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In the present work, a new approximated method for solving the nonlinear Duffing-Van der Pol (D-VdP) oscillator equation is
suggested. The approximate solution of this equation is introduced with two separate techniques. First, we convert nonlinear
D-VdP equation to a nonlinear Volterra integral equation of the second kind (VIESK) using integration, and then, we
approximate it with the hybrid Legendre polynomials and block-pulse function (HLBPFs). The next technique is to convert
this equation into a system of ordinary differential equation of the first order (SODE) and solve it according to the proposed
approximate method. The main goal of the presented technique is to transform these problems into a nonlinear system of
algebraic equations using the operational matrix obtained from the integration, which can be solved by a proper numerical
method; thus, the solution procedures are either reduced or simplified accordingly. The benefit of the hybrid functions is that
they can be adjusted for different values of n and m, in addition to being capable of yield greater correct numerical answers
than the piecewise constant orthogonal function, for the results of integral equations. Resolved governance equation using the
Runge-Kutta fourth order algorithm with the stepping time 0.01 s via numerical solution. The approximate results obtained
from the proposed method show that this method is effective. The evaluation has been proven that the proposed technique is
in good agreement with the numerical results of other methods.

1. Introduction

The nonlinear differential equations become the most
important topic in various scientific problems that arise in
the field of engineering and physics that can be represented
by nonlinear ordinary differential equation such as oscillator
equations. Oscillators are found in most of the electronic
systems, which provide an important limiting cycle of the
mathematical model. For example, phenomena arise in all
fields of the natural and engineering sciences [1, 2] and in
many physical problems [3, 4]. In recent studies, extensive
studies have focused on the concept capable of damping
harmful vibrations in environmental energy, which are gen-
erated or induced by mechanical machinery, vehicles, wind,
and so on. These vibrations can be harvested and turned to
useful electrical energy like [5–7]. Numerous studies have
been dedicated to the exploitation of various vibratory

energy harvesting systems, for instance, He et al. [8] have
shown vibration alleviation and energy harvesting in a
dynamical system of a spring pendulum, Tien and Dsouza
[9] investigated a theoretical model of a piecewise-linear
nonlinear vibration harvester, Shorakaei et al. [10] studied
the nonlinear vibration energy harvesting from a magneto-
electro-elastic plate. Based on the aim of this article, we
consider the mathematical of unforced D-VdP oscillator
equation as follows:

y·· − α 1 − y2
À Á

y· + y + γy3 = 0,
y 0ð Þ = y0, y· 0ð Þ = y·0,

(
ð1Þ

where dots denote time derivative; α and γ are two positive
coefficients. Usually, getting exact solutions by the analytical
methods for these systems, even if the exact solutions exist,
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seems to be difficult. Hence, it needs of numerical techniques
for approximate solutions. Some of these numerical methods
applied by various researchers include the following: Haar
wavelet [11], Adomian decomposition method [12], succes-
sive linearisation method [13], iterative method [14],
restarted Adomian decomposition method [15], variational
iteration method [16], parameter expansion method [17],
the chaotic motions [18], and block multistep method [19].
Numerical integration is a particularly effective and multi-
purpose technique in solving the solution to arbitrary non-
linear differential equations. We will solve Equation (1) in
two ways using the HLBPF method. In the first way, we con-
vert Equation (1) to a VIESK using integration and then
approximate it with the proposed technique. In the next
way, we transform Equation (1) into a SODE and then solve
it with the proposed method. The main feature of this
method is to convert this problem to a system of algebraic
equations which, using the operational matrix obtained from
the integration, simplifies complex calculations. When the
integration operation is eliminated using the resulting oper-
ational matrix, there are several methods of approximation,
such as the block-pulse function [20], modified block-pulse
function [21], HLBPF method [22], Bernoulli polynomials
[23], and many other methods. In this article, since the
D-VdP equations do not have an exact solution, we first
solved all the examples with the Runge-Kutta of the fourth
order method (RK4), which uses 0.01 s time step, and con-
sider the answers obtained from the RK4 as the exact solution,
and then, we do a comparative study between methods such
as Adomian’s decomposition method (ADM), homotopy
perturbation method (HPM) [24], and the presented method
in this article. Now, we get the absolute error of method’s
ADM and HPM as well as the proposed technique with the
RK4 method, which in some cases, these are more efficient
than the presented method.

The present article is divided into the following sections:
in Section 2, the D-VdP oscillator equation will be described.
In Section 3, HLBPFs and operational matrix are reviewed.
Our proposed method for solving D-VdP is studied in
Section 4. In Section 5, the HPM is described for solving this
equation. In Section 6, an error analysis for the suggested
methods is presented. Then, Section 7 presents numerical
results. Finally, conclusion is described in Section 8.

2. The Duffing-Van der Pol Oscillator Equation

In this section, we describe the D-VdP oscillator equation.
This equation is a self-maintained electrical circuit. Consider
the general hybrid Rayleigh-Duffing-Van der Pol oscillator
equation as follows [25].

y′′ + a1y′
2 + a2y

4 + a3y
2 + λ

� �
y′ + a4y + γy3 = 0, ð2Þ

where a1, a2, a3, a4, λ, and γ are constants. Equation (2) con-
tains several well-known oscillator equations. For a2 = a3 =
γ = 0, Equation (2) becomes the Rayleigh oscillator [26].
Whena2 = γ = 0, this equation reduces to the Rayleigh-Van
der Pol oscillator, and whena1 = a2 = 0, it transforms into

the famous Duffing-Van der Pol oscillator equation. An
interesting feature of the hybrid oscillator is that depending
on the relation among the values, it assumes comparable
behavior to the Van der Pol oscillator or Duffing oscillator.
Suppose an oscillator of mass m and stiffness coefficient k
is moving under the influence of damping force, and b is
the damping coefficient, which is usually considered a
constant number, all of which are connected in series as
indicated (Figure 1).

