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In this manuscript, we focus on the application of recently developed analytical scheme, namely, the rational sine-Gordon
expansion method (SGEM). Some new exact solutions of Riemann wave system and the nonlinear Gross−Pitaevskii equation
(GPE) by using this method are extracted. This method is based on the general properties of the SGEMwhich uses the fundamental
properties of trigonometric functions. Many novel analytical solutions such as dark, bright, mixed dark–bright, hyperbolic, and
periodic wave solutions are successfully extracted. Physical meanings of solutions are simulated by the various figures in 2D and 3D
along with the contour graphs. Strain conditions of the existence are also reported in detail. Finally, modulation instability analysis
of the nonlinear GPE is studied in detail.

1. Introduction

In modern century, the real-world problems arising in various
fields of daily life, particularly, engineering such as computer
viruses, cyber security, artificial intelligence, magnetism, phys-
ics, oceanography, and so on have been symbolized via mathe-
matical norms. Scientists have investigated their connections
among multidisciplinary properties. For the last several dec-
ades, newly developed mathematical properties have been used
to explainmany physical problems [1–5]. In [6], scientists have
applied the Hopf Bifurcation theorem on the models arising in
the group competitive martial arts. In [7], the modified double
Laplace transformmethod is handled to extract some results of
the pseudo-hyperbolic telegraph model. The relativistic wave
equation associated with the Schrödinger equation was studied
in terms of traveling wave distribution in [8]. Wazwaz [9, 10]
introduced the several optical solitons for (2+ 1)-dimensional
Schrödinger (NLS) equation. In [11], modified exponential
function method have been applied to the nonlinear

Gerdjikov–Ivanov equation with the M-fractional. Hu et al.
[12] focused on the rational and semirational properties of B-
type Kadomtsev Petviashvili Boussinesq model. Kudryashov
[13] presented the Lax pair and the first integrals for some
mathematical properties. Ghanbari et al. [14] observed the
rational function solutions for the extended Zakharov Kuzetsov
equation. M-type dark soliton facts in optical fibers have been
investigated by Yao et al. [15]. Hybridmethod has been applied
into Rosenau–Hyman equation [16]. Real quadratic fields have
been focused on theHandymethod in [17]. Generalized (3+ 1)
Shallow Water-Like (SWL) equation was observed by Dusun-
celi [18]. The perturbed Schrödinger and the Heisenberg fer-
romagnetic spin chain have been investigated in [19, 20]. Park
et al. [21] have observed the fifth-order Korteweg-de Vries
equations. Themultiple exp-function method has been applied
on some mathematical models [22]. Chebyshev series have
been used to investigate numerically the integro-differential
equations in [23]. Duffing and diffusion reaction models
have been investigated in the M-derivative operator in [24].
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W-shape properties of the (3+1)-dimensional nonlinear evolu-
tion equations have been reported in [25]. The general andwide-
spectral explicit properties of the complex coupled Maccari sys-
tem have been introduced in [26]. The superconductivitymodels
have been studied in [27]. The Benjamin–Bona–Mahony–
Peregrine equationwith power law nonlinearity has been studied
in [28]. The finite element method have been used to observe a
surface plasmon resonance (SPR) sensor in [29]. A current
decoupling control strategy was considered on combining a
fast terminal sliding mode control and an adaptive extended
state observer [30]. A Robust Hammerstein–Wiener Model
identification method was applied in [31]. A robust model pre-
dictive current control schemewas proposed in [32]. Liu and Liu
[32] have studied on the photoacoustic microfluidic pumps [33].
A linear AC unit commitment formulation have been presented
in [34]. Moreover, seismic-wave attenuation, shear-wave
attenuations, and waves with a wide range of frequencies in
digital core have been introduced [35–38]. Some control pro-
blems and optimization application have been presented
[39–45]. In [46], bipolar cubic fuzzy graphs have been studied.
The shallow ocean-waves and rogue waves with translational
coordination have been observed in [47, 48]. The influence of
Woods–Saxon potential was presented in [49]. Soliton,
numerical, and closed solutions of nonlinear models have
been investigated by using various schemes [49–56]. To rep-
resent the wave’s amplitude, simplest equation algorithms
have been used by Inc et al. [57]. Az-Zo’bi et al. [58] studied
and used to observe the pulses propagation with power non-
linearity via conformable. Some novel liquid crystals models
have been investigated by using some analytical schemes in
[59]. Ur Rahman et al. [60] extracted the deeper properties of
the fractional regularized long-wave Burgers problem by
using two different fractional operators, Beta and M-trun-
cated. In [61], the fractional Huxley equation with Beta and
M-truncated derivatives have been considered for reporting
nonlinear coherent structures arising in a variety of environ-
ments, like spectrum energy, applied mathematics, mechan-
ics, control theory, biology, seismology, and many more.

