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In this article, the dynamics of the fuzzy fractional order enzyme Michaelis Menten model are investigated. To study problems
with uncertainty, fuzzy fractional technique is applied. Using fuzzy theory, the sequential iterations of the model are calculated
by applying fractional calculus theory and the homotopy perturbation method. A comparison is given for fractional and fuzzy
results, and the numerical findings validate the fuzzy fractional case. Using MATLAB software, the results are simulated for
various fractional orders, corresponding to the provided data. The simulations demonstrate the model’s appropriateness.

1. Introduction

When doing an unusual experiment, such as putting a frac-
tion into the sequence of differentiation, it is critical to
remain intrigued about the results, as this is how many
unique scientific studies are conducted. When venturing
into unknown territory, however, one should be prepared
to fore-go much of what is currently known and is taken
normal and obvious. The fractional integral and derivative
is not the only different-integral operators available; there
is still a vast universe of generalizing differentiation and inte-
gration with which we are both comfortable and secure, such
as chain and product laws. Another important attribute of
fractional derivatives is nonlocality [1–3]. If the result of cal-
culating the value of an integer-order derivative at a point is
dependent on that point, we call this property as locality.
With the fractional derivative, things are a little different.
When studying physical systems, the case where α = 0 is
common because the dependent variable is always time.
The fractional derivative is determined by the state of the
system, which includes all moments after the experiment
begins at t = 0. This nonlocality is one of the primary drivers
of interest in fractional calculus in applications. Memory

effects refer to a group of remarkable physical phenomena
in which the state is influenced not only by time and place,
but also by prior states. For example, consider a section of
an electric circuit whose resistance is based on the total
amount of charge that has gone through it over a set period
of time. Memory effects can be difficult to represent and ana-
lyze using conventional differential equations, but nonlocal-
ity provides a built-in capacity for fractional derivatives to
integrate memory effects. As a result, fractional calculus
could be a valuable tool for analyzing this type of system.

In mathematical modeling, memory is used to explain
the present by emphasizing what happened in the past. Pre-
vious experiences, for example, may indicate that, depending
on the type of disease, social distance or additional hygiene
practices are protective behaviors in the case of an infectious
disease being transmitted to people. Because the vaccination
has a long-lasting effect, it may also have a long-term mem-
ory effect. Fractional calculus is an excellent tool for under-
standing real-life phenomena involving the memory effect.
For example, we assume gðt, x0Þ as the solution of an auton-
omous ODE of first order, provided x0 at t = 0; hence, the
property gðt + s, x0Þ = gðt, gðs, x0ÞÞ is assured, which implies
that the results are unchanged by taking gðs, x0Þ as the initial
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condition as gðt, x0Þ belongs to results. As a result, for any
domain point, the solution is uniquely specified given an
initial value. This statement is not true for fractional
differential equations in general. Adjusting the order of a
classical model’s derivative such that it becomes noninteger
is one approach for a mathematical model to integrate the
memory effect.

Conventional mathematical optimization approaches for
reactive biological systems include equations containing
empirical or semiempirical expressions rather than the tradi-
tional mass-action law. By applying the memory effect, the
kinetics of such reactive systems can be accurately repre-
sented using fractional calculus, providing forms similar to
those given by the law of mass action. As a result, a great
mechanism for explaining the dynamical behavior of many
chemical and biological systems has been developed. Several
research papers have been published on the use of FDEs in
biological and chemical reactions. As a result, fractional
derivative focused models have a greater potential for
description accuracy. Theoretical advancements are also being
made in order to expand the application of this technology in
research and engineering. Hans-Jürgen [4] shows the validity
and possibilities of fractional calculus as a tool for modeling
dynamic systems in the field of process systems engineering.
They developed a fractional calculus-based model for the fer-
mentation problem and used experimental data to demonstrate
the model’s validity in biological reactions.

For examining the approximate solution of the Michaelis
Menten enzymatic reaction equation, Manal and Saad [5]
suggested an extension of the spectral homotopy analysis
method. They compared the accuracy and efficiency of
Runge-Kutta methods. He and Li [6] used the Laplace trans-
formation and Adomian decomposition approach to analyze
the semianalytical results of fractional time enzyme kinetics.