We consider the damping force on the oscillator as a
function of the oscillator velocity. In this case, the equation
of motion of the oscillator will be as follows:

my′′ + by′ + ky + k3y
3 = 0, ð3Þ

where k is the linear stiffness term and k3 is the nonlinear
stiffness term. If we consider the damping coefficient as a
function of the oscillator place as bð1 − y2Þ, in other words,
as the oscillator moves, damping force on the oscillator
changes, and then, the oscillator motion equation will be as
follows:

my′′ + b 1 − y2
À Á

y′ + ky + k3y
3 = 0,⟹ y′′ + b

m
1 − y2
À Á

y′

+ k
m
y + k3

m
y3 = 0,⟹ y′′ + b

m
1 − y2
À Á

y′ + ω2
0y + ω5

0y
3 = 0,

ð4Þ

where ω2
0 = k/m and ω5

0 = k3/m. By substituting τ = ω0t, we
can get that

d
dt

= d
dτ

· dτ
dt

= ω0
d
dτ

,

d2

dt2
= ω2

0
d2

dτ2
:

ð5Þ

Now, we will substitute by using the move equation:

ω2
0
d2y
dτ2

+ b
m

1 − y2
À Á

ω0
dy
dτ

+ ω2
0y + ω5

0y
3 = 0,⟹ d2y

dτ2

+ b
mω0

1 − y2
À Á dy

dτ
+ y + ω3

0y
3 = 0:

ð6Þ

bk

m

+y

o

Figure 1: Damping mechanical oscillator.
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Therefore, we get to a D-VdP oscillator equation

y′′ + α 1 − y2
À Á

y′ + y + γy3 = 0, ð7Þ

where α = b/mω0 and γ = ω3
0.

3. Some Properties of Hybrid Functions

In this section, some properties of hybrid functions are
recalled.

3.1. Hybrid Legendre Polynomials and Block-Pulse Function.
Hybrid functions, bijðtÞ, i = 1,⋯, n and j = 0,⋯,m − 1, pos-
sess three arguments; i and j denote the order of BPFs and
Legendre polynomials, respectively, and t is cited to the nor-
malized time that is defined on ½0, T f Þ as [27].

bij tð Þ =
Pj

2n
T f

t − 2i + 1
 !

, t ∈
i − 1
n

T f ,
i
n
T f

� �

0, o:w:

8><
>: ,

ð8Þ

where PjðtÞ denotes the Legendre polynomials of order j that
is satisfied in the following relation:

P0 tð Þ = 1,
P1 tð Þ = t,

Pj+1 tð Þ = 2j + 1
j + 1 tPj tð Þ −

j
j + 1 Pj−1 tð Þ, j = 1, 2, 3,⋯,

8>>>><
>>>>:

ð9Þ

And on the interval ½0, 1Þ, a set of BPFs biðtÞ, i = 1,⋯n is
given as the following [20].

bi tð Þ =
1, t ∈

i − 1
n

, i
n

� �
0, o:w:

8><
>: : ð10Þ

The BPFs on ½0, 1Þ interval are disjoint; that is, for i,
j = 1,⋯, n, we have biðtÞbjðtÞ = δijbiðtÞ. Furthermore, one
of the properties of these functions on interval ½0, 1Þ is
orthogonality. The set of hybrid functions bijðtÞ is taken as
a complete orthogonal system in L2½0, 1Þ, since bijðtÞ are a
combination of BPFs and Legendre polynomials; each of
them is orthogonal and complete.

3.2. Approximating a Function. The expansion of function f ,
that is square integrable over the interval ½0, 1Þ, can be given
as the following [28]:

f tð Þ ≃ 〠
n

i=1
〠
m−1

j=0
cijbij tð Þ = CTB tð Þ, ð11Þ

where

C = c10,⋯, c1 m−1ð Þ, c20,⋯, c2 m−1ð Þ,⋯, cn0,⋯, cn m−1ð Þ
h iT

,

ð12Þ

B tð Þ = BT
1 tð Þ, BT

2 tð Þ,⋯, BT
n tð ÞÂ ÃT , ð13Þ

where

Bi tð Þ = bi0 tð Þ, bi1 tð Þ,⋯, bi m−1ð Þ tð Þ
h iT

, i = 1,⋯, n: ð14Þ

In Equation (11), the hybrid coefficients are given by
cij = <f ðtÞ, bijðtÞ > / < bijðtÞ, bijðtÞ > , i = 1,⋯, n, j = 0,⋯,m
− 1, and <:,: > denotes an inner product. In addition, the
function kðs, tÞ ∈ L2ð½0, 1Þ × ½0, 1ÞÞ can be approximated as

k s, tð Þ = BT sð ÞKB tð Þ, ð15Þ

where K = ðkijÞ is an mn ×mn matrix

kij =
<Bi sð Þ, < k s, tð Þ, Bj tð Þ > >

<Bi sð Þ, Bi sð Þ > <Bj tð Þ, Bj tð Þ >
, i = 1,⋯, n, j = 0,⋯,m − 1:

ð16Þ

3.3. The Operational Matrix of Integration. The integration
of the vector BðtÞ given by Equation (13) can be approxi-
mated using the following equation:

ðt
0
B τð Þdτ ≃ PB tð Þ, ð17Þ

where P is the mn ×mn operational matrix used for inte-
gration, which is shown as follows [28].

