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In recent years, with the rapid development of nanotechnology, a new type of electromechanical coupling effect similar to the
piezoelectric effect, the flexoelectric effect, has gradually come into the public’s view. The flexoelectric beam that is the main
structural unit of the flexoelectric signal output has broad application prospects in the next generation of micro- and nanoelec-
tromechanical systems. Therefore, the investigation of flexoelectric materials and structures has important scientific and engineer-
ing application significances for the design of flexoelectric devices. In this paper, a model of flexoelectric Timoshenko beam is
established, the deflection, rotation angle, and dynamic electrical signal output of the forced vibration are taken as the system
response, and the density ρ, shear correction factor κ, and frequency ratio λ are selected as the key performance parameters of the
system. The combination of available data and engineers’ experience suggests that there are random and cognitive uncertainties in
the parameters. Therefore, the probability distribution of the system performance response is expressed by the likelihood function
and belief function through the quantification of margins and uncertainties (QMUs) analysis methodology under the framework of
evidence theory, and the system reliability or performance evaluation is measured by the calculated confidence factors. These
results provide a theoretical basis for accurate analysis of flexoelectric components and provide guidance for the design of flexo-
electric components with excellent performance.

1. Introduction

Multiphysics coupling effects are widespread in nature and
has brought a large number of integration of disciplines.
Among them, the investigation of electromechanical cou-
pling effects has improved the design and development of
various intelligent devices such as new sensors, drivers, and
energy harvesters. Here, the flexoelectric effect is a more
universal electromechanical coupling effect than that of the
piezoelectric effect. Furthermore, as the main structural unit
of electric bending signal output, the flexoelectric beam
structure has promising applications in the next generation
of micro- and nanoelectromechanical systems.

In recent years, many scholars have done research on the
structural deformation of the flexoelectric beam. Liang et al.
[1] and Zhang et al. [2] obtained the bending, buckling, and
vibration solutions of piezoelectric nanostructures such as
piezoelectric nanowires and piezoelectric nanobeams that
take into account flexoelectric and surface effects. Yan and

Jiang [3] studied the static bending and inherent vibration of
the flexoelectric Timoshenko beam considering the shear
deformation, and pointed out that the shear deformation
and flexoelectric effect will change the bending deformation
of classical beams in varying degrees. The Green’s function
method was also utilized to solve the forced vibration of
Timoshenko beam, which considered shear deformation,
damping, and cross-sectional gradient, and the influence of
relevant parameters on the vibration response of the beam
was systematically analyzed [4–6]. However, these studies
were carried out under the assumption that the parameters
of the flexoelectric Timoshenko beam are deterministic, and
the uncertainty in the design, preparation, and application
process was ignored. The studies have shown that the small
fluctuations of some key design parameters can lead to large
changes in their output performances in engineering practice
[7, 8]. Therefore, the study of the influence of the uncertainty
of the parameters of the flexoelectric Timoshenko beam on
the output performance can provide suggestions for the
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optimal design of the new generation of micro- and nanoe-
lectromechanical systems. Uncertainty includes objective
and subjective uncertainties [9]. Compared with aleatory
uncertainty, epistemic uncertainty is often described by non-
probabilistic models due to insufficient information or in-
depth cognition. To quantitatively describe the epistemic
uncertainty, many nonprobabilistic models based on fuzzy
theory [10], evidence theory [11], and cloud theory [12] were
established to describe the epistemic uncertainty in proces-
sing structural reliability analysis, and the corresponding
nonprobability reliability indicators and analysis methods
were developed [13–15].

In 2004, Professor Oberkampf et al. [16] proposed two
questions about uncertainty. Then, the international journal
Reliability Engineering and System Safety published a special
issue about the spread of uncertainty in 2011 [17]. Thus, the
problem of uncertainty became the vital to engineering anal-
ysis and attracted widespread attention. In recent years, the
study of cognitive uncertainty has gradually become a hot
spot. Since the probability density function is difficult to deal
effectively with the cognitive uncertainty due to insufficient
information. Therefore, a series of reliability analysis theories
were developed to complement probability theory, which
include evidence theory or Dempster–Shafer theory [18, 19],
probability theory [20], convex models [21], probability box
(P-box) [22], fuzzy theory [23, 24], and others.

