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In this paper, we report the effect of classical and quantum superposition of atomic states on quantum correlations. Coupled
photon pairs generated in a ladder quantum beat laser using coherent-induced classical field and atomic state coherent
superposition are considered. Once the quantum coherence get sufficient time, it can generate quantum correlations that
include quantum discord, quantum entanglement, and quantum steering, which quickly increase with time until they get their
maximum strength. Their strength can be improved further by increasing the number of superposed atoms per unit time,
selecting an appropriate amplitude of the classical fields, and managing the amount of temperatures and phase fluctuations. In
particular, two-way quantum steering, which is a guarantee for the existence of quantum discord and quantum entanglement,
can be achieved by increasing the rate of atomic injection from 2 kHz to 25 kHz even if the mean temperature of the heat bath
is considered. The maximum achievable strength of quantum correlations is enhanced by increasing the rate of atomic
injection and choosing an appropriate parameters of the coherent-induced classical field in the open quantum system which is
treated by using the density operator approach.

1. Introduction

Quantum correlations have been the subject of intensive
studies in the past two decades, mainly due to the general
belief that they are a fundamental resource for quantum
information processing tasks. The first rigorous attempt to
address the classification of quantum correlation has been
put forward by Werner [1], who put on a firm basis on the
elusive concept of quantum entanglement. Quantum super-
positions are quantum mechanical principles that are at the
heart of quantum information and communication applica-
tions [2]. In addition, quantum superposition, which is often
called quantum coherence of two states, plays a fundamental
role in quantum information and communication protocols.
Quantum coherence is a local and nonclassical correlation of
two or more quantum states [3, 4]. Quantum coherence is
responsible for quantum features such as quantum discord,
quantum entanglement, and quantum steering. Quantum

features produced by the interaction of atoms and photons
are powerful and suitable for quantum information and
communication due to the relevant physical mechanisms
and sources of decoherences that can be understood and eas-
ily modeled [5–8]. In particular, quantum features generated
from strongly coupled photon pairs have been a long-sought
goal in quantum information and communication in view of
the fact that photons combine at high speed with long coher-
ence times at room temperature [9]. To this aim, the model-
ling scheme that would generate strongly coupled photon
pairs has becomes a great topic of interest among the current
quantum information and communication researches [10,
11]. Generating and maintaining a strong quantum coher-
ence between quantum particles, especially in the presence
of decoherence, is one of the central goals of quantum infor-
mation and communication protocols [12]. To this effect,
researches have been conducted to study the role of thermal
light on quantum entanglement generated by a cascaded

Hindawi
Advances in Mathematical Physics
Volume 2023, Article ID 2729561, 16 pages
https://doi.org/10.1155/2023/2729561

https://orcid.org/0000-0002-1435-8869
https://orcid.org/0000-0002-4493-9453
https://orcid.org/0000-0002-4699-8342
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2729561


quantum beat laser, and the mean photon number of ther-
mal light appears to degrade the entanglement [13]. Ullah
et al. have studied quantum features in two-photon corre-
lated spontaneous emission lasers [14]. They have proved
that a correlated spontaneous emission laser is an active
quantum system with invaluable applications in quantum
information processing. Originally, quantum beat lasers
were used for lasing without population inversion and
quenching of spontaneous emission noise [15]. Recent stud-
ies show that quantum beat laser systems are a suitable
source of quantum squeezing and quantum entanglement
in which the quantum coherence is induced by driven fields
[16, 17]. These quantum features may suggest the existence
of other quantum features such as quantum discord and
quantum steering, although they are not investigated so
far. When correlated quantum states are used as a resource
for teleportation, teleportation fidelity reveals two different
aspects of nonclassicality or measures of correlations of
quantum nature. The quantum correlations between the
output two-mode Gaussian state of the cavity field depend
on the Rabi frequency of the coupling fields and on the
cavity damping rates. Specifically, the time evolution of
quantum discord and entanglement become independent
(dependent) of the purity (nonclassicality) of the initial
states of the cavity field. Nonetheless, both the nonclassical-
ity and purity, in the latter case, influence the quantum
steering and nonlocality. Consequently, quantum nonlocal-
ity leads steerability, and quantum steering shows entangle-
ment in the correlated field of the laser cavity. The reverse,
however, does not exhibit always [18].

The main objective of these article is to study the
effects of classical and quantum superposition of atomic
states on quantum steering, entanglement, and discord
by applying the master equation approach when the quan-
tum coherences built up between photon pairs in a ladder
quantum beat laser subjected to quantum decoherences
originated by phase fluctuation and temperature of heat
bath.

2. The Model and Dynamics of the System

We consider a three-level atomic system in cascade configu-
ration with energy levels jai, jbi, and jci which is placed
inside a doubly resonant cavity as shown in Figure 1. Ini-
tially, the atom is prepared in coherent superposition of
the ground state jai and the upper excited state jci. The
two modes ô1 and ô2 to be at resonance with the two transi-
tions jci⟶ jbi and jbi⟶ jai are dipole allowed and
direct transition between level jci and level jai to be dipole
forbidden.