P =

S E E E ⋯ E

0 S E E ⋯ E

0 0 S E ⋯ E

0 0 0 S ⋯ E

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 ⋯ S

2
666666666664

3
777777777775
, ð18Þ
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where E and S are m ×m matrices as the following:

E =
T f

n

1 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 ⋯ 0

2
666666666664

3
777777777775
,

S =
T f

2n

1 1 0 0 0 ⋯ 0 0 0 0
−1
3 0 1

3 0 0 ⋯ 0 0 0 0

0 −1
5 0 1

5 0 ⋯ 0 0 0 0

0 0 −1
7 0 1

7 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 ⋯
−1

2m − 7 0 1
2m − 7 0

0 0 0 0 0 ⋯ 0 −1
2m − 5 0 1

2m − 5

0 0 0 0 0 ⋯ 0 0 −1
2m − 3 0

0 0 0 0 0 ⋯ 0 0 0 −1
2m − 1

2
666666666666666666666666666664

3
777777777777777777777777777775

:

ð19Þ

3.4. The Product Operational Matrix of the HLBPFs. Addi-
tionally, the property of a couple of hybrid function vec-
tors will be used, which is presented as the following
[29]. Let us consider

B tð ÞBT tð ÞC = ~CB tð Þ, ð20Þ

where C and BðtÞ are given in Equations (12) and (13),
respectively. Also, ~C is a m ×m product operational matrix
as

~C =

~C1 0 ⋯ 0
0 ~C2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ ~Cn

2
666664

3
777775: ð21Þ

In Equation (21), 0 denotes a m ×m-dimensional zero
matrix, and ~Ci, i = 1, 2,⋯, n are m ×m matrices that are
influenced by m. We consider that n = 2 and m = 8, and
then, ~C in Equation (20) can be determined by

~C =
~C1 0
0 ~C2

" #
, ð22Þ

where ~Ci, i = 1, 2 are an array of 8 × 8 matrices as the fol-
lowing

~Ci =

ci0 ci1 ⋯ ci7
1
3 ci1 ci0 +

2
5 ci2 ⋯

7
13 ci6

1
5 ci2

2
5 ci1 +

9
35 ci3 ⋯

63
143 ci5 +

56
221 ci7

⋮ ⋮ ⋱ ⋮
1
15 ci7

7
6 ci6 ⋯ ci0 +

56
221 ci2 +

6804
46189 ci4 +

5000
46189 ci6

2
6666666666664

3
7777777777775
:

ð23Þ

4. The HLBPFs for Solving Duffing-Van
der Pol

4.1. Converting Duffing-Van der Pol Equation to a Volterra
Integral Equation of the Second Kind. of second order

y′′ tð Þ − α 1 − y2 tð ÞÀ Á
y′ tð Þ + y tð Þ + γy3 tð Þ = 0, tεI = 0, 1½ �

y t0ð Þ = β0, y′ t0ð Þ = β1

(
,

ð24Þ

where yðt0Þ and y′ðt0Þ are known. For this present, we con-
verted Equation (24) into nonlinear VIESK, and now that
Equation (24) based on t from t0 to t is integrated, we have

ðt
t0

y′′ sð Þds −
ðt
t0

α 1 − y2 sð ÞÀ Á
y′ sð Þds +

ðt
t0

y sð Þds +
ðt
t0

γy3 sð Þds = 0,

⟹ y′ tð Þ − β1 − α 1 − y2 tð ÞÀ Á
y tð Þ − β0ð Þ +

ðt
t0

y sð Þds

+
ðt
t0

γy3 sð Þds = 0:

ð25Þ

Again, Equation (25) would be integrated based on t
from t0 to t so that

ðt
t0

y′ sð Þds −
ðt
t0

β1dt −
ðt
t0

α 1 − y2 sð ÞÀ Á
y sð Þ − β0ð Þ

+
ðt
t0

ðt1
t0

y sð Þdsdt1 +
ðt
t0

ðt1
t0

γy3 sð Þdsdt1 = 0,
ð26Þ

and then, we have

y tð Þ = β0 + β1 t − t0ð Þ − αβ0 t − t0ð Þ
+
ðt
t0

α − t − sð Þð Þy sð Þ + αβ0ð Þy2 sð Þ − α + γ t − sð Þð Þy3 sð ÞÀ Á
ds:

ð27Þ

Finally, we obtain the VIE2 as follows:

y tð Þ = q tð Þ +
ðt
0
gγ s, tð Þ y sð Þð Þγds, 0 ≤ t < 1, γ = 1, 2, 3,

ð28Þ
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so that

q tð Þ = β0 + β1 t − t0ð Þ − αβ0 t − t0ð Þ, g1 s, tð Þ
= α − t − sð Þð Þ, g2 s, tð Þ = αβ0ð Þ,

g3 s, tð Þ = − α + γ t − sð Þð Þ:
ð29Þ

where gγðs, tÞ ∈ L2ð½0, 1Þ × ½0, 1ÞÞ and q, y ∈ L2ð½0, 1ÞÞ. yðtÞ is
an unknown function, and qðtÞ, gγðs, tÞ are known functions
that can be expanded into hybrid functions as follows [30].