There are strong advantages in evidence theory dealing
with cognitive uncertainty. Thus, it is of great engineering
significance to adopt evidence theory to deal with the pro-
blems of reliability analysis with cognitive uncertainty [25].
First, the evidence theory does not need to make any
assumptions beyond what is known, and multisource uncer-
tain information can be synthesized by information synthesis
[17]. Second, the evidence theory utilizes a more general
modeling framework, giving it a strong adaptive capacity
to describe cognitive uncertainty. In some cases, they can
be equivalent to probability theory and interval theory,
respectively. Third, the evidence theory has fewer constraints
on uncertainty than the probability theory [26]. This sug-
gests that the evidence theory is a broad and promising
model for quantifying and disseminating cognitive uncer-
tainty and reliability analysis [27]. The evidence theory has
been applied to various fields of uncertainty analysis,

including information fusion [28], pattern recognition and
image analysis [29], risk analysis and decision making [30],
fault diagnosis [31], and so on. In recent years, evidence
theory has been progressively applied to the field of struc-
tural reliability analysis and has played an important role in
the design of mechanical structures because of its strong
ability to handle cognitive uncertainty [32].

The output performance of flexoelectric Timoshenko
beam is affected by material parameters and working envi-
ronment parameters [33, 34]. However, structural reliability
or performance evaluation measures have not been evaluated
by quantitative uncertainty. The random uncertainty and
cognitive uncertainty of the flexoelectric Timoshenko beam
parameters are studied based on the evidence theory, and the
structural reliability is effectively evaluated. This paper is
organized as follows. The model of flexoelectric Timoshenko
beam is established, and design parameters are extracted in
Section 2. Section 3 introduces the quantitative analysis
method of uncertainty based on evidence theory. The uncer-
tainties of the parameters are quantified by using the evi-
dence theory in Section 4. The uncertainty distribution of
the calculated parameters and the confidence factors with
different safety factors are discussed and analyzed in Section
5. Finally, Section 6 summarizes the results of the analysis
and gives final conclusions.

2. Output Response Model of Flexoelectric
Timoshenko Beam

Timoshenko beam that takes into account shear stress and
rotational inertia is suitable for describing the deformation of
short thick beams, laminated beams, and high-frequency
excitation beams with wavelengths close to thickness
[35–38]. The main difference from the Euler–Bernoulli beam
is the existence of shear deformation, that is, when the beam
is bent and deformed, its cross-section is no longer perpen-
dicular to the neutral layer, and has a deformation angle ϕ
with respect to the yz plane, as shown in Figure 1.

In current paper, the flexoelectric material is made up of
ferroelectric ceramics barium titanate, and it is assumed that
the influence of ultrathin full electrodes who are coated at the
upper and lower layers of the flexoelectric beam on the over-
all vibration of the beam can be ignored. Here, synchronous
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FIGURE 1: (a) Schematic diagram of deformation and output signals of flexoelectric beams. (b) Theoretical deformation diagrams of
Timoshenko and Euler beams.
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movement assumption is made to simplify the complexity of
the problem. In turn, the output voltage in the open circuit
case and the output charge in the short circuit case are
derived with the deflection solution and the corner solution.

In the case of an electrical short circuit, the constant
effective bending stiffness of the material is ðEIÞeff ¼ c11I,
where c11 is the elastic constant and I is the rectangular
moment of inertia taken as Bh3

12 , and the electromechanical
coupling effect does not affect the deformation of the struc-
ture. The boundary condition of the forced vibration beam is
that the displacement and rotation angle are 0. If only the
one-dimensional case is considered, it can be expressed as
follows:

W xð Þ ¼
Z

L

0
P mð ÞG x;mð Þdm; ð1Þ

where PðmÞ is the external load distribution of the beam and
Gðx;mÞ is the displacement effect of the load at point m
relative to any point x of the beam.

It can be seen that the displacementWðxÞ of any point x
on the beam is the integration taking into account the influ-
ence of all loads based on the linear superposition principle.
To simplify model complexity, only concentrated loads are
considered. Using the sifting property of the pulse function,
it can be obtained as follows:

W x; x0ð Þ ¼ G x; x0ð Þ: ð2Þ

Equation (2) shows that for the vibration problem of a
one-dimensional beam, the Green’s function is just equiva-
lent to the vibration response of the beam.