One of such models belongs to the Riemann wave sys-
tems (RWS) defined by the following:

Vtþ αΨ xyy þ βΨVy þ γUVx ¼ 0;
Vy ¼ Ux;
Vx ¼ Ψ y;

ð1Þ

being α; β, and γ are constants. RWS studied in this paper are
used to explain the tidal and tsunami waves in ocean [62]. The
nonlinear terms of first equation in Equation (1) give the station-
ary wave propagation properties in the frame of physical sense.
Kundu et al. [63] investigated the parametric analysis via sine-
Gordon expansion method (SGEM). Gurevich et al. [64] has
used the slow modulation method. They have applied the gener-
alized hodograph method to find some analytical solutions.

Another important model is considered as follows:

i
∂
∂t
Ψ x; tð Þ¼ −

∂2

∂x2
Ψ x; tð Þ − 1

2
λ2x2Ψ x; tð Þ

þ2N
as
l⊥

Ψ x; tð Þj j2Ψ x; tð Þ;
ð2Þ

in which λ≪ 1, N is a constant value and as is the axial and
transverse harmonic oscillator frequencies. This equation is
used to describe the rogue wave in the evolution of the mac-
roscopic wave function of Bose–Einstein condensates (BECs)
and also to investigate the deeper properties at the mean-
field level [65], via

Ψ x; tð Þ ¼ q X;Tð Þeλt=2−iλx2=4; ð3Þ

in which equation X¼ xeλt;T ¼ 2
R
t
0e

2λτdτ, the nonlinear
Gross−Pitaevskii equation (GPE) can be rewritten as follows
[66, 67]:

i
∂θq
∂Tθ þ

1
2
∂2q
∂X2 − Υ qj j2q¼ 0; ð4Þ

in which q¼ qðX;TÞ; Υ ¼ Na0
I⊥

; θ is conformable derivative
order in 0<θ<1: Equation (4) arises in the magnetic field
theory observed by magnetically tuning the interatomic
interaction.

The paper is organized as follows. In Section 2, the rational
sine-Gordon expansion method (RSGEM) is given in detail. In
Section 3, RSGEM is applied to extract the stationary optical
solitons, mixed dark, and bright solitons to the Equations (1)
and (4). Additionally, stability properties of the complex mixed
dark–bright soliton solutions are also reported. Finally, the
paper is completed by presenting the important novelties of
this paper in Section 4.

2. General Properties of RSGEM

This part introduces the general properties of RSGEM, First,
let us consider the following sine-Gordon equation [68–70].

uxx x; tð Þ − utt x; tð Þ ¼m2sin u x; tð Þð Þ: ð5Þ

Here, m is a real constant with nonzero. Taking the trav-
eling wave transformation as uðx; tÞ¼UðξÞ; ξ¼ μðx− ctÞ
into Equation (5) produces

U
00 ¼ m2

μ2 1 − c2ð Þ sin Uð Þ; ð6Þ

where U ¼UðξÞ, U 00 ¼ d2U
dξ2 and c, μ are also real constants

with nonzero. With some calculations, it may be obtained as
follows:

U
2

� � 0� �
2

¼ m2

μ2 1 − c2ð Þ sin
2


U
2

� �
þ k; ð7Þ

where k is an integral constant. For simplicity, by considering
as k¼ 0;   w¼ U

2 ; and a2 ¼ m2

μ2ð1−c2Þ ; Equation (7) reads as
follows:
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w 0 ¼ a sin wð Þ; ð8Þ

in which w¼wðξÞ. Gaining a¼ 1 in Equation (8), we obtain
the following two interesting and important relationship

sin wð Þ ¼ sin w ξð Þ½ � ¼ 2peξ

p2e2ξ þ 1
↓p¼1 ¼ sech ξð Þ; ð9Þ

cos wð Þ ¼ cos w ξð Þ½ � ¼ 2peξ

p2e2ξ þ 1
↓p¼1 ¼ tanh ξð Þ: ð10Þ

Let us take into account the general mathematical model
as follows:

P Ψ ;Ψ x;Ψ xt;Ψ 2;⋯ð Þ ¼ 0: ð11Þ

Taking into account as Ψ ¼Ψ ðx; tÞ¼UðξÞ;  ξ¼ μðx−
ctÞ, it is converted as follows:

N U ;U 0;U 00;U2;⋯ð Þ ¼ 0: ð12Þ

HereU ¼UðξÞ;U 0 ¼ dU
dξ . In Equation (12), the trial equation

for solution function may be considered as follows:

U ξð Þ ¼ ∑n
i¼1tanh

i−1 ξð Þ Ai sech ξð Þ þ ci tanh ξð Þ½ � þ A0

∑m
i¼1tanh

i−1 ξð Þ Bi sech ξð Þ þ di tanh ξð Þ½ � þ B0
:

ð13Þ

Equation (13) may be rewritten with the help of
Equations (9) and (10) as following:

U ωð Þ ¼ ∑n
i¼1cos

i−1
 ωð Þ Ai sin ωð Þ þ ci cos ωð Þ½ � þ A0

∑m
i¼1cos

i−1
 ωð Þ Bi sin ωð Þ þ di cos ωð Þ½ � þ B0

;

ð14Þ

in which the values of n;m will be determined later via
balance principle. After putting the necessary derivations
of Equation (14) into Equation (12), we obtain an equation
of siniðωÞcosjðωÞ. Taking all these terms to zero yields a
system of equations. Solving this system by using some
computational programs, gives the values of Ai;Bi; ci; di; μ,
and c. Via these values of parameters Ai;Bi; ci; di; μ, and c in
Equation (13), we obtain the new traveling wave solutions to
Equation (11).

3. Applications of Projected Scheme

In this part of the paper, the stationary soliton and new
analytical solutions to the Riemann wave system and con-
formable GPE is studied by using RSGEM.

3.1. RSGEM to the Riemann Wave System of Equations. First
of all, we apply RSGEM to the Riemann wave system of
equations for reporting new stationary soliton solutions.
Applying the traveling wave transformation defined by

u x; y; tð Þ ¼ U ξð Þ; ξ¼ μx þ δy − ωt;
V x; y; tð Þ ¼ V ξð Þ;
Ψ x; y; tð Þ ¼Ψ ξð Þ;

ð15Þ

into Equation (1) results in the following NODE:

2αδμ2V 00
− 2ωV þ βμþ γδð ÞV2 ¼ 0; ð16Þ

where

U ξð Þ ¼ δ

μ
V ξð Þ;

Ψ ξð Þ ¼ μ

δ
V ξð Þ:

ð17Þ

After taking n¼m especially in this paper, via the bal-
ance rule in Equation (16) gives n¼m¼ 2. Getting n¼m¼
2 in Equation (14), one can write the trial equation of solu-
tion function given as follows:

V wð Þ¼A0þA1sin wð Þþc1cos wð Þþcos wð Þ A2sin wð Þþc2cos wð Þ½ �
B0þB1sin wð Þþd1cos wð Þþcos wð Þ B2sin wð Þþd2cos wð Þ½ �:

ð18Þ

Substituting Equation (18) and its second derivative into
Equation (16), we obtain an equation of siniðwÞcosiðwÞ. Get-
ting all coefficients of these terms to zero, we gain a system of
equations. Solving this system produces the values of param-
eters Ai;Bi; c1; d1; μ;ω, and δ which results in many entirely
new traveling wave solutions to the Equation (1).

Case-1: when B2 ¼ d2 ¼ 0; b1 ¼ − 2; B0 ¼ 1;ω¼A0 ¼ − b0;
A1 ¼ − b0B1;A2 ¼ 3ib0

2 ; c1 ¼ 1
2 ib0B1; c2 ¼ 3b0

2 ; d1 ¼ iB1 into
Equation (13) with n¼ 2, it yields the following entirely
complex mixed dark–bright soliton solution to the RWE
as follows

V1 ¼
−κ − κB1sech f x; y; tð Þ½ � þ 1

2 iκB1tanh f x; y; tð Þ½ � þ tanh f x; y; tð Þ½ �g
1þ B1sech f x; y; tð Þ½ � þ iB1tanh f x; y; tð Þ½ � ; ð19Þ
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U1 ¼
δ −κ − κB1sech f x; y; tð Þ½ � þ 1