y tð Þ ≅ YTB tð Þ
q tð Þ ≅QTB tð Þ
gγ s, tð Þ ≅ BT sð ÞGγB tð Þ
y sð Þð Þγ ≅ YT

γB sð Þ

8>>>>>><
>>>>>>:

, ð30Þ

where Y is an unknown nm-vector, Q is a known nm-vector,
and Gγ is a known nm × nm-dimensional matrix. We con-
sider computing Yγ in terms of Y , which is Yγ is the nm
-vectors whose elements are nonlinear combination of the
elements of the vector Y . Now, substituting Equation (30)
into Equation (27), we have

YTB tð Þ ≅QTB tð Þ + BT tð ÞGγ

ðt
0
B sð ÞBT sð ÞYγds: ð31Þ

By using Equations (17) and (20), we get

YTB tð Þ ≅QTB tð Þ + BT tð ÞGγ
~YγPB tð Þ: ð32Þ

For making approximations for yðtÞ, by collocating the
system of Equation (32) at the point ti = ð2i − 1Þ/2nm, i = 1,
2,⋯, nm and using Equation (14), we obtain

YTB tið Þ ≅QTB tið Þ + BT tið ÞGγ
~YγPB tið Þ, ð33Þ

and by solving the obtained nonlinear system of algebraic
equations by numerical method for example Newton’s
method, obviously, the unknown vector Y can be obtained
by solving Equation (33).

4.1.1. Evaluating Yγ. We need to evaluate Yγ so that each
element is a nonlinear combination of the components
of vector Y . From Equation (20) and yðtÞ ≅ YTBðtÞ, we
have [31]

y tð Þð Þ2 ≅ YTB tð ÞÀ Á
YTB tð ÞÀ Á

= YTB tð ÞBT tð ÞY = YT ~YB tð Þ = Y2B tð Þ,
ð34Þ

where Y2 = YT ~Y is a nm-row vector. Then, for ðyðsÞÞ3, we
get

y tð Þð Þ3 ≅ YTB tð ÞÀ Á
Y2B tð Þð Þ = YTB tð ÞBT tð ÞYT

2

= YT ~Y
T
2 B tð Þ = Y3B tð Þ:

ð35Þ

As a result, through this approach, we can approxi-
mate ðyðsÞÞγ for arbitrary γ. Suppose that this technique
holds for γ − 1 where ðyðtÞÞγ−1 = Yγ−1BðtÞ, we can get it for
γ as shown in the following:

y tð Þð Þγ = y tð Þ y tð Þð Þγ−1 ≅ YTB tð ÞÀ Á
Yγ−1B tð ÞÀ Á

= YTB tð ÞBT tð ÞYT
γ−1 = YT ~Y

T
γ−1B tð Þ = YγB tð Þ:

ð36Þ

So, the component of Yγ can be calculated in terms of the
component of the unknown vector Y .

4.2. Converting Duffing-Van der Pol Equation to a System of
Ordinary Differential Equation of the First Order. In this
section, considering Equation (24), we convert this equa-
tion into a SODE, and we put w1 = yðtÞ, w2 = y′ðtÞ, and
w′2 = y′′ðtÞ. Substituting w1,w2, and w′2 into Equation
(23), this leads

w′1 =w2

w′2 = α 1 −w2
1

À Á
w2 −w1 − γw1

3

(
, ð37Þ

with the initial conditions

w1 0ð Þ = β0, w2 0ð Þ = β1: ð38Þ

In order to solve Equation (37) with HLBPFs, by
expanding w2ð0Þ, in terms of hybrid functions, it gives

w2 0ð Þ = β0, β0,⋯, β0,⋯, β0½ �B tð Þ = eTB tð Þ: ð39Þ

Let

w′2 tð Þ = CTB tð Þ, ð40Þ

where C can be obtained similar to Equation (12). Inte-
grating of Equation (40) from 0 to t and using Equation
(39), we have

w2 tð Þ = CTP + eT
À Á

B tð Þ = ATB tð Þ, ð41Þ

w1 tð Þ = ATPB tð Þ =HTB tð Þ, ð42Þ

where HT = ATP and P are the operational matrix of inte-
gration given in Equation (17). By substituting Equations
(40)–(42) in Equation (37), we obtain

CTB tð Þ = α 1 −HTB tð ÞBT tð ÞHÀ Á
ATB tð Þ −HTB tð Þ

− γ HTB tð ÞBT tð ÞHBT tð ÞHÀ Á
,

ð43Þ

and using Equation (20) gives

CTB tð Þ = α 1 −HT ~HB tð ÞÀ Á
ATB tð Þ −HTB tð Þ − γ HT ~H

2
B tð Þ

� �
,

ð44Þ
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CT = α 1 −HT ~H
À Á

AT −HT − γ HT ~H
2� �
, ð45Þ

where Equation (45) is a nonlinear system of algebraic
equation which can be solved by Newton’s method.