The quantum Hamiltonian expressions describing the
interaction pictures of the quantum beat lasers have been
derived using the rotating wave and electric dipole approxi-
mations and can be written as [19, 20]

Ĥ = Ĥ1 + Ĥ2: ð1Þ

The interaction Hamiltonian of a quantum beat laser
with the annihilation operators ô1 and ô2 and classical field

is expressed using the unitary operator Û = exp ð−iĤ1tÞ,
where Ĥ1 =∑u=a,b,cωujuihuj + ωbaô

†
1ô1 + ωcbô

†
2ô2 as

Ĥ2 = ig ô†1 bj i ah j + ô†2 cj i bh j − aj i bh jô1 − bj i ch jô2
Â Ã

+ i
ξ

2 cj i ah j − aj i ch j½ �:
ð2Þ

With ξ being the classical field amplitude, here, we take
the initial state of a single three-level atom considered:

ψ 0ð Þj i = Ca 0ð Þ aj i + e−iϕCc 0ð Þ cj i, ð3Þ

where ϕ is is an arbitrary phase difference between the two
states. The initial density operator for a single atom is
expressible in the following form:

ρ 0ð Þ = ρ 0ð Þ
aa aj i ah j + ρ 0ð Þ

ac e
−θ aj i ch j + ρ 0ð Þ

ca e
−θ cj i ah j + ρ 0ð Þ

cc cj i ch j,
ð4Þ

where θ represent the deviation of the phase fluctuation,
ρð0Þaa = jCað0Þj2 and ρð0Þcc = jCcð0Þj2 are the probability for the
atom to be in the upper and lower levels at the initial time,
and ρð0Þac = Cað0ÞC∗

c ð0Þ and ρð0Þca = Ccð0ÞC∗
a ð0Þ represent the

atomic state superposition at the initial time. We also note

that jρð0Þac j
2 = jρð0Þca j

2 = ρð0Þaa ρ
ð0Þ
cc . Considering the concept of

the linear and adiabatic approximation schemes in the good
cavity limit into account, we can find that the equation of
evolution of the density operator for the cavity modes has
the following form:

d
dt
bρ tð Þ =〠

1
2ô†1bρ ô1 − bρ ô1ô1† − ô1ô1

†bρÂ Ã
+〠

2
2ô2bρ ô2† − bρ ô2†ô2 − ô2

†ô2bρÀÂ Ã
+〠

3
ô1

†bρ ô1 − bρ ô2†ô1† + ô2bρ ô1 − ô1ô2bρÂ Ã
+〠

4
ô1

†bρ ô2† − ô2
†ô1

†bρ + ô2bρ ô1 − bρ ô1ô2Â Ã
,

ð5Þ
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Figure 1: Schematic representation of atomic laser system coupled
to reservoir, where ra is the rate of atomic injection into the cavity
and κ (kappa) is the cavity damping constant.
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where

Σ1 =
A ρ

0ð Þ
aa 1 + ε2/4

À ÁÀ Á
− ρ

0ð Þ
ac 3ε/2ð Þ + ρ

0ð Þ
cc 3ε2/4
À Á� �

2 1 + ε2ð Þ 1 + ε2/4ð Þð Þ , ð6Þ

Σ2 =
A ρ

0ð Þ
aa 3/4ð Þε2 + ρ

0ð Þ
ac 3ε/2ð Þ + ρ

0ð Þ
cc 1 + ε2/4

À ÁÀ Á� �
2 1 + ε2ð Þ 1 + ε2/4ð Þð Þ , ð7Þ

Σ3 =
A −ρ 0ð Þ

aa ε/2ð Þ 1 − ε2/2
À ÁÀ Á

− ρ
0ð Þ
ac 1 − ε2/2

À ÁÀ Á
+m1

� �
2 1 + ε2ð Þ 1 + ε2/4ð Þð Þ ,

ð8Þ

Σ4 =
A −ρ 0ð Þ

aa ε 1 + ε2/4
À ÁÀ Á

− ρ
0ð Þ
ac 1 − ε2/2

À ÁÀ Á
+m2

� �
2 1 + ε2ð Þ 1 + ε2/4ð Þð Þ ,

ð9Þ
where A = 2g2ra/r2, ε = ξ/γ, m1 = ρð0Þcc εð1 + ðε2/4ÞÞ, and
m2 = ρð0Þcc ðε/2Þð1 − ðε2/2ÞÞ.

On the other hand, the time evolution of the density
operator for a two-mode cavity radiation coupled to a two-
mode thermal reservoir via a single-port mirror is found as
follows [21]:

dbρ
dt

= κ

2
�Nth + 1
À Á

2ô1bρ ô†1 − ô†1ô1bρ − bρ ô†1ô1Â Ã
+ 1
2 κ

�Nth 2ô†2bρ ô2 − ô2ô
†
2ρ − bρ ô2ô†2Â Ã

+ 1
2 2Σ1 + κ�Nth

À Á
2ô†1bρ ô1 − ô1ô

†
1bρ − bρ ô1ô†1Â Ã

+ 1
2 2Σ2 + κ �Nth + 1

À ÁÀ Á
2ô2bρ ô†2 − ô†2ô2bρ − bρ ô†2ô2Â Ã

− Σ3 ô1ô2bρ − ô†1bρ ô†2 + bρ ô†2ô†1 − ô2bρ ô1Â Ã
− Σ4 ô†2ô

†
1bρ − ô†1bρ ô†2 + bρ ô1ô2 − ô2bρ ô1Â Ã

:

ð10Þ

Equation (10) can be used to derive equations of motion
for the expectation values of various system operators as a
function of time. Considering Equations (6)-(9) and (10),
we can write

d
dt

o1 = −
γ1
2 o1 +

ν1
2 o∗2 + ô inð Þ

1 , ð11Þ

d
dt

o∗2 = −
γ2
2 o∗2 −

ν2
2 o1 + ô inð Þ

2
� �∗

, ð12Þ

in which γ1 = κ − Σ1, ν1 = Σ2, γ2 = κ + Σ3, and ν2 = Σ4. Sim-
ilarly, we can derive equation for expectation value of the

remaining operators as Equations (A.2)-(A.8); ôðinÞ1 ðtÞ and

ðôðinÞ2 Þ∗ðtÞ are the noise forces whose correlation properties
will be determined. Moreover, making use of Equations

(11) and (12), it is possible to verify the expectation values
of the time-dependent noise force as the following:

ô inð Þ
1 tð Þ

D E
= o1 tð Þô inð Þ

1 tð Þ
D E

= 0, ð13Þ

ô inð Þ
2 tð Þô inð Þ

2 tð Þ
D E

= ô inð Þ
1

� �∗
tð Þô inð Þ

2 tð Þ
D E

= 0,

ð14Þ

o∗1 tð Þô inð Þ
1 tð Þ

D E
+ o1 ô inð Þ

1

� �∗
tð Þ

D E
= 2Σ1 + κ�Nth, ð15Þ

o∗2 tð Þô inð Þ
2 tð Þ

D E
+ o2 tð Þ ô inð Þ

2

� �∗
tð Þ

D E
= κ�Nth, ð16Þ

o2 tð Þô inð Þ
1 tð Þ

D E
+ o1 tð Þô inð Þ

2 tð Þ
D E

= −2Σ4: ð17Þ

We note that Equations (13)-(17) represent the correla-

tion properties of the noise forces ôðinÞ1 ðtÞ and ôðinÞ2 ðtÞ associ-
ated with the normal ordering.