2 iκB1tanh f x; y; tð Þ½ � þ tanh f x; y; tð Þ½ �gÀ Á
μ 1þ B1sech f x; y; tð Þ½ � þ iB1tanh f x; y; tð Þ½ �ð Þ ; ð20Þ

Ψ 1 ¼
μ −κ − κB1sech f x; y; tð Þ½ � þ 1

2 iκB1tanh f x; y; tð Þ½ � þ tanh f x; y; tð Þ½ �gÀ Á
δ 1þ B1sech f x; y; tð Þ½ � þ iB1tanh f x; y; tð Þ½ �ð Þ ; ð21Þ

where V1 ¼V1ðx; y; tÞ;U1 ¼U1ðx; y; tÞ;Ψ 1 ¼Ψ 1ðx; y; tÞ;
κ¼ αδμ2; f ðx; y; tÞ¼ δyþ μxþ κt; g¼ gðx; y; tÞ¼ 3

2 iκ sech½ f ðx; y; tÞ� þ 3
2 iκ tanh½ f ðx; y; tÞ�. Selecting several parameters

values from the physical meanings of the RWE, we can
observe the simulations of Equation (19) via Figure 1 in
3D, Figure 2 contour sense, and Figure 3 in 2D according

to the specific time scala. From these simulations, one can see
that this solution has singular properties.

Case-2: choosing as B2 ¼ d2 ¼ 0; b1 ¼ − 2;B0 ¼ 1;ω¼
A0 ¼ − b0;A1 ¼ − b0B1;A2 ¼ −

3ib0
2 ; c1 ¼ −

1
2 ib0B1; c2 ¼ 3b0

2 ;
d1 ¼ − iB1; for Equation (13) with n¼ 2, it produces entirely
new complex mixed dark–bright soliton solution given by

V2 ¼
−κ − κB1sech f x; y; tð Þ½ � − 1

2 iκB1tanh f x; y; tð Þ½ � þ tanh f x; y; tð Þ½ �g
1þ B1sech f x; y; tð Þ½ � − iB1tanh f x; y; tð Þ½ � ; ð22Þ

U2¼
δ −κ − κB1sech f x; y; tð Þ½ � − 1

2 iκB1tanh f x; y; tð Þ½ � þ tanh f x; y; tð Þ½ �gÀ Á
μ 1þ B1sech f x; y; tð Þ½ � − iB1tanh f x; y; tð Þ½ �ð Þ ; ð23Þ

Ψ 2¼
μ −κ − κB1sech f x; y; tð Þ½ � − 1

2 iκB1tanh f x; y; tð Þ½ � þ tanh f x; y; tð Þ½ �gÀ Á
δ 1þ B1sech f x; y; tð Þ½ � − iB1tanh f x; y; tð Þ½ �ð Þ ; ð24Þ

where V2 ¼V2ðx; y; tÞ;U2 ¼U2ðx; y; tÞ;Ψ 2 ¼Ψ 2ðx; y; tÞ;
κ¼ αδμ2; f ðx; y; tÞ¼ δyþ μxþ κt;  g¼gðx; y; tÞ¼ − 3

2 iκ sech
½ f ðx; y; tÞ� þ 3

2 iκ tanh½ f ðx; y; tÞ�. More strict simulations of
Equations (22)–(26) are also seen by Figure 4 in three-dimensional,
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FIGURE 1: The 3D simulations of V1.
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Figure 5 contour sense, and Figure 6 in two-dimensional in
a specific time. From the Figures 4 to –6, it may be observed
that this solution has dark–bright properties.

Case-3: once it is selected as B2 ¼ d2 ¼ 0; b1 ¼ − 2;B0 ¼
1;ω¼ − b0;A0 ¼ b0

2 ;A1 ¼ − b0B1;A2 ¼ 0; c1 ¼ 1
2 b0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

1

p
;

c2 ¼ 0; d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

1

p
for Equation (13) with n¼ 2, and

inserting these values into Equation (13) along with n¼ 2,
we obtain dark–bright soliton solution as following:

V3 x; y; tð Þ

¼
1
2 κ − κB1sech f x; y; tð Þ½ � þ 1

2 κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

1

p
tanh f x; y; tð Þ½ �

1þ B1sech f x; y; tð Þ½ � þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

1

p
tanh f x; y; tð Þ½ � ;