Further developments in the related areas can be seen
in [7–13].

2. Motivation

Many academics have given numerical, approximate
approaches and applications to handle this problem in gen-
eral, due to the difficulty that many researchers encounter in
obtaining accurate solutions to fractional differential equa-
tions [14–17]. The authors of [5] looked into spectrum
approaches in the context of fractal fractional differentiation.
However, it only included research that used the Mittag-
Leffler kernel. The significance of our research resides in
the fact that we give a fuzzy solution to the uncertainty chal-
lenge. One of the major benefits of the Caputo fractional
derivative is that it makes it possible to formulate the prob-
lem with conventional initial and boundary conditions. Its
derivative for a constant is also zero. We take the Michaelis
Menten differential equation system as

DtR1 tð Þ = −αR1R2 + βR3, ð1Þ

DtR2 tð Þ = −αR1R2 + β + γð ÞR3, ð2Þ
DtR3 tð Þ = αR1R2 β + γð ÞR3, ð3Þ

DtR4 tð Þ = γR3: ð4Þ
The description of the model is given in Table 1.

R1 tð Þ + R2 tð Þ tð Þ⇌R3 tð Þ⟶ R2 tð Þ + R4 tð Þ: ð5Þ

According to this illustration, a complex R3 is the result of
a process involving a substrate R1 and an enzyme R2. Finally,
the enzyme R2 converts a complex R3 into a product R4.

3. Contribution

For more than a century, the Michaelis Menten equation has
been used to predict the rate of product generation in enzy-
matic reactions. It specifically indicates that when substrate
concentration increases, the rate of an enzymatic reaction
increases, but greater unbinding of enzyme-substrate com-
plexes decreases the reaction rate. This is the first investiga-
tion of the fractional Michaelis Menten enzymatic process
using fuzzy approach. The fractional Michaelis Menten dif-
ferential equation system can be written as

Dζ
t R1 tð Þ = −αR1R2 + βR3, ð6Þ

Dζ
t R2 tð Þ = −αR1R2 + β + γð ÞR3, ð7Þ

Dζ
t R3 tð Þ = αR1R2 − β + γð ÞR3, ð8Þ

Dζ
t R4 tð Þ = γR3: ð9Þ

Introducing the fuzzy fractional parameters, the system
can be written as

Dζ
t F1kð Þ = −~αF1kF2k + ~βF3k, ð10Þ

Dζ
t F2kð Þ = −~αF1kF2k + ~β + ~γ

� �
F3k, ð11Þ

Dζ
t F3kð Þ = ~αF1kF2k − ~β + ~γ

� �
F3k, ð12Þ

Dζ
t F4kð Þ = ~γF3k, ð13Þ

with fuzzy initial conditions given by

F1
ˇ 0, pð Þ = F1ð 0, pð Þ, F1 0:pð ÞÁ, ð14Þ

F2
ˇ 0, pð Þ = F2ð 0, pð Þ, F2 0:pð ÞÁ, ð15Þ

F3
ˇ 0, pð Þ = F3ð 0, pð Þ, F3 0:pð ÞÁ, ð16Þ

F4
ˇ 0, pð Þ = F4ð 0, pð Þ, F4 0:pð ÞÁ: ð17Þ

The following is an overview of the article’s structure.
The definitions of the fractional calculus and fuzzy operators
are discussed in Section 2. In Section 3, we use the homotopy
perturbation approach with fuzzy initial conditions to gener-
ate successive iterations of the fractional Michaelis Menten
enzymatic reaction. The numerical results are presented in
Section 4. Finally, in Sections 5 and 6, we explain and
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examine the numerical results as well as make some final
observations.

4. Preliminaries

In this section, we provide the definitions which will be used
in the solution of the system [4, 18–20].