It is known that the expectation values of Equations (11)
and (12) are identical to Equations (A.2) and (A.3). It is now
convenient to introduce a parameter η which relates the
probabilities of atoms populating in the bottom and top
levels as

ρl 0ð Þ = 1 − ηð Þ
2 , ð18Þ

provided that −1 ≤ η ≤ 1. Hence, using the fact that ρlð0Þ +
ρnð0Þ = 1 and Equation (19), it is not subtle to verify that

ρn 0ð Þ = 1 − ρl 0ð Þ = 1 + η

2 , ð19Þ

ρln 0ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρl 0ð Þρn 0ð Þ

p
= 1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
: ð20Þ

Hence, employing Equations (13)-(17) along with (18)-
(20) into Equations (11) and (12), we obtain

d
dt

o1 = −ξ+o1 − η+o
∗
2 + ô inð Þ

1 , ð21Þ

d
dt

o∗2 = −ξ−o
∗
2 − η−o1 + ô inð Þ

2
� �∗

, ð22Þ

where

ξ+ =
1
2 κ − 2Σ1ð Þ,

ξ− =
1
2 κ + 2Σ2ð Þ,

η+ = −
1
2Σ3,

η− =
1
2Σ4:

ð23Þ
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We find the solutions of the coupled differential Equa-
tions (21)-(22) as the following:

o1 t + τð Þ =M+ τð Þo1 tð Þ +N+ τð Þo∗2 tð Þ +H+,
o2 t + τð Þ =M− τð Þo2 tð Þ +N− τð Þo∗1 tð Þ +H−,

ð24Þ

in which H± = I±ðt + τÞ + J±ðt + τÞ,
where

M± τð Þ = 1
2 1 ±wð Þe−λ−τ + 1 ∓wð Þe−λ+τ
h i

, ð25Þ

N± τð Þ = y±
2 e−λ+τ − e−λ−τ
h i

, ð26Þ

I+ t + τð Þ =
ðτ
0
M+ τ − τ′
� �h i

ô inð Þ
1 t + τ′
� �

dτ′, ð27Þ

I− t + τð Þ =
ðτ
0
M− τ − τ′
� �h i

ô inð Þ
2 t + τ′
� �

dτ′, ð28Þ

J+ t + τð Þ =
ðτ
0
N+ τ − τ′
� �h i

ô inð Þ
2

� �∗
t + τ′
� �

dτ′, ð29Þ

J− t + τð Þ =
ðτ
0
N− τ − τ′
� �h i

ô inð Þ
1

� �∗
t + τ′
� �

dτ′, ð30Þ

in which

w = χ1
V

,

y± =
− χ1

ffiffiffiffiffiffiffiffiffiffiffiffi
χ1 − 1

p
/2

À ÁÂ Ã
∓ 3η

ffiffiffiffiffiffiffiffiffiffiffiffi
χ1 − 1

p
/2

À Á
− χ2

Â Ã
V

, 

V =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ1ð Þ2 +

ffiffiffiffiffiffiffiffiffiffiffiffi
χ1 − 1

p
2 χ1ð Þ − 3η

ffiffiffiffiffiffiffiffiffiffiffiffi
χ1 − 1

p
2

 !
− χ2

 !vuut ,

λ+ =
1
2 ξ+ + ξ−ð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ+ − ξ−ð Þ2 + 4η+η−

q� �
,

λ− =
1
2 ξ+ + ξ−ð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ+ − ξ−ð Þ2 + 4η+η−

q� �
,

ð31Þ

where

χ1 = 1 + ε2,

χ2 =
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
1 − ε2

2

� �
,

ξ+ =
1
2 κ − 2Σ1ð Þ,

ξ− =
1
2 κ + 2Σ2ð Þ,

η+ = −
1
2Σ3,

η− =
1
2Σ4:

ð32Þ

3. Quantum Steering via Coherent
Classical Field

Quantum steering refers to the nonclassical correlations that
can be observed between the outcomes of measurements
applied on half of an entangled state and the resulting post-
measured states that are left with the other party. From an
operational point of view, a steering test can be seen as an
entanglement test where one of the parties performs unchar-
acterised measurements. Thus, quantum steering is a form
of quantum inseparability that lies in between the well-
known notions of the Bell nonlocality and entanglement. It
is a quantum correlation that can exist if and only if the sys-
tem is entangled. Therefore, it is stronger than entangle-
ment. Let us consider local Gaussian measurements
performed on mode ô1. A Gaussian state, bρ = ρðô1, ô2Þ for
two-mode photons, is ô1 ⟶ ô2 steerable if the following
condition is violated [18, 22, 23]:

L + i 0ô1 ⊕Ωô2

À Á
≥ 0, ð33Þ

in which Ωô2
is the covariance matrix pure states in the sec-

ond system described by

Ωô2
= ⊕ 2

1
0 1
−1 0

 !
,

L =
L1 L12

LT12 L2

 ! ð34Þ

is the covariance matrix of photon pairs, and 0ô1 indicates
the null matrix in the first system.