ð25ÞU3 x;y; tð Þ

¼
δ 1

2κ− κB1sech f x;y; tð Þ½ �þ 1
2κ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−B2

1

p
tanh f x;y; tð Þ½ �

� �
μ 1þB1sech f x;y; tð Þ½ �þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−B2

1

p
tanh f x;y; tð Þ½ �

� � ;

ð26Þ

Ψ 3 x;y; tð Þ

¼
μ 1

2κ− κB1sech f x;y; tð Þ½ �þ 1
2κ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−B2

1

p
tanh f x;y; tð Þ½ �

� �
δ 1þB1sech f x;y; tð Þ½ � þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−B2

1

p
tanh f x;y; tð Þ½ �

� � ;

ð27Þ

where κ¼ αδμ2; f ðx; y; tÞ¼ δyþ μxþ κt. Moreover, − 1<
B1<1 for strain condition. The intersection points of
Equations (25)–(27) are also observed by Figure 7 in three-
and two-dimensional in a specific time and Figure 8 in the
low region. From the Figures 7 and 8, it may be also seen that
Equations (25)–(27) have singular property.

Case-4: if it is chosen as ω¼ b0;B2 ¼ d2 ¼ 0; b1 ¼ − 2;
B0 ¼ 1; A0 ¼ −

b0
2 ; A1 ¼ −

1
2 b0B1; A2 ¼ 0; c1 ¼ 0; d1 ¼ − 1,

mixed-dark soliton solution to the Equation (1) is obtained
as following
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V4 x; y; tð Þ ¼ −
1
2 κ −

1
2 κB1sech f x; y; tð Þ½ � þ 1

2 κ tanh f x; y; tð Þ½ �
1þ B1sech f x; y; tð Þ½ � − tanh f x; y; tð Þ½ � ;

ð28Þ

U4 x; y; tð Þ
¼ δ −

1
2 κ −

1
2 κB1sech f x; y; tð Þ½ � þ 1

2 κ tanh f x; y; tð Þ½ �À Á
μ 1þ B1sech f x; y; tð Þ½ � − tanh f x; y; tð Þ½ �ð Þ ;

ð29Þ

Ψ 4 x; y; tð Þ
¼ μ −

1
2 κ −

1
2 κB1sech f x; y; tð Þ½ � þ 1

2 κ tanh f x; y; tð Þ½ �À Á
δ 1þ B1sech f x; y; tð Þ½ � − tanh f x; y; tð Þ½ �ð Þ ;

ð30Þ

where κ¼ αδμ2; f ðx; y; tÞ¼ δyþ μxþ κt, and also δ;  μ;  α;
 B1 are real constants and nonzero. The periodic wave beha-
viors of Equations (28)–(30) may be also presented by
Figure 9. Figure 9 has stable wave propagation.

Case-5: when α¼ A2
3δμ2 ; β¼ 2−γδ

μ ;B2 ¼ d2 ¼ 0; b1 ¼ 1;
B0 ¼ i;A0 ¼ 2iA2

3 ;ω¼ −A2
3 ;A1 ¼ −

2
3 iA2d1;B1 ¼ − id1; c1 ¼

−
1
3A2d1; b0 ¼ A2

3 ; c2 ¼ − iA2 results in the another entirely
new exact solution as follows:

V5 ¼
2iA2
3 −

2
3 iA2d1sech fð Þ − 1

3A2d1pþ tanh fð Þ A2tanh fð Þ − iA2tanh fð Þð Þ
i − id1sech fð Þ þ d1tanh fð Þ ; ð31Þ

U5 ¼
δ 2iA2

3 −
2
3 iA2d1sech fð Þ − 1

3A2d1pþ tanh fð Þ A2sech fð Þ − iA2tanh fð Þð ÞÀ Á
μ i − id1sech fð Þ þ d1tanh fð Þð Þ ; ð32Þ

Ψ 5 ¼
μ 2iA2

3 −
2
3 iA2d1sech fð Þ − 1

3A2d1pþ tanh fð Þ A2sech fð Þ − iA2tanh fð Þð ÞÀ Á
δ i − id1sech fð Þ þ d1tanh fð Þð Þ ; ð33Þ
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where f ¼ f ðx; y; tÞ¼ tanhðδyþ μxþ A2
3 tÞ, and also δ;  μ;  

A2;  d1 are real constants and nonzero. Smooth wave distribu-
tion of Equations(31)–(33) are also plotted by Figure 10 in three-
dimensional, Figure 11 contour sense, and Figure 12 in
two-dimensional in a specific time. From the Figures 10–12,
these solution have the dark–bright properties.