Definition 1. Let η : ℝ⟶ ½0, 1� be a fuzzy set. η is said to be
a fuzzy number if it satisfies the following properties:

(1) η is normal, i.e., ηðc0Þ = 1 for any c0 ∈ℝ

(2) η is semicontinuous onℝ, i.e., for all ε > 0, there exists
a δ > 0 such that jηðcÞ − ηðc0Þj < ε for jc − c0j < δ

(3) η is convex

(4) d1fc ∈ℝ ; ηðcÞ > 0g is compact

Definition 2. If η is a fuzzy number, for n ∈ ð0, 1� and c ∈ℝ,
the n-th level set defined on η is given by

η½ �n = c ∈ℝ : η að Þ ≥ nf g: ð18Þ

Definition 3. Let [ηðθÞ , ηðθÞ] for 0 ≤ θ ≤ 1 be the parametric
form of a fuzzy number η, satisfying the following
properties:

(1) ηðθÞ ,is left continuous, bounded, and increasing
over (0,1], and right continuous at 0

(2) ηðθÞ is right continuous, bounded, and decreasing
over [0,1], and right continuous at 0

(3) ηðθÞ ≤ ηðθÞ

Also, if ηðθÞ = ηðθÞ; then, θ is called a crisp number.

Definition 4. Let ξ be the continuous fuzzy function on ½0,
B� ⊆ R, further if ξ ∈ Cf ½0, B� ∩ Lf ½0, B�, where Cf ½0, B� is a
fuzzy continuous space and Lf ½0, B� is a fuzzy Lebesgue inte-
grable function such that ξ = ½ξnðtÞ, �ξnðtÞ� for 0 ≤ n ≤ 1 and
t ∈ ð0, BÞ; then, the fuzzy fractional derivative is defined as

Dκξ t0ð Þ½ �n = Dκξn t0ð Þ,Dκ �ξn t0ð Þ
h i

, ð19Þ

Dκξn t0ð Þ = 1
Γ i − κð Þ
� � ðt

0
t − ςð Þi−κ−1 di

dςi

 !
ξn ςð Þdς

" #
t=t0

,

ð20Þ

Dκ �ξn t0ð Þ = 1
Γ i − κð Þ
� � ðt

0
t − ςð Þi−κ−1 di

dςi

 !
�ξn ςð Þdς

" #
t=t0

:

ð21Þ
Definition 5. Let ξ be the continuous fuzzy function on ½0,
B� ⊆ R, further if ξ ∈ Cf ½0, B� ∩ Lf ½0, B�, the Laplace trans-
form of fuzzy fractional model derivative in Caputo sense
is given as

L Dκξ tð Þn
Â Ã

= skL ξ tð Þ½ � − sk−1 ξ 0ð Þ½ �: ð22Þ

Definition 6. We can construct a homotopy vðr, PÞ: Ω × ½0, 1�
⟶ R

H v, Pð Þ = 1 − Pð Þ L vð Þ − L v0ð Þ½ � + q L vð Þ +N vð Þ − f rð Þ½ � = 0,
ð23Þ

where L is the linear part,N is the nonlinear part, and r ∈Ω and
P ∈ ½0, 1� are the embedding parameter.

4.1. HPM for Fuzzy Fractional Model.

1 − Pð Þ Dθ
t L~U −Dθ

t L~U0
h i

+ P Dθ
t L~U +Dθ

t N ~U + ef rð Þ
h i

= 0,

ð24Þ

Here, we will apply the HPM to the considered model

1 − Pð Þ Dθ
t R1 tð Þ −Dθ

t R10 tð Þ
h i

+ P Dθ
t R1 tð Þ + ~αR1R2 + ~βR3

h i
= 0,

ð25Þ

1 − Pð Þ Dθ
t R2 tð Þ −Dθ

t R20 tð Þ
h i

+ P Dθ
t R2 tð Þ + ~αR1R2 + ~β + ~γ

� �
R3

h i
= 0,

ð26Þ

1 − Pð Þ Dθ
t R3 tð Þ −Dθ

t R30 tð Þ
h i

+ P Dθ
t R3 tð Þ − ~αR1R2 − ~β + ~γ

� �
R3

h i
= 0,

ð27Þ

1 − Pð Þ Dθ
t R4 tð Þ −Dθ

t R40 tð Þ
h i

+ P Dθ
t R4 tð Þ − eγR3

h i
= 0:

ð28Þ
If P = 0, we get

Dθ
t R1 tð Þ −Dθ

t R10 tð Þ = 0, ð29Þ

Dθ
t R2 tð Þ −Dθ

t R20 tð Þ = 0, ð30Þ

Dθ
t R3 tð Þ −Dθ

t R30 tð Þ = 0, ð31Þ

Dθ
t R4 tð Þ −Dθ

t R40 tð Þ = 0: ð32Þ

Table 1: Parameters’ values.

Parameters Interpretation

R1 tð Þ Concentration of substrate

R2 tð Þ Concentration of enzyme

R3 tð Þ Concentration of the resulting complex

R4 tð Þ Concentration of resulting product

α, β, γ Rate of reaction
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We define following sums,

~R1 tð Þ = 〠
∞

n=0
Pn~R1n , ð33Þ

~R2 tð Þ = 〠
∞

n=0
Pn~R2n tð Þ, ð34Þ

~R3 tð Þ = 〠
∞

n=0
Pn~R3n tð Þ, ð35Þ

~R4 tð Þ = 〠
∞

n=0
Pn~R4n tð Þ: ð36Þ

Similarly,

R10 tð Þ = R1 0, ϑð Þ, �R10 tð Þ = �R1 0, ϑð Þ, ð37Þ

R20 tð Þ = R2 0, ϑð Þ, �R20 tð Þ = �R2 0, ϑð Þ, ð38Þ
R30 tð Þ = R3 0, ϑð Þ, �R30 tð Þ = �R3 0, ϑð Þ, ð39Þ
R40 tð Þ = R4 0, ϑð Þ, �R40 tð Þ = �R4 0, ϑð Þ: ð40Þ

Eventually, we get the following calculations

R1n tð Þ = R10 tð Þ + R11 tð Þ + R12 tð Þ+⋯, ð41Þ

�R1n tð Þ = �R10 tð Þ + �R11 tð Þ = �R12 tð Þ+⋯, ð42Þ
R2n tð Þ = R20 tð Þ + R21 tð Þ + R22 tð Þ+⋯, ð43Þ
�R2n tð Þ = �R20 tð Þ + �R21 tð Þ = �R22 tð Þ+⋯, ð44Þ
R3n tð Þ = R30 tð Þ + R31 tð Þ + R32 tð Þ+⋯, ð45Þ
�R3n tð Þ = �R30 tð Þ + �R31 tð Þ = �R32 tð Þ+⋯, ð46Þ
R4n tð Þ = R40 tð Þ + R41 tð Þ + R42 tð Þ+⋯, ð47Þ
�R4n tð Þ = �R40 tð Þ + �R41 tð Þ = �R42 tð Þ+⋯, ð48Þ

with following conditions,

~R1 0, ϑð Þ = 2ϑ − 1, 1 − 2ϑð Þ, ð49Þ

~R2 0, ϑð Þ = 2ϑ − 1, 1 − 2ϑð Þ, ð50Þ
~R3 0, ϑð Þ = 2ϑ − 1, 1 − 2ϑð Þ, ð51Þ
~R4 0, ϑð Þ = 2ϑ − 1, 1 − 2ϑð Þ: ð52Þ

Followed by iterations calculated as

R10 t, ϑð Þ = 2ϑ − 1ð Þ, �R10 t, ϑð Þ = 1 − 2ϑð Þ, ð53Þ

R20 t, ϑð Þ = 2ϑ − 1ð Þ, �R20 t, ϑð Þ = 1 − 2ϑð Þ, ð54Þ
R30 t, ϑð Þ = 2ϑ − 1ð Þ, �R30 t, ϑð Þ = 1 − 2ϑð Þ, ð55Þ

R40 t, ϑð Þ = 2ϑ − 1ð Þ, �R40 t, ϑð Þ = 1 − 2ϑð Þ: ð56Þ
Second term of solution is calculated as