It is a common knowledge that Equation (33) is satisfied
when L1 > 0 and ðL2 − LT12L

−1
1 L12Þ + iΩo2

≥ 0. The first condi-
tion L1 > 0 is always true since the operator representing
these measurements is a positive covariance matrix. There-
fore, L is ô1 ⟶ ô2 steerable only if the second condition is
violated. That is, when the matrix

L2L + iΩo2
< 0, ð35Þ

where L2L = ðL2 − LT12L
−1
1 L12Þ.

The symmetric matrix L2L can be diagonalized using
symplectic transformations that yield physically interesting
symplectic eigenvalues of L2L, which we have already derived
as ðs±Þ2 = ða ± ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − 4 det ðLÞp Þ/2, where a = det ðL1Þ + det
ðL2Þ + 2 det ðL12Þ and s± are invariant quantities. In terms
of these eigenvalues, ô1 ⟶ ô2 steerability is given by

Sô1⟶ô2 = 0, 12 ln det L1½ �
4 det L½ �
� �� �

: ð36Þ

Quantum steering is asymmetric since it is one-way and
device-independent quantum correlation. Therefore, one
could easily swap the roles of L1 and L2 to obtain the mea-
surement of Gaussian quantum steering, Sô2⟶ô1 . According
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to these formulations, Gaussian quantum steering is exhibited
only when Sô1⟶ô2 > 0 and Sô2⟶ô1 > 0. However, there would
be no information on the upper bounds. This may be an issue
to correctly measure the degree of quantum steering.

Therefore, we follow another formalism in which case, the
necessary and sufficient condition for two-mode Gaussian
quantum steer-ability from ô1 ⟶ ô2 is

Sô1⟶ô2 = Δx3 1j Δx4 2j < 1: ð37Þ

Here, the conditional variances are defined by ½Δx3j1�2 =
½Δðx3 − gxx1Þ�2 and ½Δx4j2�2 = ½Δðx4 + gpx2Þ�2, in which gx

and gp are optimization factors which are real constants
adjustable to minimize quantum fluctuations corresponding
to the previously defined quadrature operators. After detailed
mathematical manipulation in the optimization conditions,
we arrived at

Sô1⟶ô2
� �2

= l11 tð Þ − l213 tð Þ
l33 tð Þ

" #
l11 tð Þ − l224 tð Þ

l33 tð Þ

" #
, ð38Þ

with the optimization factors gx = l13ðtÞ/l33ðtÞ and gp = −l24
ðtÞ/l33ðtÞ.

To investigate Sô1⟶ô2 and Sô2⟶ô1 , we plot Sô1⟶ô2 and
Sô2⟶ô1 versus the dimensionless parameter ξ/γ by varying
the relevant system parameters. An in-depth analysis of
quantum steering and its comparison with other quantum
features can be made using 2D plots as follows. Figures 2
and 3 depict the variation of the quantum steering with
coherent classical fields and the parameters characterizing
the system as a whole. We also notice that the quantum
steering declines with increased temperature of the heat bath
describing via �nth and phase fluctuations. On the other hand,
injecting more atoms quickly into the cavity and tuning the
coherent classical field to an appropriate intensity can effi-
ciently oppose the negative impact of quantum decoherences
to generate one-way quantum steering from Sô1⟶ô2 . It is a
peculiar behavior of the manifested quantum steering that
disappears in the strong coupling regime, where notable
quantum discord and entanglement are observed under the
same system parameters. This must be attributed to the
quantum coherence built up by a coherent classical field in
the strong coupling regime which is not strong enough to
generate quantum steering, which is one of the restrictive
nature of quantum correlations.

4. Quantum Steering via
Coherent Superposition

Dependence of one-way Gaussian quantum steering on
Sô1⟶ô2 is demonstrated in Figures 4–6 under different sys-
tem parameters. From these figures, Sô1⟶ô2 ≥ 1 for η = 1,
in which the superposition-induced atomic coherence van-
ishes completely since all atoms occupy at the ground energy
level with 100% probability. The maximum achievable
strength of quantum steering occurs when atoms are found

with 48.5% of the excited energy level, for which other quan-
tum features are also stronger. We also observe a rapid
increase of the strength of quantum steering with increased
atomic injection rates. However, after attaining its peak
value, quantum steering rapidly decreases with an increased
probability of the atoms in the ground energy level. One can
also see that the quantum steering decreases with the tem-
perature of the heat bath and atomic phase fluctuations.

5. Quantum Entanglement via Coherent
Classical Field

A pair of quantum mechanical particles is in an entangled
state if and only if their individual states cannot be expressed
as a product of the states of its separate constituents. Thus,
one can write

bρ ≠〠
i

Pibρ 1ð Þ
i ⊗ bρ 2ð Þ

i , ð39Þ

where Pi ≥ 0 and ∑iPi = 1 represent the normalization condi-
tion for the combined density state of the composite system.

Although numerous criteria of entanglement measures
have been developed and currently available in the literature,
here, we apply the criterion set by Duan et al. [24]. This cri-
terion is highly interesting due to its direct utilization to
quantify quantum squeezing.

Based on this criterion, a quantum state of the system is
entangled if the sum of the variances of the EPR-type oper-
ators x̂ and p̂ satisfies the condition:

Δx2 + Δp2

2 < 1, ð40Þ

in which x̂ = x̂a − x̂b and p̂ = p̂a + p̂b. Here, x̂a = ð1/ ffiffiffi
2

p Þðô†1
+ ô1Þ, x̂b = ð1/ ffiffiffi

2
p Þðô†2 + ô2Þ, p̂a = ði/ ffiffiffi

2
p Þðô†1 − ô1Þ, and p̂b =

ði/ ffiffiffi
2

p Þðô†2 − ô2Þ are the quadrature operators of the cavity-
mode photons.