Case-6: using α¼ A2
3δμ2 ; β¼ 2−γδ

μ ;B2 ¼ d2 ¼ 0; b1 ¼ 1;
B0 ¼ i;ω¼ −

A2
3 ;A0 ¼ − iA2;A1 ¼ 0;B1 ¼ 0; c1 ¼ 0; b0 ¼

−
A2
3 ; c2 ¼ iA2; d1 ¼ 0 produces combined dark–bright sta-

tionary soliton solution as follows:

V6¼ −A2 − i tanh δy þ μx þϖtð Þ A2sech δy þ μx þϖtð Þð
þiA2tanh δy þ μx þϖtð ÞÞ;

ð34Þ

U6¼
δ

μ
−A2− i tanh δyþμxþϖtð Þ A2sech δyþμxþϖtð Þðð

þ iA2tanh fð ÞÞÞ;
ð35Þ

Ψ 6¼
μ

δ
−A2− i tanh δyþμxþϖtð Þ A2tsech δyþμxþϖtð Þðð

þ iA2tanh fð ÞÞÞ;
ð36Þ

where f ¼ δyþ μxþϖtÞ;ϖ¼ A2
3 and δ;  μ;  A2 are real con-

stants and nonzero. Intercrossing wave distribution of
Equations (34)–(36) are also introduced by Figures 13 and 14.
Such sketches is estimated that soliton wavelength is closely
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related to the gravitational potential. Thus, it may be said that the
gravitational potential affect the wavelength and its power. From
the Figures 13 and 14, it is estimated that they may be used to
explain the gravitational potential energy properties.

3.2. RSGEM for the Nonlinear GPE in Conformable Operator.
This subsection of the manuscript extracts the stationary
soliton, mixed dark–bright and complex traveling wave solu-
tions to the conformable GPE by using RSGEM. Applying
wave transform given as follows:

q X;Tð Þ ¼ U ξð Þeiφ; ξ¼ αX −
β

θ
Tθ;φ¼ pX −

κ

θ
Tθ;

ð37Þ

in which α; β; κ are nonzero and also 0<θ<1 into
Equation (4) converts

α2U 00 þ 2κ − p2ð ÞU − 2ΥU3 ¼ 0: ð38Þ

Here Υ is a real constant. Considering balance properties
in Equation (38), we find n¼ 1 for Equations (13) and (14).
Using n¼ 1 Equation (14) reaches the following trial solu-
tion function given as:

U wð Þ ¼ A0 þ A1sin wð Þ þ c1cos wð Þ
B0 þ B1sin wð Þ þ d1cos wð Þ ; ð39Þ

where B1; d1 are each nonzero constants. Putting Equation (39)
and its second derivation in Equation (38) gives various terms
containing sinsðwÞcossðwÞ. This produces a system of alge-
braic equations. Solving this system, we find the desired ana-
lytical solutions as follows to the conformable GPE.

Case-1: using B1 ¼ − id; c1 ¼ iA1; Υ ¼ −α2d21
4A2

1
;B0 ¼

−
iA0d1
A1

; κ¼ 1
4 ðα2 þ 2p2Þ produces mixed dark–bright sta-

tionary soliton solution as follows:

q1 X;Tð Þ¼

e
i pX−

α2þ2p2ð Þ
4θ Tθ

� �
A0þA1sech αX−

αp
θ T

θ
À Áþ iA1tanh αX−

αp
θ T

θ
À ÁÀ Á

−id1sech αX−
αp
θ T

θ
À Á

−
iA0d1
A1

þd1tanh αX−
αp
θ T

θ
À Á ;

ð40Þ

where α;A0;A1; p; d1; 0<θ<1 are real constants and non-
zero. Selecting suitable to the physical properties of conform-
able GPE, we plot various wave distributions Figure 15. From
the Figure 15, it is estimated that it has mixed dark–bright
stationary.