R11 t, ϑð Þ = −~α 2ϑ − 1ð Þ2 + 2ϑ − 1ð ÞÈ É tθ

Γ θ + 1ð Þ , ð57Þ

�R11 t, ϑð Þ = −~α 1 − 2ϑð Þ2 + 1 − 2ϑð ÞÈ É tθ

Γ θ + 1ð Þ , ð58Þ

R21 t, ϑð Þ = ~α 2ϑ − 1ð Þ2 − ~β 2ϑ − 1ð Þ
n o tθ

Γ θ + 1ð Þ , ð59Þ

�R21 t, ϑð Þ = ~α 1 − 2ϑð Þ2 − ~β 1 − 2ϑð Þ
n o tθ

Γ θ + 1ð Þ , ð60Þ

R31 t, ϑð Þ = ~α 2ϑ − 1ð Þ2 − ~β + ~γ
� �

2ϑ − 1ð Þ
n o tθ

Γ θ + 1ð Þ ,

ð61Þ

�R31 t, ϑð Þ = ~α 1 − 2ϑð Þ2 − ~β + ~γ
� �

1 − 2ϑð Þ
n o tθ

Γ θ + 1ð Þ ,

ð62Þ
R41 t, ϑð Þ = ~γ 2ϑ − 1ð Þ, ð63Þ
�R41 t, ϑð Þ = ~γ 1 − 2ϑð Þ: ð64Þ
Applying the same process, we can find the higher terms

as follows

R12 t, ϑð Þ = −~α 2ϑ − 1ð Þ2 + 2ϑ − 1ð ÞÈ É
2ϑ − 1g

� ��
− ~α 2ϑ − 1ð Þ2 + ~β 2ϑ − 1ð Þ
n o

2ϑ − 1ð Þ
oh i

+ −~α 2ϑ − 1ð Þ2 + ~β + ~γ
� �

2ϑ − 1ð Þ
n o

2ϑ − 1ð Þ
o�� �

t2θ

Γ 2θ + 1ð Þ ,

ð65Þ

�R21 t, ϑð Þ = −~α 1 − 2ϑð Þ2 + 1 − 2ϑð ÞÈ É
1 − 2ϑð ÞgÂ Ã�

− ~α 1 − 2ϑð Þ2 + ~β cð Þ
n o

1 − 2ϑð Þg
h i

+ −~α 1 − 2ϑð Þ2 + ~β + ~γ
� �

1 − 2ϑð Þ
n o

1 − 2ϑð Þ
�� ��

t2θ

Γ 2θ + 1ð Þ ,

ð66Þ

R22 t, ϑð Þ = − ~α ~α 2ϑ − 1ð Þ3 + ~α 2ϑ − 1ð Þ3 − ~β 2ϑ − 1ð Þ2
h innh�

− ~β 2ϑ − 1ð Þ
o
+ ~β ~α 2ϑ − 1ð Þ2 − ~β + ~γ 2ϑ − 1ð Þ
h ioi� t2θ

Γ 2θ + 1ð Þ ,

ð67Þ
�R22 t, ϑð Þ = − ~α ~α 1 − 2ϑð Þ3 + ~α 1 − 2ϑð Þ3 − ~β 1 − 2ϑð Þ2

h innh�
− ~β 1 − 2ϑð Þ

o
+ ~β ~α 1 − 2ϑð Þ2 − ~β + ~γ 1 − 2ϑð Þ
h ioi� t2θ

Γ 2θ + 1ð Þ ,

ð68Þ
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R32 t, ϑð Þ = ~α ~α 2ϑ − 1ð Þ3 + ~α 2ϑ − 1ð Þ3 − ~β 2ϑ − 1ð Þ2
h i