5. Homotopy Perturbation Method

In this section, the HPM is described for the solution of non-
linear differential equations, and this method can be exten-
sively used to solve different nonlinear problems [32–34].
To that end, assume

N y tð Þð Þ = 0, ð46Þ

where N is a general differential operator. A homotopy
HðyðtÞ, pÞ can be defined as

H y tð Þ, 0ð Þ = F y tð Þð Þ, H y tð Þ, 1ð Þ = L y tð Þð Þ, ð47Þ

where FðyðtÞÞ is the functional operator with known solu-
tion y0 that can be easily achieved, and LðyðtÞÞ =NðyðtÞÞ.
Usually, a convex homotopy is selected by

H y tð Þ, pð Þ = 1 − pð ÞF y tð Þð Þ + pL y tð Þð Þ = 0, ð48Þ

and continuously trace an implicitly defined curve from a
starting point Hðy0ðtÞ, 0Þ to a solution function HðYðtÞ, 1Þ,
where Y is a solution of Equation (46). The embedding
parameter p is applied as the classical perturbation technique,
and it can be assumed that the solution of Equation (46) can
be given through a power series in p,

y tð Þ = y0 tð Þ + py1 tð Þ + p2y2 tð Þ+⋯, ð49Þ

and setting p = 1 gives in the approximate solution of
Equation (46) as

Y tð Þ = lim
p⟶1

y tð Þ = y0 tð Þ + y1 tð Þ + y2 tð Þ+⋯: ð50Þ

5.1. The HPM for Solving Duffing-Van der Pol. In this part, we
look at the D-VdP equation and use HPM to solve it. For this

purpose, as a result (Equation (24)), we put d2/dt2 by κ and
κ−1 as the two integral from 0 to t. Therefore, we have

κy tð Þ = α 1 − y2 tð ÞÀ Á
y′ tð Þ − y tð Þ − γy3 tð Þ, ð51Þ

which is converted to the following equation after applying
κ−1:

y tð Þ = p tð Þ + ακ−1 1 − y2 tð ÞÀ Á
y′ tð Þ − κ−1y tð Þ − γκ−1y3 tð Þ,

ð52Þ

where p is the constant of integration and satisfies Lp = 0. As a
possible solution, we consider the convex homotopy

L y tð Þð Þ = y tð Þ − p tð Þ − ακ−1 1 − y2 tð ÞÀ Á
y′ tð Þ + κ−1y tð Þ

+ γκ−1y3 tð Þ = 0,
ð53Þ

F y tð Þð Þ = y tð Þ − p tð Þ: ð54Þ
By substituting Equations (53) and (54) into Equation

(48), we get

H y tð Þ, pð Þ = y tð Þ − p tð Þ − pακ−1 1 − y2 tð ÞÀ Á
y′ tð Þ + pκ−1y tð Þ

+ pγκ−1y3 tð Þ = 0:
ð55Þ

Rewriting Equation (55) as

y tð Þ = p tð Þ + pακ−1 1 − y2 tð ÞÀ Á
y′ tð Þ − pκ−1y tð Þ − pγκ−1y3 tð Þ:

ð56Þ

And using the initial condition yðt0Þ = β0, y′ðt0Þ = β1 in
Equation (24), we have

y tð Þ = β0 + β1t + αβ0t + pακ−1 1 − y2 tð ÞÀ Á
y′ tð Þ

− pκ−1y tð Þ − pγκ−1y3 tð Þ:
ð57Þ

By substituting Equation (49) into Equation (57) and by
assimilating terms with equal powers of p, we obtain

p0 : y0 tð Þ = β0 + β1t + αβ0t

p1 : y1 tð Þ = α
ðt
0
y0 tð Þð Þdt − α

ðt
0

ðt
0
y0 tð Þ2y0′ tð Þ
� �

dtdt −
ðt
0

ðt
0
y0 tð Þð Þdtdt − γ

ðt
0

ðt
0
y0 tð Þ3À Á

dtdt

p2 : y2 tð Þ = α
ðt
0
y1 tð Þð Þdt − α

ðt
0

ðt
0
2y0 tð Þ3y0′ tð Þ2 + y0 tð Þ2y1′ tð Þ
� �

dtdt −
ðt
0

ðt
0
y1 tð Þð Þdtdt − γ

ðt
0

ðt
0
3y0 tð Þ4y′0 tð Þ
� �

dtdt

⋮

8>>>>>>>>><
>>>>>>>>>:

:

ð58Þ

6 Advances in Mathematical Physics



Lastly, the approximate solution of Equation (24) is
computed as

Y tð Þ = lim
p⟶1

y tð Þ = y0 tð Þ + y1 tð Þ + y2 tð Þ+⋯: ð59Þ

6. Error Analysis

In this section, we calculate the error bound of the presented
method for the approximate solution D-VdP equation in
Section 4. When we convert the D-VdP equation to a SODE,
we refer the readers to the error bound that is calculated
in [22], and we get an error bound for the approximate
solutions of nonlinear VIESK which implies the conver-
gence of the present method in Section 4, and we have
the following theorems. Suppose that Ω =S1≤i≤nΩi where
Ωi = ½ði − 1Þ/n, i/nÞ.