According to the Hamilton’s principle, under the bound-
ary condition of electrical short circuit, the control equation
of the flexoelectric Timoshenko beam with the forced vibra-
tion at the end when the piezoelectric effect and flexoelectric
effect are considered, which can be simplified as follows:

c11I
∂2ϕ
∂x2

þ κGA
∂w
∂x

− ϕ

� �
− γ ϕ̈ ¼ 0;

κGA
∂2w0

∂x2
−
∂ϕ
∂x

� �
þ p x; tð Þ − ρA ẅ ¼ 0:

8>>><>>>: ð3Þ

Based on the simultaneous motion assumption, the
Equation (3) function can be expressed as follows:

p x; tð Þ ¼ P xð Þeiwt;
w0 x; tð Þ ¼W xð Þeiwt;
ϕ x; tð Þ ¼ Ψ xð Þeiwt:

ð4Þ

Substituting Equation (4) into the equilibrium equation,
the time variables can be separated to obtain as follows:

EIð ÞeffΨ 00 þ κGA W0
− Ψð Þ þ γw2Ψ ¼ 0; ð5Þ

κGA W 00
− Ψ 0À Áþ P xð Þ þ w2ρAW¼ 0: ð6Þ

When separating the variables of Equation (6), we can
get the functional relationship between Ψ 0 and W and sub-
stitute into Equation (5) to obtain as follows:

W 4ð Þ xð Þ þ a1W 2ð Þ xð Þ þ a2W xð Þ ¼ b1P 2ð Þ xð Þ þ b2P xð Þ:
ð7Þ

In Equation (7), a1;  a2;  b1;  b2 are constants and are
related to material parameters; the values are shown in
Table 1.

For the case x0 where the unit load is considered, there
exists Wðx; x0Þ¼Gðx; x0Þ, and Equation (7) can be trans-
formed into as follows:

G 4ð Þ xð Þ þ a1G 2ð Þ xð Þ þ a2G xð Þ ¼ b1δ 2ð Þ xð Þ þ b2δ xð Þ:
ð8Þ

In Equation (8), δðxÞ is the unit pulse function. Then, the
Laplace transformation of the above Equation (8) with
respect to the variable x is written as follows:

bG s; x0ð Þ ¼ R sð Þ
s4 þ a1s2 þ a2

; ð9Þ

where RðsÞ is the function related to the Laplace variable,
which can be expressed as follows:

R sð Þ ¼ b1s2 þ b2ð Þ e−sx0 þ s3 þ a1sð ÞG 0ð Þ
þ s2 þ a1ð ÞG 1ð Þ 0ð Þ þ sG 2ð Þ 0ð Þ þ G 3ð Þ 0ð Þ: ð10Þ

Doing the inverse Laplace transformation on Equation (9)
yields:

G x; x0ð Þ ¼ H x − x0ð ÞΦ1 x − x0ð Þ þ Φ2 xð ÞG 0ð Þ
þΦ3 xð ÞG 1ð Þ 0ð Þ þ Φ4 xð ÞG 2ð Þ 0ð Þ þ Φ5 xð ÞG 3ð Þ 0ð Þ:

ð11Þ

Equation (11) is the analytic solution of the Timoshenko
beam subjected to vibration. where Hðx− x0Þ is the step
function introduced by the Laplace transformation as
follows:

TABLE 1: Expressions for each parameter.

a1 w2ð ρ
κG þ γ

ðEIÞeff Þ
a2 w2ð w2ργ

ðEIÞeff κG −
ρA

ðEIÞeff Þ
b1 −

1
κGA

b2 ð 1
ðEIÞeff −

w2γ
ðEIÞeff κGAÞ
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H x − x0ð Þ ¼ 0; x<x0;

1; x ≤ x0:

(
ð12Þ

The expression of Φj ðj¼ 1; 2;…5Þ in Equation (11) is
shown as follows:

Φ1 x − x0ð Þ ¼ ∑
4

i¼1
Ai x − x0ð Þ b1s2i þ b2ð ÞΦ2 ¼ ∑

4

i¼1
Ai xð Þ s3i þ sia1ð Þ;

Φ3 ¼ ∑
4

i¼1
Ai xð Þ s2i þ a1ð ÞΦ4 ¼ ∑

4

i¼1
Ai xð ÞsiΦ5 ¼ ∑

4

i¼1
Ai xð Þ;

ð13Þ

where si ði¼ 1; 2;…; 4Þ are the four roots of the characteris-
tic equation s4 þ a1s2 þ a2, Ai ði¼ 1; 2;…; 4Þ is

Ai xð Þ ¼ esix

∏4
j¼1;j≠i si − sj

À Á : ð14Þ

GðiÞð0Þ ði¼ 0; 1;…; 3Þ determined by the boundary con-
dition can be obtained as follows:

Φ2 Lð Þ Φ3 Lð Þ Φ4 Lð Þ Φ5 Lð Þ
Φ 1ð Þ

2 Lð Þ Φ 1ð Þ
3 Lð Þ Φ 1ð Þ

4 Lð Þ Φ 1ð Þ
5 Lð Þ

Φ 2ð Þ
2 Lð Þ Φ 2ð Þ

3 Lð Þ Φ 2ð Þ
4 Lð Þ Φ 2ð Þ

5 Lð Þ
Φ 3ð Þ

2 Lð Þ Φ 3ð Þ
3 Lð Þ Φ 3ð Þ

4 Lð Þ Φ 3ð Þ
5 Lð Þ

2666664

3777775
G 0ð Þ
G 1ð Þ 0ð Þ
G 2ð Þ 0ð Þ
G 3ð Þ 0ð Þ

8>>>><>>>>:

9>>>>=>>>>;¼

G L; x0ð Þ − Φ1 L; x0ð Þ
G 1ð Þ L; x0ð Þ − Φ 1ð Þ

1 L; x0ð Þ
G 2ð Þ L; x0ð Þ − Φ 2ð Þ

1 L; x0ð Þ
G 3ð Þ L; x0ð Þ −Φ 3ð Þ

1 L; x0ð Þ:

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð15Þ

The boundary conditions for a fixed left end and a free right
end of Timoshenko cantilever beam are shown in Table 2,

where λ1 ¼ω2ρ=κG, λ2 ¼ω2ρ=κGþ κGA=ðEIÞeff , and
λ3 ¼ γω2=ðEIÞeff þω2ρ=κG.

Bringing boundary conditions into boundary expres-
sions, Equation (15) yields GðiÞð0Þ ði¼ 0; 1;…; 3Þ as follows:

G 0ð Þ ¼ 0;  G 3ð Þ 0ð Þ ¼ −λ2G 1ð Þ 0ð Þ; ð16Þ

a11 a12

a21 a22

" #
G 1ð Þ 0ð Þ
G 2ð Þ 0ð Þ

( )
¼ b11

b22

( )
; ð17Þ

where

a11 ¼ λ1Φ3 Lð Þ þ Φ3
2ð Þ Lð Þ − λ1λ2Φ5 Lð Þ − λ2Φ

2ð Þ
5 Lð Þ;

a21 ¼ λ3Φ
1ð Þ
3 Lð Þ þ Φ3

3ð Þ Lð Þ − λ3λ2Φ
1ð Þ
5 Lð Þ − λ2Φ

3ð Þ
5 Lð Þ;

a12 ¼ λ1Φ4 Lð Þ þ Φ4
2ð Þ Lð Þ;

a22 ¼ λ3Φ
1ð Þ
4 Lð Þ þ Φ4

3ð Þ Lð Þ;
b11 ¼ −Φ 2ð Þ

1 L − x0ð Þ − λ1Φ1 L − x0ð Þ;
b22 ¼ −Φ 3ð Þ

1 L − x0ð Þ − λ3Φ
1ð Þ
1 L − x0ð Þ:

ð18Þ
Therefore, the Green’s function solution for the forced

vibration of a Timoshenko cantilever beam subjected to a

concentrated force for the flexural electric effect is shown
as follows:

G x; x0ð Þ ¼ H x − x0ð ÞΦ1 x − x0ð Þ þ Φ3 xð Þð
− λ2Φ5 xð ÞÞG 1ð Þ 0ð Þ þ Φ4 xð ÞG 2ð Þ 0ð Þ: ð19Þ

The expression of the analytical solution of the cross-
sectional turning angle Ψðx; x0Þ is shown as follows:

Ψ x; x0ð Þ ¼
Z

L

0
W 00 þ ω2ρ

κG
Wþ 1

κGA
δ x − x0ð Þ

� �
¼W0 x − x0ð Þ þ

Z
L

0

ω2ρ

κG
W x − x0ð Þ þ H x − x0ð Þ

κGA
:

ð20Þ
Then, the analytic solution of the Timoshenko cantilever

beam with flexoelectric effect, where the beam end x0 ¼ L is
subjected to a unit load, can be obtained as follows:

w0 x; tð Þ ¼ G x; Lð Þsin w t;
ϕ x; tð Þ ¼ Ψ x; Lð Þsin w t:

(
ð21Þ

Further, the dynamic voltage output under open circuit
conditions and the dynamic charge output under short cir-
cuit conditions of the structure are derived.

TABLE 2: Boundary conditions of the cantilever beam of Timoshenko.