− ~β 2ϑ − 1ð Þ
n onh�

+ ~β ~α 2ϑ − 1ð Þ2 − ~β + ~γ 2ϑ − 1ð Þ
h ioi� t2θ

Γ 2θ + 1ð Þ ,

ð69Þ

�R32 t, ϑð Þ = ~α ~α 1 − 2ϑð Þ3 + ~α 1 − 2ϑð Þ3 − ~β 1 − 2ϑð Þ2
h i

− ~β 1 − 2ϑð Þ
n onh�

+ ~β ~α 1 − 2ϑð Þ2 − ~β + ~γ 1 − 2ϑð Þ
h ioi� t2θ

Γ 2θ + 1ð Þ ,

ð70Þ
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Figure 1: Fractional dynamics of reactants R1 in the enzymatic reaction.
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Figure 2: Fractional dynamics of reactants R2 in the enzymatic reaction.
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R42 t, ϑð Þ = ~β ~α 2ϑ − 1ð Þ2 − ~β + ~γ 2ϑ − 1ð Þ
n oh i t2θ

Γ 2θ + 1ð Þ ,

ð71Þ

�R42 t, ϑð Þ = ~β ~α 1 − 2ϑð Þ2 − ~β + ~γ 1 − 2ϑð Þ
n oh i t2θ

Γ 2θ + 1ð Þ :

ð72Þ

5. Numerical Results

Now we analyze the dynamics of a substrate’s concentration,
the enzyme’s concentration, the concentration of the

resulting complex, and the concentration of the resulting
product in terms of fractional operators using the Homo-
topy perturbation method solution of fractional order. In
Figures 1–4, we evaluated by comparing fuzzy and normal
approximate solutions for the problem under discussion at
various fractional orders against the observed uncertainty.
The figures show that fuzzy logic, when combined with
fractional calculus, provides global dynamics to nonlinear
problems with uncertain data. Given that stochastic and
random parameters are far more harder to resolve, and that
uncertainty may lead to increases in estimation costs,
modeling such physical problems using fuzzy notions is
the right approach.
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Fuzzy solution at 𝜃 = 0.96

Figure 3: Fractional dynamics of reactants R3 in the enzymatic reaction.
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Figure 4: Fractional dynamics of reactants R4 in the enzymatic reaction.
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The values of R1 first increases and then decreases dras-
tically with a decrease in the fractional parameter θ.

The values of R2 first increases at a slower rate and then
increases exponentially with an increase in the fractional
parameter θ:

The values of R3 first decrease at a slower rate and then
decrease exponentially with an increase in the fractional
parameter θ.

The values of R4 increase exponentially with a decrease
in the fractional parameter θ.

6. Conclusion

Many academics have given numerical, approximate
approaches and applications to handle Michaelis Menten
enzymatic reaction model in general, due to the difficulty
that appeared in obtaining accurate solutions to fractional
differential equations. For examining the approximate solu-
tion of the Michaelis Menten enzymatic reaction equation,
extension of the spectral homotopy analysis method,
Runge-Kutta method, Laplace transformation, and Adomian
decomposition approach has been used by researchers. We
have developed a proper strategy for obtaining an approxi-
mate solution for the suggested model using the fuzzy theory
and Homotopy perturbation method. To demonstrate the
effectiveness of this strategy, we compared fuzzy and normal
solutions up to three iterations. We discovered that fuzzy
theory combined with fractional calculus technique yielded
outstanding dynamics of Michaelis Menten enzymatic reac-
tion model in instances where data uncertainty exists. By
substituting classical differential derivatives with fractional
derivatives based on fuzzy theory, we have suggested the
new approach to Michaelis Menten enzymatic reaction
model. The sequential iterations were built using fractional
calculus theory and homotopy perturbation method in fuzzy
sense. The numerical findings validated the fuzzy fractional
case when compared to fractional order results.

7. Future Recommendations

As a result, developing various approaches known in the
sense of fuzzy fractional differentials remains a future aim
for us and many other scholars [21–25]. Finally, using the
homotopy perturbation approach, the impacts of a wide
range of fuzzy theory values and fractional order on the
dynamics of fractional enzymatic reactions were examined.
We propose that in future work, we concentrate on expand-
ing this study with the help of other special functions and
the use of two-scale fractal dimension. In addition, we can
get additional results by using the modified homotopy per-
turbation method and He’s fractal derivative.
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