Theorem 1. Suppose that y ∈ Cm½0, 1� is an m times
continuous function and jyðmÞðtÞj ≤ λ, such that yðtÞ =
∑n

i=1yiðtÞ, where yi is the restriction of to Ωi and Ei

= spanfbi0ðtÞ, bi1ðtÞ,⋯, biðm−1ÞðtÞg, i = 1, 2,⋯, n. If CT
i BiðtÞ

is the best approximation of yiðtÞ from Ei, where
Ci = ½ci0, ci1,⋯, ciðm−1Þ�T , BiðtÞ = ½bi0ðtÞ, bi1ðtÞ,⋯, biðm−1ÞðtÞ�T ,
then ~ynmðtÞ = CTBðtÞ approximates yðtÞ with the following
error bound

y − ~ynmk k2 ≤
λ

22m−1nmm!
: ð60Þ

Proof. Let yðtÞ =∑n
i=1yiðtÞ. Assume that Pðm−1Þi for i = 1, 2,

⋯, n, are the interpolating polynomials to yi at points t j,
j = 0, 1,⋯,m − 1 that implies the zeros of m-degree-shifted
Chebyshev polynomials in the interval ½ði − 1Þ/n, i/nÞ.
Then, we have [35]

yi tð Þ − P m−1ð Þi tð Þ =
y mð Þ ηð ÞQm−1

j=0 t − t j
À Á

m!
, η ∈

i − 1
n

, i
n

� �
:

ð61Þ

The following equation is obtained by considering the
estimates for Chebyshev interpolation nodes [36]. There-
fore, we obtain

yi tð Þ − P m−1ð Þi tð Þ
��� ��� ≤ λ 1/2nð Þm

2m−1m!
= λ

22m−1nmm!
: ð62Þ

Since CT
i BiðtÞ is the best approximation of yi from Ei

and Pðm−1Þi ∈ Ei, we obtain

yi − CT
i Bi

 2
2 ≤ yi − P m−1ð Þi
 2

2
=
ði/n

i−1ð Þ/n
yi tð Þ − P m−1ð Þi tð Þ
��� ���2dt

≤
ði/n

i−1ð Þ/n

λ

22m−1nmm!

� �2
dt = 1

n
λ

22m−1nmm!

� �2
:

ð63Þ

Now,

y − CTB
 2

2 ≤ 〠
n

i=1
yi − CT

i Bi

 2
2 ≤ n × 1

n
λ

22m−1nmm!

� �2
:

ð64Þ

The following equation is obtained by calculating the
square root of both sides and through replacing CTB by
~ynm,

y − ~ynmk k2 ≤
λ

22m−1nmm!
: ð65Þ

Theorem 2. Assume that ~knmðs, tÞ = BTðsÞKBðtÞ is the hybrid
expansion of function k with the real value expressed by
Equation (15) and k is adequately smooth on every single sub-
domain ½ði − 1Þ/n, i/nÞ × ½ðj − 1Þ/n, j/nÞ, i, j = 1, 2,⋯, n, and
then, there is a positive constant γ as shown in the following

k − ~knm
 

2
≤

3γ

22m−1nmm!
: ð66Þ

Proof. Suppose that kðs, tÞ =∑n
i=1∑

n
j=1kijðs, tÞ, where kij is

the restriction of k to ½ði − 1Þ/n, i/nÞ × ½ðj − 1Þ/n, j/nÞ. For
i, j = 1, 2,⋯, n assume that Pðm−1Þij is the interpolating
polynomial to kij at points ðsr , tlÞ, where sr , tl, r, l = 0, 1, 2,
⋯,m − 1 implies the zeros of m-degree-shifted Chebyshev
polynomials in ½ði − 1Þ/n, i/nÞ, ½ðj − 1Þ/n, j/nÞ intervals,
respectively, and then, we have [35]

kij s, tð Þ − P m−1ð Þij s, tð Þ

= ∂mk η1, tð Þ
∂sm

Qm−1
r=0 s − srð Þ

m!

 !
+ ∂mk s, ξ1ð Þ

∂tm

Á
Qm−1

l=0 t − tlð Þ
m!

 !
−
∂2mk η2, ξ2ð Þ
∂sm∂tm

Á
Qm−1

r=0 s − srð ÞQm−1
l=0 t − tlð Þ

m!m!

 !
,

η1, η2 ∈
i − 1
n

, i
n

� �
, ξ1, ξ2 ∈

j − 1
n

, j
n

� �
:

ð67Þ

Now, suppose that γ =max fγ1, γ2, γ3g, in which

∂mk s, tð Þ
∂sm

����
���� ≤ γ1,

∂mk s, tð Þ
∂tm

����
���� ≤ γ2,

∂2mk s, tð Þ
∂sm∂tm

�����
�����

≤ γ3, s, tð Þ ∈ i − 1
n

, i
n

� �
× j − 1

n
, j
n

� �
, i, j = 1, 2,⋯, n:

ð68Þ

Then, the equation mentioned in the following is
obtained by considering the estimates for Chebyshev inter-
polation nodes [36].
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kij s, tð Þ − P m−1ð Þij s, tð Þ
��� ��� ≤ γ1 1/2nð Þm

2m−1m!
+ γ2 1/2nð Þm

2m−1m!
+ γ3 1/2nð Þ2m

22m−1m!2

≤
γ

22m−1nmm!
2 + 1

22mnmm!

� �

≤
3γ

22m−1nmm!
:

ð69Þ

Since BT
i ðsÞKBT

j ðtÞ is the best unique approximation of
kij from Ei × Ej, we obtain

kij − BT
i KB

T
j

 2
2
≤ kij − P m−1ð Þij
 2

2

=
ði/n
i−1/n

ð j/n
j−1/n

kij s, tð Þ − P m−1ð Þij s, tð Þ
��� ���2dsdt

≤
ði/n
i−1/n

ð j/n
j−1/n

3γ
22m−1nmm!