Now, we find the variances of x̂ and p̂. The variance x̂
can be obtained from the relation Δx2 = hx2i − hxi2, where

x2

 �

= 1
2
Â
2 + 2 ô†1ô1


 �
+ 2 ô†2ô2

 �

−
À
ô1ô2h i

+ ô†1ô
†
2


 �
+ ô2ô1h i + ô†2ô

†
1


 �ÁÃ
:

ð41Þ

It is now not difficult to find Equation (41); it reads as
follows:

x2

 �

= 1
2 2 + 2 o∗1o1h i + 2 o∗2o2h i − 4 o1o2h i½ �: ð42Þ

Moreover, it is straightforward to see that

xh i2 = 0: ð43Þ
With the help of Equations (41) and (43), the variance of

x̂ becomes:

Δx2 = x2

 �

= 1 + o∗1o1h i + o∗2o2h i − 2 o1o2h i: ð44Þ
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Figure 2: Time evolution of quantum steering Sô1⟶ô2 against coherent-induced classical field for ra = 2 kHz, κ = 0:5 kHz, η = 0:1, g = 0:8γ,
t = 10 s, θ = 0:001, and �Nth = 0:00, 0.05, and 0.1.
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Figure 3: Time evolution of quantum steering Sô1⟶ô2 against coherent-induced classical field for �Nth = 0:1, κ = 0:5 kHz, η = 0:1, g = 0:8γ,
t = 10 s, θ = 0:001, and ra = 1 kHz, 1.5 kHz, and 2 kHz.
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Figure 4: Time evolution of quantum steering Sô1⟶ô2 against atomic state superposition ra = 10 kHz, κ = 0:5 kHz, t = 10 s, g = 0:8γ, ξ = 0:1γ,
θ = 0:001, and �Nth = 0:00, 0.25, and 0.5.
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Following the same procedure, it is possible to verify that

Δp2 = 1 + o∗1o1h i + o∗2o2h i − 2 o1o2h i: ð45Þ

Thus, the sum of the variances of x̂ and p̂ is found to be

Δx2 + Δp2

2 = 1 + �n1 tð Þ + �n2 tð Þ − 2�n12 tð Þ, ð46Þ

where �n1 = ho∗1o1i, �n2 = ho∗2o2i, and �n12 = ho1o2i are clearly
given by Equations (A.17)-(A.20). To investigate the entan-
glement of the two-mode radiation with this criterion, ðΔ
x2 + Δp2Þ/2 is plotted for the same system parameters used
in the previous section. The quantum system exhibits
100% entangled and nonentangled when the sum of fluctua-
tions in the position and momentum-like operators reduces
to zero, ðΔx2 + Δp2Þ/2 = 0, and greater than one, ðΔx2 + Δ
p2Þ/2 > 1, respectively.

The dependence of quantum entanglement on time,
coherent classical field, and coherent superposition can be
inferred from Figures 6 and 7. Variation of quantum entan-
glement with coherent classical fields under different system

parameters is demonstrated in Figures 7–9, in which the
quantum entanglement is lost between ξ = 3γ/4, and ξ = 6γ.
However, it increases for certain values of the parameter of
the coherent-induced classical field and attains peak values
around ξ = γ/10 and ξ = 10γ. We show that the photon pairs
are in a maximally entangled state boosted with an increased
atomic injection rate. For the same system parameters, the
quantum discord states for light modes are also strong. This
would probably be one of the interesting results of our sys-
tem for it can simultaneously support entangled state or dis-
cordant state-based quantum information processing. On
the other side, the photon pairs are in a slightly changing
entangled state, which could vary depending on other units
of quantum system, for ξ > 10γ. However, the entanglement
declines with increasing parameters of quantum decoher-
ences heat bath and atomic phase fluctuation.

6. Quantum Entanglement via
Coherent Superposition

The effect of atomic state superposition on the dynamics of
quantum entanglement is shown in Figures 10–12. The influ-
ences of system parameters such as time, phase fluctuations,
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Figure 5: Time evolution of quantum steering Sô1⟶ô2 against atomic state superposition �Nth = 0:5, κ = 0:5 kHz, t = 10 s, g = 0:8γ, ξ = 0:1γ,
θ = 0:001, and ra = 5 kHz, 15 kHz, and 25 kHz.
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Figure 6: Time evolution of quantum steering Sô1⟶ô2 against atomic state superposition for �Nth = 0:5, κ = 0:5 kHz, t = 10 s, g = 0:8γ, ξ =
0:1γ, ra = 10 kHz, and θ = 0:00, 0.0125, and 0.015.
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and atomic injection rate on the dynamics of entanglement are
negligible for η = 1 but considerable for η = 0. Entanglement of
photon pairs is maximized near the maximum atomic coher-
ence, η = 0:23, and enhanced with the help of ra as shown in
Figure 11. Under the same condition, the entanglement of
photon pairs at t = 10 s is more by 20% than that at a steady
state for η = 0 and �Nth = 0 (see Figure 10). On the other hand,
we show in Figure 12 that the entanglement of photon pairs is
completely lost by small phase fluctuations of θ ≥ 0:0125.
Therefore, the investigation of quantum features without
considering phase fluctuations is just an assumption far from
participial reality.

7. Quantum Discord via Coherent
Classical Field

Quantum discord is defined as a measure of the quantum cor-
relations present in a system. The difference arises because of
the role played by measurement on the system. Quantum dis-
cord has been of relevant research interest during the past few
decades in light of its potential as a resource of quantum infor-
mation and communication, especially in disentangled quan-
tum systems.