3.3. Stability Properties of q1ðX;TÞ. In this subsection of this
paper, Hamiltonian system is considered and applied on the
mixed dark–bright stationary soliton solution to investigate
its stability on a general range. This system is introduced in
detail [71, 72] as following

Π wð Þ ¼
Z 1

−1

1
2
Ψ 2 ζð Þdζ; ð41Þ

in whichΠ symbolizes the momentum function and alsow is
used to express the wave speed and ΨðζÞ is the projected
analytical solution. Sandstede et al. [72] observed some
important models by using various spaces properties such
as Banach and so on. The sufficient condition for the stability
is as follows:

∂Π
∂w

>0: ð42Þ

If we take into account Equations (41), and (42) on
Equation (40), we obtain

∂Π
∂w

¼ 1ffiffiffi
2

p
d21

1
2
þ i
2

� �
−1ð Þ34A2

1e
−
iα2
2θ t

θþp2 −

i
θ
tθ þ 2i

λ

� �
þtλ−i −2pþλxð Þ2

2λ

>0:

ð43Þ
Thus, the Equation (40) solution is unconditionally stable.
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Case-2: when B1 ¼ A0d1
A1

; c1 ¼ A2
1

A0
; Υ ¼ ð2κ−p2ÞA2

0d
2
1

2A4
1

;B0 ¼ A2
0d1
A2
1

reaches the mixed dark–bright stationary soliton solution as
follows:

q2 X;Tð Þ

¼
ei pX−κ

θT
θð Þ A0þA1sech αX −

αp
θ T

θ
À Áþ A2

1
A0
tanh αX −

αp
θ T

θ
À Á� �

A2
0d1
A2
1
þ A0d1

A1
sech αX −

αp
θ T

θ
À Áþ d1tanh αX −

αp
θ T

θ
À Á ;

ð44Þ

where p; α;A0;A1; d1; κ; 0<θ<1 are real constants and non-
zero. With the suitable values related to the physical proper-
ties for governing model, various wave distributions may be
observed Figure 16. From the Figure 16, it is estimated that it
has some important wave propagations.

3.4. Stability Properties of q2ðX;TÞ.Here, if we reconsider the
momentum function as follows:

Π wð Þ ¼
Z 1

−1

1
2
Ψ 2 ζð Þdζ; ð45Þ

and the sufficient condition for the stability condition by

∂Π
∂w

>0; ð46Þ

on Equation (44), we obtain

∂Π
∂w

¼ A4
1e

2ipx−2iκ
θ t

θ

2A2
0d

2
1

>0; ð47Þ

which is the mixed dark–bright stationary soliton solution
given as Equation (44) is unconditionally stable.
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4. Modulation Instability Analysis of the
Nonlinear GPE

In this section of the article, we discuss the modulation insta-
bility (MI) analysis for the stationary solutions of Equation (4)
by assuming the following stationary solutions

q X;Tð Þ ¼ ffiffiffiffi
Ω

p þ Ξ X;Tð ÞÀ Á
eiΩX ; ð48Þ

where Ω represents the incident power. We investigate the evo-
lution of the perturbation ΞðX;TÞ using the concept of linear
stability analysis. Substituting Equation (48) into Equation (4)
and linearizing the result in ΞðX;TÞ, we acquire

i∂TΞ X;Tð Þ þ 1
2
∂X;XΞ X;Tð Þ − γ Ξ X;Tð Þj jð Þ2Ξ X;Tð Þ ¼ 0;

ð49Þ

supposing solutions of Equation (49) are in the following

Ξ X;Tð Þ ¼ ξei βx−αtð Þ þ ζe−i βx−αtð Þ; ð50Þ

where β is the wave number, and α is the frequency. Putting
Equation (50) in Equation (49) gives a set of two homoge-
nous equations as follows:

αζ −
1
2
β2ζ − 3γζ2ξ − γζ3 ¼ 0; ð51Þ

−αξ −
1
2
β2ξ − 3γζξ2 − γξ3 ¼ 0: ð52Þ

From the Equations (51) and (52), one can easily obtain
the following coefficients matrix of ζ and ξ as follows:

−3γζ2 α −
1
2
β2 − γζ2

−α −
1
2
β2 − γξ2 −3γξ2

0
B@

1
CA ξ

ζ

 !
¼ 0

0

 !
:

ð53Þ

The coefficient matrix in Equation (53) has a nontrivial
solution if the determinant equal to zero. By expanding the
determinant, we obtain the following