Boundary condition Fixed end Free end

Cantilever beam
Gð0Þ¼ 0 Gð2ÞðLÞþ λ1GðLÞ¼ 0

Gð3ÞðLÞþ λ2Gð1ÞðLÞ¼ 0 Gð3ÞðLÞþ λ3Gð1ÞðLÞ¼ 0
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For the open circuit case, the electric field satisfies the
following constitutive relations as follows:

Ez xð Þ ¼ −
e31
a33

εxx −
μ31
a33

η33 ¼
1
a33

ze31Ψ 0 x; Lð Þ þ μ31Ψ
0 x; Lð Þ½ �:
ð22Þ

The dynamic voltage output from the upper and lower
surfaces can still be obtained by integrating the average elec-
tric field strength along the thickness direction as follows:

ϕ tð Þ ¼ −

Z h
2

−
h
2

Ezdz sin w t ¼ −
μ31

a33Se=Bh

Z
L

0
Ψ 0 x; Lð Þdx sin w t:

ð23Þ

For the short circuit case, the electrical displacement
satisfies the constitutive relationship as follows:

Dz ¼ e31εxx þ μ31η33 ¼ −ze31Ψ 0 x; Lð Þ − μ31Ψ
0 x; Lð Þ:

ð24Þ

The output charge of the loop can be expressed as fol-
lows:

Q tð Þ ¼ −μ31B
Z

L

0
Ψ 0 x; Lð Þdx sin w t: ð25Þ

3. Quantitative Analysis of Uncertainty Based
on Evidence Theory

In the reliability evaluation, insufficient data and incomplete
information are often encountered. Due to the capacity of
small samples and insufficient experiments, people often lack
a full understanding of the internal mechanism and opera-
tion law of the system to be evaluated, which lead to random
and cognitive uncertainties. The biggest feature of evidence
theory is that it allows the probabilistic quality to be directly
assigned to the number of sets or intervals. When accurate
test data cannot be obtained through experiments in practice
or expert knowledge is required to judge, this feature will be
beneficial to describe the incomplete and inaccurate infor-
mation from different channels. Thus, the principles of evi-
dence theory, as well as the basic methods and steps for
uncertainty quantification and confidence factor calculation
based on evidence theory, are introduced in this section.

3.1. Uncertainty Quantification Procedure Based on Evidence
Theory. The uncertainty quantification procedures based on
evidence theory are as follows:

Step 1: For the evidence sources given by different meth-
ods of the same parameter, the Dempster evidence synthesis
formula is used for fusion to obtain more reliable parameter
information.

For uncertain parameters, according to the evidence syn-
thesis formula, the basic probability assignment (BPA)

synthesized by m pathway is shown as follows:

mx Ak
i

À Á¼ ∑
Aq1
i1
∩Aq2

i2
∩…∩Aqm

im

mx Aq1
i1

� �
mx Aq2

i2

� �
…mx Aqm

im

� �
1 − K

;

ð26Þ

K ¼ ∑
AAq1

i1
∩Aq2

i2
∩…∩Aqm

im
¼∅

mx Aq1
i1

� �
mx Aq2

i2

� �
…mx Aqm

im

� �
;

ð27Þ

Set v = ymin
step_size = (ymax – ymin)/M 

v < ymax

v = v + step_size

ymax Find the maximum value and
minimum value ymin of y = f (X)

Randomly generate an X with a number of
NS (NS → ∞) from a Ai(Ai ⊂ ΘX)

Substitute into y = f (X) to obtain an
yNS with a quantity of NS

If the minimum value of
yNS  > v, i ∈ N_CPF ′v

If the minimum value of
yNS  > v, i ∈ N_CPFv

Otherwise i ∈ N_CPFv and i ∈ N_CPF ′v

i ⊂ N_CPFv

PlY (yNS < v) =       ∑mx (Ai)

i ⊂ N_CPFv

BelY (yNS < v) = 1 –       ∑mx (Ai)

Find PlY (yNS < v) and BelY (yNS < v)
Obtain a point (v, PlY (yNS < v)) and (v, BelY (yNS < v))

on the likelihood function and trust function

Start

End

Yes

No

The point sets of the upper and lower bound
probability distributions of the system response
composed of a trust function and a likelihood

function are CBF and CPF, respectively
CBF = {(v, BelY (y < v)), v ∈ ΘY}
CPF = {(v, PlY (y < v)), v ∈ ΘY}

Ai is the ith focal element of the evidence
space of X and for v ∈ ΘY

N_CPFv = {i : Ai ∩ f –1 (Yv) = ∅}

N_CPF ′v = {i : Ai ∩ f –1 (Yv) ≠ ∅}

FIGURE 2: Flowchart of the belief function and the likelihood func-
tion computed by Monte Carlo method.

Advances in Mathematical Physics 5



Aq1
i1
⊂ Θi1 ;A

q2
i2
⊂ Θi2 ;…;Aqm

im
⊂ Θim ; k¼ 1;…;Ni; ð28Þ

where Ni is the number of focal elements after the evidence is
fused.

Step 2: BPA of all possible sets of uncertainty parameters
is derived.