In the classical systems, it is possible to obtain all infor-
mation of the system without disturbing it. However, this is
not the case in quantum mechanics since measurements can
in general modify quantum systems. Owing to this fact, the
two equivalent expressions of mutual information in classi-
cal information theory are not the same for quantum sys-
tems. The difference between these equivalent quantities is
used to define the quantum discord Dô1 , which is a quantum
correlation beyond entanglement, given by

Dô1 = I bρð Þ −maxYj
B

J bρð Þ½ �, ð47Þ

where bρ = ρðô1, ô2Þ represents the density operator of the
combined system, and

I bρð Þ = S ô1ð Þ + S ô2ð Þ − S bρð Þ ð48Þ

is the quantum mutual information that provides a measure
of the total correlation within a bipartite system. In this
descriptions, Sðô1Þ and Sðô2Þ represent the Von Neumann
entropy of each mode while SðbρÞ is the joint Von Neumann
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Figure 10: Quantum entanglement ðΔx2 + Δp2Þ/2 of the photon pairs against atomic state superposition for ra = 10 kHz, κ = 0:5 kHz,
t = 10 s, g = 0:8γ, ξ = 0:1γ, θ = 0:001, and �Nth = 0:00 and 0.5: at steady state (dashed curve) and t = 10 s (solid curve) and at t = 10 s.
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Figure 11: Quantum entanglement ðΔx2 + Δp2Þ/2 of the photon pairs against atomic state superposition for �Nth = 0:5, κ = 0:5 kHz, t = 10 s,
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entropy of the bipartite system. On the other hand, JðbρÞ
represents the classical mutual information that captures
the classical correlations given by [25] JðbρÞ = Sðô1Þ − Sðbρ
ðô1, ô2Þj

Q j
ô2
Þ. Here, the term Sðbρðô1, ô2ÞjQj

ô2
Þ indicates that

the conditional Von Neumann entropy of modes ô1 and ô2,
with

Qj
ô2
= jjô2ihjô2 j being a set of local projective measure-

ments on light mode ô2. An optimization condition should
be imposed on JðbρÞ to avoid the dependence of quantum dis-
cord on the measurements [26, 27]. This reads as follows:

maxYj
B

J bρð Þ½ � = S ô1ð Þ −minYj
B

S bρ ô1, ô2ð Þ
Yj
ô2

�����
 !" #

: ð49Þ

The optimization process of measurement of mutual
information highly complicates the quantification of quan-
tum discord in general. Analytical formulas of quantum
discord are derived for continuous variable Gaussian
bipartite systems in Refs. [28, 29]. Continuous variable
Gaussian states have Gaussian Wigner functions. It is well
known that a bipartite Gaussian system is fully described
by its symplectic eigenvalues, covariance matrix, and the
standard form of diagonal subblocks. This reads as follows:

L =
L1 L12

LT12 L2

 !
, ð50Þ

in which L1 and L2 are the covariance matrices describing
each mode separately, while L12 are the intermodal corre-
lations. The elements of the matrix in Equation (27) can
be obtained from the relation [29]

Lij =
1
2 x̂ix̂ j + x̂ jx̂i

 �

− x̂ih i x̂ j

 �

, ð51Þ

in which i, j = 1, 2, 3, 4. The quadrature operators are
defined as x̂1 = ô1 + ô†1, x̂2 = iðô†1 − ô1Þ, x̂3 = ô2 + ô†2, and x̂4
= iðô†2 − ô2Þ. Using these definitions, the only nonvanish-
ing terms in the extended covariance matrix are

L =

l11 tð Þ 0 l13 tð Þ 0
0 l22 tð Þ 0 l24 tð Þ

l∗31 tð Þ 0 l33 tð Þ 0
0 l∗42 tð Þ 0 l44 tð Þ

0
BBBBB@

1
CCCCCA, ð52Þ

where l11ðtÞ = l22ðtÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðL1Þ

p
= 2n1ðtÞ + 1, l33ðtÞ = l44ðtÞ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðL2Þ

p
= 2n2ðtÞ + 1, and l13ðtÞ = −l24ðtÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−det ðL12Þ
p

= 2n12ðtÞ. One can also easily verify that

det Lð Þ = l11 tð Þl33 tð Þ + l13 tð Þl24 tð Þ½ �2: ð53Þ

On the other hand, the corresponding eigenvalues of
the symplectic matrix described in Equation (51) are
given by

s±ð Þ2 = a ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 4 det Lð Þp

2 , ð54Þ

where a = det ðL1Þ + det ðL2Þ + 2 det ðL12Þ and s± are invari-
ant quantities.

The continuous variable Gaussian quantum discord for
two-mode radiation described by a covariance matrix M is
given by

Dô1 = I l33 tð Þð Þ − I s−ð Þ − I s+ð Þ + I
ffiffiffi
Γ

p� �
, ð55Þ

where
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Figure 12: Quantum entanglement ðΔx2 + Δp2Þ/2 of the photon pairs against atomic state superposition for �Nth = 0:5, κ = 0:5 kHz, t = 10 s,
g = 0:8γ, ξ = 0:1γ, ra = 10 kHz, and θ = 0:00, 0.0125, and 0.015.
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with c = ½ðl11Þ2 + 1�½det ðLÞ + ðl33Þ2� − ½det ðLÞ − ðl11l33Þ2�
2
,

and we also note that for any variable x, the function IðxÞ
is defined by IðxÞ = ðð1 + xÞ/2Þ log2ðð1 + xÞ/2Þ − ðð1 − xÞ/2Þ
log2ðð1 − xÞ/2Þ. In these equations, we have not shown time
dependence to save environment.

The quantum discord for mode ô2 can be easily
obtained by swapping the role of l11ðtÞ and l33ðtÞ. This

reads as follows:

Dô2 = I l11 tð Þð Þ − I s−ð Þ − I s+ð Þ + I
ffiffiffiffiffi
Γ′

p� �
, ð57Þ

where

According to the definition of quantum discord, two-
mode radiation fields are entangled for Dô1ðDô2Þ > 1, and
the two-mode fields can either be in a separable or
entangled state for 0 ≤Dô1ðDô2Þ < 1. The effect of coherent
classical field interaction on atomic transitions from the
excited state and ground state is clearly demonstrated in
Figures 13–15. We selected a specific value of system
parameters based on the previously realized experimental
schemes for microwave setup [24, 30] and recognized the
theoretical articles [31]. It is clearly indicated that the
quantum discord is stronger in the absence of the coherent
classical fields, ξ = 0. For ξ ≠ 0, the classical field begins
contributing its part. Quantum discord for mode ô1
sharply declines with increasing classical field parameters
until ξ ≈ γ, then its slowly increases to attain a certain
maximum value around at ξ = 3:5γ, and later, it slowly
decreases to zero depending on the values of other param-
eters such as ra and �Nth. This may occur because the clas-
sical field does not induce quantum coherence uniformly,
and hence, an appropriate value of its parameter can be
chosen to get an optimized quantum discord. This quan-
tum feature can highly be increased by adding temperature
of the heat bath and increasing the atomic injection rate
(see Figures 13 and 14). Moreover, increasing phase fluctu-
ations could slightly improve the quantum discord as can
be seen in Figure 15.