α2 −
1
4
β4 þ 8γ2ζ2ξ2 þ αγ −ζ2 þ ξ2ð Þ − 1

2
β2γ ζ2 þ ξ2ð Þ ¼ 0:

ð54Þ

Equation (54) has the following solutions

β¼
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ ζ2þξ2ð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αþ γζ2ð Þ2þ2γ 2αþ17γζ2ð Þξ2þ γ2ξ4

pq
;

ð55Þ

and

β¼
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ ζ2þξ2ð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αþγζ2ð Þ2þ2γ 2αþ17γζ2ð Þξ2þγ2ξ4

pq
:

ð56Þ

The stability of the steady state is determined by
Equations (55) and (56). If the wave number has an imagi-
nary part, the steady-state solution is unstable since the per-
turbation grows exponentially. But if the wave number is
real, the steady state is stable against small perturbation.
Thus, the condition is necessary for the existence of MI to
occur from Equations (55) and (56) is when either

γ ζ2 þ ξ2ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αþ γζ2ð Þ2 þ 2γ 2αþ 17γζ2ð Þξ2 þ γ2ξ4

p
>0;

ð57Þ

or

−γ ζ2þξ2ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αþ γζ2ð Þ2þ2γ 2αþ17γζ2ð Þξ2þ γ2ξ4

p
<0:

ð58Þ

Now for investigating instability modulation gain spec-
trum it should be noticed that

g αð Þ ¼ 2Im βð Þ ¼ ∓2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ ζ2 þ ξ2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αþ γζ2ð Þ2 þ 2γ 2αþ 17γζ2ð Þξ2 þ γ2ξ4

pq
: ð59Þ

We have the following cases Case 1: when

g αð Þ ¼ 2Im βð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ ζ2 þ ξ2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αþ γζ2ð Þ2 þ 2γ 2αþ 17γζ2ð Þξ2 þ γ2ξ4

pq
: ð60Þ

We have the following subcases
Case 1.1: for these values γ¼ −2

3 ; ζ¼ 2
5 ; ξ¼ 1

2, of constants
in Equation (59) we have
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g1;1 αð Þ ¼ 1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
82
3
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1; 609þ 200α −3þ 50αð Þ

pr
: ð61Þ

Case 1.2: when it is considered as γ¼ 1
2 ; ζ¼ −2

3 ; ξ¼ −1
3 , of

constants in Equation (59) we have

g1;2 αð Þ ¼ 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−10þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ 24α −1þ 6αð Þ

pq
: ð62Þ

Case 1.3: taking as γ¼ 1
5 ; ζ¼ −1

2 ; ξ¼ 1
10, of constants in

Equation (59) we have

g1;3 αð Þ ¼ 1
5

ffiffiffi
2
5

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−13þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
369þ 200α −6þ 125αð Þ

pq
:

ð63Þ

Case 1.4: once they are considered as γ¼ 2; ζ¼ 1
10 ; ξ¼ 3

8
of constants in Equation (59) we have

g1;4 αð Þ ¼ 1

10
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−241þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
173; 281þ 3; 200α 209þ 800αð Þ

pq
:

ð64Þ

These subcases can be expressed in Figure 17 between
− 10<α<10.

5. Conclusions

In this work, we introduced a recently developed scheme
being RSGEM. RSGEM has been handled to the Riemann
wave system and nonlinear GPE in conformable frame.
Main novelty of this paper is the solutions such as complex,
mixed dark–bright, and hyperbolic in conformable operator
were extracted. Via graphical illustrations, the dynamical

behaviors of solutions found have been reported. The stability
properties of the obtained solutions have been introduced, as
well. Moreover, the strain conditions of solutions for valid
have been also given.

It is estimated that these dark solitons may be closely
related to the gravitational dynamical potential [73]. MI anal-
ysis of the nonlinear Gross–Pitaevskii equation has been stud-
ied, as well. Its various wave simulations have been also
plotted in Figure 17. From these results, it may be suggested
that the RSGEM is a power tool to solve such nonlinear partial
models arising in applied and engineering sciences. Therefore,
it may be also applied to investigate deeper properties of some
real-world problems [74–77].

As the future direction of this topic, it is envisaged and
suggested that some important analytical schemes will be
developed by the experts studying in these areas of nonlinear
sciences to solve more complex PDEs. This comes from the
properties of real-world problems.
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