Assume the identification framework of n uncertain
parameters X¼ðx1; x2;…xnÞ is ΘX , then:

ΘX ¼ Θ1 × Θ2 ×… × Θn

¼ Ai :Ai ¼ Ar1
1 × Ar2

2 ×… × Arn
n ; N ¼ N1 × N2 ×… × Nnx ;f

i¼ 1; 2;…;N ; Ar1
1 ⊂ Θ1;A

r2
2 ⊂ Θ2;…;Arn

n ⊂ Θng:
ð29Þ

It is not difficult to see that Ai is a hypercube with a
dimension of n and a number of vertices is given as follows:

Nvertex ¼ ∏
n

i¼1
Ni þ 1ð Þ: ð30Þ

Step 3: Derive the upper and lower bounds probability
distribution of the system response based on the evidence
theory.

Let ΘY ¼fBi ¼ f ðAiÞ;Ai ⊂ ΘXg be the identification
framework of the system response, whose focal elements are
Bi ði¼ 1; 2;…;NÞ. Here, f :Ai ↦ Bi, and the belief function
and the likelihood function on ΘY are shown as follows:

BelY Bið Þ ¼ BelX f −1 Bið Þ½ � ¼ ∑
Ai⊂f −1 Bið Þ

mx Aið Þ; ð31Þ

PlY Bið Þ ¼ PlX f −1 Bið Þ½ � ¼ ∑
Ai⊂f −1 Bið Þ¼∅

mx Aið Þ: ð32Þ

When the system response function is nonmonotonic,
the belief function and the likelihood function should be
computed by using Monte Carlo method. The value range
of system response is discretization by Monte Carlo method,
and the focal element of each value y, where the inverse
mapping is located, is determined. Thus, the upper and lower
bounds of the system response quantities’ probability distri-
bution are fitted. The specific steps are shown in the flow-
chart (Figure 2).

BelY y<vð Þ ≤ P y<vð Þ ≤ PlY y<vð Þ: ð33Þ

Therefore, BelY is the lower bound of the probability
distribution of the system response y and PlY is the upper
bound of the probability distribution of the system response
y. The probability envelope of BelY and PlY contains all
possible cases of y distribution without omission, and the
true probability distribution of y is between the upper and
lower bounds of the probabilities.

3.2. Confidence Factor Calculation Based on Evidence Theory
Framework. It is known from the concept of quantification of
margins and uncertainty (QMU) that the performance mar-
ginM is described by the estimated value of system response
and threshold, and the uncertainty U is also determined
by the uncertainty of the system response and threshold.
Confidence factors are calculated differently for different
manifestations of key performance parameters and their per-
formance thresholds. When the performance thresholds are
in the form of upper and lower bounds (Figure 3), calculation
is shown as follows:

½Qb ;Qb � is the performance thresholds and the perfor-
mance margin is shown as follows:

M ¼min Q0:5 Yð Þ − Qb ;Qb − Q0:5 Yð Þg;
n

ð34Þ

where Q0:5ðYÞ is the performance value corresponding to the
0.5 quantile of the key performance parameter distribution
function. The uncertainty at 95% confidence is shown as
follows:

U ¼ Q0:5 Yð Þ − Q0:05 Yð Þ: ð35Þ

And the calculated confidence factor is shown as follows:

CR¼M
U

: ð36Þ

4. Uncertainty in the Model Parameters of
Flexoelectric Timoshenko Beam

According to the analysis of previous section, the parameters of
deflection, angle of rotation, and dynamic electrical output have
density ρ, shear correction factor κ, and frequency ratio λ that
affect the output response model established in this paper. It can
be seen that these parameters have random and cognitive uncer-
tainty based on the existing data and engineering experience.
The detailed distribution is shown in Table 3.
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FIGURE 3: Confidence factor calculation when the performance
threshold is in the form of upper and lower bounds.
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5. QMU Analysis Results and Discussion of
Flexoelectric Timoshenko Beam by
Evidence Theory

In this section, the uncertainty of parameters is quantita-
tively analyzed based on evidence theory. The uncertainty
distribution of the calculated parameters and the confidence
factors with different safety factors are discussed and ana-
lyzed, as shown in Figure 4.

5.1. Model Uncertainty Quantitation of Flexoelectric Timoshenko
Beam Based on Evidence Theory. Because the density ρ, shear
correction factor κ, and frequency ratio λ follow the Gaussian
distribution, select 2σ interval of λ, that is, Ixi ¼ ½μi − 2σi; μi þ
2σi�. Such that the probability that the value of the random
variable λ falls in the interval is Pðx2ΔIÞ≤ 0:003, and the focal
elements and BPA of ρ, κ, and λ (k¼ 4) are shown in Tables 4–6.