8. Quantum Discord via
Coherent Superposition

Dependence of quantum discord for mode ô1 on the quan-
tum coherence induced by quantum superposition of
atomic states has been shown in Figures 16–18 under differ-
ent system parameters. Analytical calculations have indi-
cated that the quantum coherence induced by the atomic
state superposition is maximum for η = 0 and minimum
for η = 1 (see Equations (19) and (20)). These figures also
manifest the same features: quantum discord becomes weak
and strong when the quantum coherence induced by atomic
state superposition is minimum and maximum, respec-
tively. This must happen due to the fact that quantum
coherences are a resource for quantum features including
quantum discord.

9. Conclusion

In this paper, we have studied the effect of classical and
quantum superposition of atomic states on quantum corre-
lations. The photon pairs were strongly coupled through
coherent-induced classical fields and atomic state superpo-
sition and were subjected to two different kinds of quantum
decoherence due to coupling with heat bath and atomic
phase fluctuations. The dynamics of quantum correlations

Γ =

2 l13ð Þ4 + l33ð Þ2 − 1
Â Ã

det Lð Þ − l11ð Þ2Â Ã
+ 2 l213
�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l13ð Þ4 + l33ð Þ2 − 1
Â Ã

det Lð Þ − l11ð Þ2Â Ãq
l33ð Þ2 − 1

Â Ã2 if c ≥ 0,

l11l33ð Þ2 − l13ð Þ4 + det Lð Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l13ð Þ8 + det Lð Þ − l11l33ð Þ2Â Ã2 − 2 l13ð Þ4 det Lð Þ + l11l33ð �2Â Áq

2 l33ð Þ2 if c < 0,

8>>>>>>><
>>>>>>>:

ð56Þ

Γ′ =

2 l13ð Þ4 + l11ð Þ2 − 1
Â Ã

det Lð Þ − l33ð Þ2Â Ã
+ 2 l213
�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l13ð Þ4 + l11ð Þ2 − 1
Â Ã

det Lð Þ − l33ð Þ2Â Ãq
l11ð Þ2 − 1

Â Ã2 if c ≥ 0,

l11l33ð Þ2 − l13ð Þ4 + det Lð Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l13ð Þ8 + det Lð Þ − l11l33ð Þ2Â Ã2 − 2 l13ð Þ4 det Lð Þ + l11l33ð �2Â Áq

2 l11ð Þ2
if c < 0:

8>>>>>>><
>>>>>>>:

ð58Þ
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Figure 14: Quantum discord ðDô1Þ of light mode ô1 against coherent-induced classical field for �Nth = 0:1, κ = 0:5 kHz, η = 0:1, g = 0:8γ,
t = 10 s, θ = 0:001, and ra = 1 kHz, 1.5 kHz, and 2 kHz.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

0 0.5 1 1.5 2
0

2

4

𝜉
𝛾

D
o 1

 

‹

Nth = 0.00

Nth = 0.50
Nth = 0.25

Figure 13: Quantum discord ðDô1Þ of light mode ô1 against coherent-induced classical field for ra = 2 kHz, κ = 0:5 kHz, η = 0:1, g = 0:8γ,
t = 10 s, θ = 0:001, and �Nth = 0:00, 0.25, and 0.5.
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Figure 15: Quantum discord ðDô1Þ of light mode ô1 against coherent-induced classical field for �Nth = 0:1, κ = 0:5 kHz, η = 0:1, g = 0:8γ,
t = 10 s, ra = 2 kHz, and θ = 0:00 and 0.015.
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Figure 16: Quantum discord ðDô1Þ of the light mode ô1 with the atomic state superposition for ra = 10 kHz, κ = 0:5 kHz, t = 10 s, g = 0:8γ,
ξ = 0:1γ, θ = 0:001, and �Nth = 0:00, 0.25, and 0.5.
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Figure 17: Quantum discord ðDô1Þ of light mode ô1 against atomic state superposition for a �Nth = 0:5, κ = 0:5 kHz, t = 10 s, g = 0:8γ,
ξ = 0:1γ, θ = 0:001, and ra = 5 kHz, 15 kHz, and 25 kHz.
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Figure 18: Quantum discord ðDô1Þ of light mode ô1 against atomic state superposition for �Nth = 0:5, κ = 0:5 kHz, t = 10 s, g = 0:8γ, ξ = 0:1γ,
ra = 10 kHz, and θ = 0:00, 0.0125, and 0.015.
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have been observed and analyzed using the c-number mas-
ter equations by taking into account different system
parameters. The maximum achievable strength of quantum
correlation is enhanced by increasing the rate of atomic
injection, choosing an appropriate parameter of the
coherent-induced classical fields which can adjust the
atomic populations to the desired energy levels. The effect
of atomic injection rate advances as time goes on and is
more effective when 48.5% and 51.5% of atoms populate
in the excited and ground energy levels. This result is
attributed to the fact that atoms require sufficient time to
interact and transfer their coherence to the photon pairs.
On the other hand, it has been observed that the classical
field is efficiently used up to induce quantum coherence
only when sufficient numbers of atoms are available in
the excited energy state while pumping the atoms from
the ground state to the excited state would be an addi-
tional task for it when none of them are initially in the
excited state. This is why quantum steering disappears
in the strong coupling regime in which notable quantum
discord and entanglement are observed under the same
system parameters. Perceptible from the quantum discord
that increases with quantum decoherence, the quantum
entanglement and steering wipe out with increased deco-
herences originated from the temperature of the heat
bath and atomic phase fluctuations. The strength of
quantum steering stays for a long period of time under
thermal decoherence but slightly declines with time under
phase fluctuations. Therefore, the investigation of quan-
tum features without considering quantum decoherences
is just an assumption far from participial reality. The
quantum scheme would probably be one of the best
optical devices to simultaneously support steerable states,
entangled state, and discordant state-based quantum informa-
tion processing.

