 29.19 7.49
0.7 0.84 1.53 4.29 7.80 6.18 8.20 4.27 3.08 15.02 6.86 28.72 7.46
0.9 0.72 1.03 4.37 6.34 6.29 7.83 4.72 4.73 14.26 7.26 28.27 9.53

0.05

0.1 3.54 5.03 5.04 8.35 6.19 8.41 7.46 5.10 13.22 8.17 18.96 8.24
0.3 1.70 2.92 4.24 8.32 6.15 8.49 6.04 3.68 15.56 7.85 29.99 8.07
0.5 1.15 1.99 4.30 8.28 6.24 8.59 5.14 2.99 15.75 7.54 29.95 7.96
0.7 0.87 1.55 4.36 8.24 6.33 8.69 4.49 3.20 15.24 7.25 29.42 7.91
0.9 0.74 1.07 4.44 6.66 6.43 8.27 4.91 4.91 14.45 7.52 28.93 9.94
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thermal conductivity ratio (Rk), with a constant value of S¼ 0:5
and Da¼ 10−4. It is observed that both NuI and NuII increase
with increasing nanoparticle concentration. Figure 10(a) shows
that the heat transfer rate increases with the increase of the
thermal conductivity ratio, regardless of the nanoparticle con-
centration. On the contrary, Figure 10(b) demonstrates that the
heat transfer rate decreases as the thermal conductivity ratio
increases. Moreover, the heat transfer enhancement is more
pronounced at higher Rk values for the first enclosure, while
it remains constant at a given thermal conductivity ratio value.
This behavior can be explained by the fact that in the case of the
first enclosure, the porous medium with high conductivity acts
as a pathway for heat transfer. In the case of the second enclo-
sure, however, the porous partition acts as a thermal barrier,
preventing heat transfer between the two sides despite its high
conductivity.

The summary of variations in the average Nusselt number
with the Darcy number is presented in Table 3 for different
values of the governing parameters. It is worth noting that the
labels “EnI” and “EnII” represent enclosure I and enclosure II,
respectively. The average Nusselt number of enclosure I exhi-
bits increasing values in accordance with the sequence Rk ¼
0:5 and Rk ¼ 5:0. The average Nusselt number of enclosure II
exhibits decreasing values in accordance with the sequence
Rk ¼ 0:5 and Rk ¼ 5:0. For all Darcy numbers, the average
Nusselt number decreases as the porous thickness increases.
With an increase in the Darcy number, the average Nusselt
number also enhances for all concentrations in both enclo-
sures. The minimum average Nu occurs at Rk ¼ 0:5, Da¼
10−5,ϕ¼ 0:01, and S¼ 0:9 in enclosure I, denoted by the bold
value 0.62. Similarly, in enclosure I, the maximum averageNu
is observed at Rk ¼ 5:0,Da¼ 10−2,ϕ¼ 0:05, and S¼ 0:3, with
the bold value 29.99.

5. Conclusions

To accurately model the fluid flow and heat transfer phenomena
in the composite enclosures, we employ the Navier–Stokes
equations to govern the fluid flow within the nanofluid domain.
The presence of saturated porous layers requires the use of the
Brinkman–Forchheimer extended Darcy model to describe the
flow behavior. This combined approach allows us to capture
the complex interaction between the fluid flow in the nanofluid
layer and the porous structure, providing a comprehensive
understanding of the convective heat transfer process in com-
posite enclosures. To solve the governing equations, an iterative
finite difference method is employed, which has been proven
effective in similar studies and ensures accurate numerical
results. In the present numerical simulations, two categories of
morphology have been studied, namely the surrounded enclo-
sure and the divided enclosure with different porous fraction.
Detailed computational results for fluid flow, temperature distri-
bution, heat path, and heat transfer characteristics in both enclo-
sures were presented in graphical form. Themain conclusions of
the present analysis are as follows:

(1) The flow patterns within both enclosures are influ-
enced by the configuration of the porous thickness,

the permeability value, and the thermal conductivity
ratio. The streamlines and isotherms exhibit symme-
try with respect to the middle plane of enclosure I,
while streamlines and isotherms exhibit symmetry
with respect to the diagonal plane of enclosure II.

(2) At very small Darcy numbers, the convective flow
generates a vortex only in the nanofluid layer, which
subsequently spreads out to the porous layer as the
Darcy number increases. However, the vortex per-
sists in the nanofluid layer of both enclosures.

(3) The highest concentration results in the greatest heat
transfer for each porous layer configuration, perme-
ability value, and thermal conductivity ratio.

(4) Heat transfer enhancement is more pronounced with
higher thermal conductivity ratios in enclosure I,
while in enclosure II, it is more pronounced with
higher permeability values.

(5) An augmentation in values of NuI up to 22% is
obtained as concentration is adjusted from 1% to
5%. Similarly, an augmentation in values of NuII up
to 25% is obtained as concentration is adjusted from
1% to 5%.

The key findings of this research underscore the practical
importance of incorporating porous materials into the design
and evaluation of heat transfer systems, as they have a sig-
nificant impact on the thermal efficiency of both buildings
and HVAC systems. However, further research and experi-
mentation are necessary to explore the effects of varying
parameters and real-world applications in detail.

Nomenclature

CF : Forchheimer constant
Cp: Heat capacity
Da: Darcy number
g: Gravitational acceleration
k: Thermal conductivity
K : Permeability
L: Enclosure side
Nu: Nusselt number
Pr: Prandtl number
Rk: Thermal conductivity ratio
S: Porous layer thickness
T : Fluid temperature
x; y: Space coordinates

Greek symbols

β: Coefficient of thermal expansion
ϵ: Porosity
Θ: Dimensionless fluid temperature
Ω: Vorticity
ρ: Density
ϕ: Nanoparticles volume fraction
Ψ : Streamfunction
μ: Dynamic viscosity
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Subscript

bf : Basefluids
c: Cold
f : Fluid layer
h: Hot
nf : Nanofluids
p: Porous layer
sp: Solid particles.
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