The Monte Carlo method is used for the calculation of
the belief function and likelihood function of the deflection,
turning angle, and dynamic electrical signal output of the
forced vibration of the flexural electromechanical Simcoe
beam model.

The mean values of their upper and lower bounds prob-
abilities are used as their approximate estimations of proba-
bility distributions, that is:

g xð Þ y<vð Þ ¼ Plg xð Þ y<vð Þ þ Belg xð Þ y<vð Þ
2

: ð37Þ

Figures 5–8 show the results.
Figures 5–8 also show that the possibilities envelope of

the deflection, rotational angle, and dynamic signal’s belief
function and likelihood function contain all the possibilities
of the system response probability distribution without omis-
sion. The difference between the belief function and likeli-
hood function reflects the cognitive uncertainty in the
system response. When the cognitive uncertainty of the
input parameters decreases, the uncertainty of the system
response gradually decreases. If the cognitive uncertainty of
the input parameter is zero, the uncertainty of the system
response is also zero, the brief function and the likelihood
function coincide, and there is only random uncertainty in
the system.

TABLE 3: Model parameters of flexoelectric Timoshenko beam.

Name Symbol Mean value Standard deviation Maximum Minimum Distribution Type

Frequency ratio λ 0.6 0.03 NA NA Gaussian distribution Random
Density ρ NA NA 6,080 6,000 Interval distribution Cognitive
Shear correction factor κ NA NA 0.861 0.82 Interval distribution Cognitive

Establishing a flexural electromechanical muscinko beam model

According to the evidence synthesis formula, obtain the BPA
after evidence synthesis

Obtaining a BPA for all possible sets of all uncertain parameters

Using Monte Carlo method to calculate the trust function and
likelihood function of the system response as the upper and lower

bound probability distribution of the system response

The mean value of the upper and lower bound probabilities as
an approximate estimate of the system response probability

distribution

Taking different safety factors to calculate the confidence
factor of the system response

Start

End

FIGURE 4: Flowchart of QMU analysis based on evidence theory.

TABLE 4: The focal element and BPA of ρ.

N Focal element A m (A)

1 [6,000, 6,020] 0.25
2 [6,020, 6,040] 0.25
3 [6,040, 6,060] 0.25
4 [6,060, 6,080] 0.25

TABLE 5: The focal element and BPA of κ.

N Focal element B m (B)

1 [0.82, 0.83] 0.15
2 [0.83, 0.84] 0.25
3 [0.84, 0.85] 0.27
4 [0.85, 0.861] 0.33

TABLE 6: The focal element and BPA of λ.

N Focal element C m (C)

1 [0.57, 0.585] 0.1573
2 [0.585, 0.6] 0.3413
3 [0.6, 0.615] 0.3413
4 [0.615, 0.13] 0.1573
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5.2. Confidence Factor Calculation. According to the concept
of QMU, when the confidence factor CR <1, the system has a
risk of failure, and when the confidence factor CR >1, it
indicates that the system is reliable to an acceptable state.
Therefore, the safety factor should be determined first in
safety evaluation.

The upper and lower thresholds, as shown in Figure 9, are
taken as the upper and lower thresholds of the forced vibra-
tion deflection thresholds for the flexoelectric Timoshenko
beam model.

Thus, the CR values of confidence factors are obtained
based on the safety factors γ¼ 0:95, γ¼ 0:9, and γ¼ 0:85,

respectively, and the results, as shown in Table 7, can be
calculated from Equations (34) to (36).

The data show that when the safety factor and margin are
γ¼ 0:95 and 5%, CR >1, which are under the current uncer-
tainty condition. They also show that when the acceptable
decision risk becomes greater, that is, the safety factor
decreases, the margin can cover the uncertainty. It indicates
that the theoretical forced vibration deflection threshold
boundaries are reliable, and the system is in an acceptable
state to meet the reliability requirements.
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0.6
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0.2

1.95 2

Belief function Probability function
Likelihood function

2.05 2.1
Deflection (ω) × 10–4

2.15 2.2
0

FIGURE 5: Probability distribution of flexoelectric Timoshenko
beam’s forced vibration at deflection ω.
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FIGURE 6: Probability distribution of flexoelectric Timoshenko
beam’s forced vibration at rotational angle Φ.
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FIGURE 7: Probability distribution of flexoelectric Timoshenko
beam’s forced vibration at output charge Q.
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FIGURE 8: Probability distribution of flexoelectric Timoshenko
beam’s forced vibration at output voltage φ.
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As shown in Figure 10, the upper and lower bounds of
the threshold are selected as the rotational angle threshold of
flexoelectric Timoshenko beam’s forced vibration.