Appendix

Stochastic Differential Equations

In this Appendix, applying the master equation, we seek to
derive the stochastic differential equations and the solutions
of the cavity mode variables, which are important tool in
studying the quantum properties of light. The c-number sto-
chastic differential equations, which can be defined as the
time evolution of the first and second moments of the cavity
mode variables associated with the normal ordering, are
mathematically easier to handle than the corresponding
operator equations. Applying Equation (10) and the fact
(Equation (A.1)), as well as considering the cyclic property
of the trace operation and bosonic commutation relation,
the time evolution of expectation value of the cavity mode
variable can be found as

d
dt

Â

 �

= Tr
dbρ tð Þ
dt

Â
� �

: ðA:1Þ

The time evolution of the expectation value of the cavity
mode variables applying the cyclic property of the trace

operation and taking into account the bosonic commutation
relation turns out to be

d
dt

o1h i = −
γ1
2 o1h i + ν1

2 o†2

 �

, ðA:2Þ

d
dt

ô2h i = −
γ2
2 ô2h i − v2

2 ô†1

 �

, ðA:3Þ

d
dt

ô21

 �

= −γ1 ô21

 �

+ ν1 ô†2ô1

 �

, ðA:4Þ

d
dt

ô22

 �

= −μ2 ô22

 �

− ν2 ô†1ô2

 �

, ðA:5Þ

d
dt

ô†1ô1

 �

= −γ1 ô†1ô1

 �

+ ν1
2 ô†1ô

†
2


 �
+ ô1ô2h iÂ Ã

+ 2Σ1 + κ�Nth,

ðA:6Þ

d
dt

ô†2ô2

 �

= −γ1 ô†2ô2

 �

−
ν2
2 ô†2ô

†
1


 �
+ ô1ô2h iÂ Ã

+ κ�Nth, ðA:7Þ

d
dt

ô†1ô2

 �

= −
1
2 γ1 + γ2ð Þ ô†1ô2


 �
−
ν2
2 ô†21

 �

+ ν1
2 ô22

 �

,
ðA:8Þ

in which γ1 = κ − 2Σ2, γ2 = κ + 2Σ2, ν1 = 2Σ2, and ν2 = 2Σ4.
Since the operators in Equations (A.2)-(A.8) are put in the
normal order, they can be written in terms of the c-num-
ber equations associated to them as

d
dt

o1h i = −
γ1
2 o1h i + ν1

2 o∗2h i, ðA:9Þ

d
dt

o2h i = −
γ2
2 o2h i − ν2

2 o∗1h i, ðA:10Þ

d
dt

o21

 �

= −γ1 o21

 �

+ ν1 o∗2o1h i, ðA:11Þ

d
dt

o22

 �

= −γ2 o22

 �

− ν2 o∗1o2h i, ðA:12Þ

d
dt

o∗1o1h i = −γ1 o∗1o1h i + ν1
2 o∗1o

∗
2h i + o1o2h i½ � + 2Σ1 + κ�Nth,

ðA:13Þ

d
dt

o∗2o2h i = −γ2 o∗2o2h i − ν2
2 o∗2o

∗
1h i + o1o2h i½ � + κ�Nth, ðA:14Þ

d
dt

o∗1o2h i = −
1
2 γ1 + γ2ð Þ o∗1o2h i − ν2

2 o∗21

 �

+ ν1
2 o22

 �

,
ðA:15Þ

d
dt

o∗1o2h i = −
1
2 γ1 + γ2ð Þ o∗1o2h i − ν2

2 o∗21

 �

+ ν1
2 o22

 �

: 

ðA:16Þ
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o∗1 tð Þo1 tð Þh i = 2Σ1 + κ�Nth

À Á
1 −wð Þ2 + κ�Nthy

2
+ − 2Σ4ð Þy+ 1 −wð Þ

8λ+

" #
1 − e−2λ+t
h i

+ 2Σ1 + κ�Nth

À Á
1 +wð Þ2 + κ�Nthy

2
+ + 2Σ4ð Þy+ 1 +wð Þ

8λ−

" #
1 − e−2λ−t
h i

+ 2Σ1 + κ�Nth

À Á
1 −w2À Á

− κ�Nthy
2
+ − 2Σ4ð Þy+w

2 λ+ + λ−ð Þ
� �

1 − e− λ++λ−ð Þt
h i

,

ðA:17Þ

o∗2 tð Þo2 tð Þh i = 2Σ1 + κ�Nth

À Á
y2− + κ�Nth 1 +wð Þ2 − 2Σ4ð Þy− 1 +wð Þ

8λ+

" #
1 − e−2λ+t
h i

+ 2Σ1 + κ�Nth

À Á
y2− + κ�Nth 1 −wð Þ2 + 2Σ4ð Þy− 1 −wð Þ

8λ−

" #
1 − e−2λ−t
h i

−
2Σ1 + κ�Nth

À Á
y2− − κ�Nth 1 −w2À Á

− 2Σ4ð Þy−w
2 λ+ + λ−ð Þ

� �
1 − e− λ++λ−ð Þt
h i

,

ðA:18Þ

o1 tð Þo2 tð Þh i = o∗1 tð Þo∗2 tð Þh i, ðA:19Þ

o∗1 tð Þo2 tð Þh i = 0: ðA:20Þ
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