Thus, the CR values of rotational angle are obtained
based on the safety factors γ¼ 0:95, γ¼ 0:9, and γ¼ 0:85,
respectively, as shown in Table 8.

The results of the calculated data show that the theoreti-
cal forced vibration deflection threshold boundary is reliable,
and the system is in an acceptable state to meet the reliability
requirements.

As shown in Figure 11, the upper and lower bounds of
the threshold are selected as the output charge threshold of
flexoelectric Timoshenko beam’s forced vibration.

Also, the CR values of output charge are obtained based
on the safety factors γ¼ 0:95, γ¼ 0:9, and γ¼ 0:85, respec-
tively, as shown in Table 9.

The same conclusion can be concluded from the calcu-
lated results that the threshold boundaries are reliable, and
the system is in an acceptable state to meet the reliability
requirements.
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Forced vibration deflection of flexoelectric Timoshenko beam (ω)
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FIGURE 9: Threshold of flexoelectric Timoshenko beam’s forced
vibration at deflection ω.

TABLE 7: CR values of the deflection of different safety factors.

γ M U CR

0.95 6:6759× 10−6 5:5077× 10−6 1.2121
0.9 6:6759× 10−6 4:2061× 10−6 1.5872
0.85 6:6759× 10−6 3:5924× 10−6 1.8584
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FIGURE 10: Threshold of flexoelectric Timoshenko beam’s forced
vibration at rotational angle Φ.

TABLE 8: CR values of the rotational angle of different safety factors.

γ M U CR

0.95 0.0031 0.0029 1.0695
0.9 0.0031 0.0022 1.4515
0.85 0.0031 0.0018 1.7136
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FIGURE 11: Threshold of flexoelectric Timoshenko beam’s forced
vibration at output charge Q.

TABLE 9: CR values of the output charge of different safety factors.

γ M U CR

0.95 3:747× 10−12 3:5166× 10−12 1.2077
0.9 3:747× 10−12 3:343× 10−12 1.2704
0.85 3:747× 10−12 2:9092× 10−12 1.4599
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As shown in Figure 12, the upper and lower bounds of
the threshold are selected as the output voltage threshold of
flexoelectric Timoshenko beam’s forced vibration.

Accordingly, the CR values of output voltage are obtained
based on the safety factors γ¼ 0:95, γ¼ 0:9, and γ¼ 0:85,
respectively, as shown in Table 10.

It can also obtain the same conclusion. Meanwhile, the
CR values, as shown in Tables 7–10, indicate that the safety
factors are closely related to the confidence factors. CR values
of confidence factor can help to fundamentally provide risk
assessment and risk mitigation for decision makers. Further-
more, we can analyze on the basis of confidence factor CR to
make the design robust and measure improvement through
confidence factor CR.

This paper only considers the weakest link in the system
design of the system response model, that is, the output
voltage under electrically open circuit condition of the smal-
lest confidence factor CR. At the same time, the confidence
factor of the output voltage under electrical open circuit con-
dition is 1.0591, indicating that the margin is greater than the
uncertainty, and the model of flexoelectric Timoshenko beam
proposed in current paper has high reliability.

6. Conclusions

In this paper, the deflection, rotational angle, and dynamic
electrical signal output of the forced vibration flexoelectric

Timoshenko beam are assumed as the system response, the
quantitative analysis and calculation method of performance
margin and uncertainty based on evidence theory are pro-
posed, and the calculation method of uncertainty propaga-
tion is given.

(1) The influences of the density and shear correction
factor uncertainty on the deflection, rotational angle,
and dynamic electrical signal output of the forced
vibration flexoelectric Timoshenko beam are consid-
ered and are defined as cognitive uncertainty. Then,
the frequency ratio is defined as random uncertainty,
and Monte Carlo method is used to calculate the
uncertainty distribution of the system response
under mixed uncertainty.

(2) The structural reliability evaluation is achieved by
calculating the confidence factor CR under different
safety factors. It is concluded that the magnitude of
the safety factor is closely related to the confidence
factor. If the confidence factor CR is located between
½1;  þ1Þ, the system is completely secure. If CR is
located between ½0;  1�, the system has a certain
degree of unreliability, and the more the ratio tends
to 0, the greater the probability of failure. Otherwise,
the system is in a dangerous state and very unreliable.

The research results of this paper provide a reference
standard for the selection of design and manufacturing of
flexoelectric structures, improve the application level of
flexoelectric beam structures, and provide guidance for the
design of flexoelectric components with excellent performance.
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