� �2
dsdt

= 1
n2

3γ
22m−1nmm!

� �2
:

ð70Þ

Now,

k − BTKB
 2

2 ≤ 〠
n

i=1
〠
n

j=1
kij − BT

i KBj

 2
2 ≤

3γ
22m−1nmm!

� �2
:

ð71Þ

The following equation is obtained by calculating the
square roots and replacing BTKB, by ~knm. Then, we have

k − ~knm
 

2
≤

3γ
22m−1nmm!

: ð72Þ

Lemma 3 (Gronwall Inequality). Let eðtÞ, aðtÞ, and bðtÞ be
real continuous functions defined on Ω, for fixed t0 ∈Ω. If

e tð Þ ≤ a tð Þ + b tð Þ
ðt
t0

e sð Þds, t ∈Ω, ð73Þ

then

e tð Þ ≤ a tð Þ + b tð Þm tð Þ exp
ðt
t0

b sð Þds
 !

, t ∈Ω, ð74Þ

where mðtÞ = Ð tt0aðsÞds.
Proof. In [37].

The following discrete Gronwall lemma can be found
in [38].

Lemma 4. Assume that fkjg, j ≥ 0 is a given nonnegative
sequence, and the sequence fεng satisfies ε0 ≤ ρ0 and

εn ≤ ρ0 + 〠
n−1

j=0
qj + 〠

n

j=0
kjεj, n ≥ 1, ð75Þ

with ρ0 ≥ 0, qj ≥ 0ðj ≥ 0Þ. Then

εn ≤ ρ0 + 〠
n−1

j=0
qj

 !
exp 〠

n−1

j=0
kj

 !
, n ≥ 1: ð76Þ

Now, consider the nonlinear integral equation (Equation
(27)) or yðtÞ = qðtÞ + Ð t0gðs, tÞHðs, yðsÞÞds under the follow-
ing assumptions:

(1) q and g satisfy the hypotheses of Theorems 1 and 2,
respectively, and H ∈ C1ðΩ ×RÞ,

(2) C1 = sup jHðsÞj <∞

(3) C2 = sup jHςðsÞj <∞

(4) C3 = sup jgðs, tÞj <∞

Theorem 5. Suppose y and ~ynm are, respectively, the exact
and approximate solutions of Equation (27) obtained by Sec-
tion 4. Suppose also that the assumption (1-4) is fulfilled.
Then, there exist positive constants ζ and ϱ such that

y − ~ynmk k2 ≤
ζ

22m−1nmm!
1 + ϱ

n
exp ϱ

n

� �� �
exp ϱ + ϱ2

n
exp ϱ2

n

� �� �
:

ð77Þ

Proof. From Equation (28), we have

y tð Þ − ~ynm tð Þ = q tð Þ − ~qnm tð Þ +
ðt
0
g s, tð ÞH s, y sð Þð Þds

−
ðt
0
~gnm s, tð ÞH s, ~ynm sð Þð Þds:

ð78Þ

The above equation can be rewritten in the following
form:

y tð Þ − ~ynm tð Þ = q tð Þ − ~qnm tð Þ +
ðt
0
g s, tð Þ H s, y sð Þð Þð

−H s, ~ynm sð Þð ÞÞds +
ðt
0
g s, tð Þð

− ~gnm s, tð ÞÞH s, ~ynm sð Þð Þds:

ð79Þ

By using the mean value theorem, the following result is
concluded
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y tð Þ − ~ynm tð Þ = q tð Þ − ~qnm tð Þ +
ðt
0
g s, tð ÞHς ξð Þ y sð Þð

− ~ynm sð ÞÞÞds +
ðt
0
g s, tð Þ − ~gnm s, tð Þð ÞH s, ~ynm sð Þð Þds,

ð80Þ

where ξ ∈ ðmin ðy, ~ynmÞ, max ðy, ~ynmÞÞ. Suppose that

I tð Þ = q tð Þ − ~qnm tð Þ +
ðt
0
g s, tð Þ − ~gnm s, tð Þð ÞH s, ~ynm sð Þð Þds

����
����:

ð81Þ

Since 0 ≤ t < 1, by taking L2-norm in Equation (66) and
applying the error bounds obtained in Theorems 1 and 2,
we get

Ik k2 ≤ q − ~qnmk k2 + C1 g − ~gnmk k2 ≤
ζ

22m−1nmm!
, ð82Þ

where ζ = λ + C13γ. Now let

enm tð Þ = y tð Þ − ~ynm tð Þj j, t ∈Ω, ð83Þ

considering the above equation, together with Equations
(80) and (81), we have

enm tð Þ ≤ I tð Þ + ϱ
ðt
0
enm sð Þds, ð84Þ

where ϱ = C2C3. Now, let fix the values n and m, and then,
for 1 ≤ i < n, we can define

ei tð Þ =
enm tð Þ, t ∈Ωi

0, o:w:

(
: ð85Þ

From Equation (84), we have that for any t ∈Ωi = ½ði − 1Þ
/n, i/nÞ,

enm tð Þ ≤ I tð Þ + ϱ
ð i−1ð Þ/n

0
enm sð Þds + ϱ

ðt
i−1ð Þ/n

enm sð Þds: ð86Þ

The above equation can be rewritten as

ei tð Þ ≤ I tð Þ + ϱ〠
i−1

r=1

ðr/n
r−1ð Þ/n

er sð Þds + ϱ
ðt

i−1ð Þ/n
ei sð Þds ð87Þ

Let t ∈Ω1 = ½0, 1/nÞ, and then, the inequality (Equation
(87)) reduces to

e1 tð Þ ≤ I tð Þ + ϱ
ðt
0
e1 sð Þds: ð88Þ

It follows from Gronwall Inequality in Lemma 3 that

e1 tð Þ ≤ I tð Þ + ϱ exp
ðt
0
ϱds

� �ðt
0
I sð Þds

≤ I tð Þ + ϱ exp ϱ

n

� �ðt
0
I sð Þds, t ∈Ω1:

ð89Þ

Therefore, we get

e1k k2 ≤ ϑ Ik k2, ð90Þ

where ϑ = 1 + ϱ/n exp ðϱ/nÞ. Let us assume that t ∈Ωi, and
then, the inequality (Equation (87)) can be rewritten as

ei tð Þ ≤ Ai tð Þ + ϱ
ðt

i−1ð Þ/n
ei sð Þds, ð91Þ

where

Ai tð Þ = ϱ〠
i−1

r=1

ðr/n
r−1ð Þ/n

er sð Þds + I tð Þ: ð92Þ

By using the Gronwall inequality for t ∈Ω, we obtain

ei tð Þ ≤ Ai tð Þ + ϱ exp
ðt

i−1ð Þ/n
ϱds

 !ðt
i−1ð Þ/n

Ai sð Þds

≤ Ai tð Þ + ϱ exp ϱ/nð Þ
ðt

i−1ð Þ/n
Ai sð Þds, t ∈Ωi:

ð93Þ

Therefore, keik2 ≤ ϑkAik2. Now, taking L2-norm in Equa-
tion (92), we obtain

Aik k2 ≤
ϱ

n
〠
i−1

r=1
erk k2 + Ik k2, ð94Þ

which results

eik k2 ≤ ϑ Ik k2 +
ϑϱ

n
e1k k2 +

ϑϱ

n
e2k k2+⋯+ ϑϱ

n
ei−1k k2: ð95Þ

Now, a suitable application of Lemma 4 to Equation (95)
yields

eik k2 ≤ ϑ Ik k2 exp 〠
n

r=1

ϑϱ

n

 !
= ϑ exp ϑϱð Þ Ik k2: ð96Þ

Since, enmðtÞ =∑n
i=1eiðtÞ, regarding the disjointness of ei for

i = 1, 2,⋯, n, we obtain

enmk k22 = 〠
n

i=1
eik k22 ≤ n2 ϑ exp ϑϱð Þð Þ2 Ik k22: ð97Þ
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By taking the square root of both sides, we get

y − ~ynmk k2 = enmk k2 ≤ nϑ exp ϑϱð Þ Ik k2: ð98Þ

Finally, considering the error bound of kIk2 obtained in
Equation (82) and substituting ϑ with ϑ = 1 + ðϱ/nÞ exp ðϱ/nÞ,
we get

y − ~ynmk k2 ≤
ζ

22m−1nmm!
1 + ϱ

n
exp ϱ

n

� �� �
exp

Á ϱ + ϱ2

n
exp ϱ2

n

� �� �
:

ð99Þ

It is obvious that error bound tends to zero as n andm tend
to infinity.

7. Numerical Examples

In this section, the HLBPFs are applied with n = 2, m = 8,
and T f = 1:00001 for all examples. As a result, the method-
ology suggested in Section 4 is used to find the approximate
solution directly. In these examples, the approximate results
given by presented method, HPM, and ADM are compared
to the numerical solution obtained from RK4. In all cases,
the results are presented in Tables 1–3. Based on these
results, we see that the results of the HLBPFs are closer to
the numerical solutions obtained using RK4. All experi-
ments are implemented using MATLAB.

Example 7.1. Take the following unforced Van der Pol equa-
tion into consideration [39, 40].

y′′ tð Þ + 0:15 1 − y2
À Á

y′ tð Þ + 1:2ð Þ2y = 0

y 0ð Þ = 0:2, y′ 0ð Þ = 0

(
: ð100Þ

Table 1: Numerical result for Example 7.1.

t Approximate solution (RK4)
Absolute error

|RK4-ADM| |RK4-HPM| |RK4-VIESK| |RK4-SODE|
0 0.200000 0 0 2:88 × 10−10 1.13×10-11

0.1 0.198569 1:36 × 10−12 3:98 × 10−9 1:42 × 10−8 3.92× 10-12

0.2 0.194322 1:90 × 10−12 7:68 × 10−8 3:61 × 10−8 2.99× 10-12

0.3 0.187362 1:33 × 10−10 4:63 × 10−7 3:18 × 10−7 6.64× 10-12

0.4 0.177826 1:53 × 10−9 1:67 × 10−6 1:22 × 106 1.24× 10-11

0.5 0.165889 1:06 × 10−8 4:51 × 10−6 3:41 × 10−6 1.93× 10-11

0.6 0.151756 5:34 × 10−8 1:00 × 10−5 7:76 × 10−6 1.99× 10-11

0.7 0.135662 2:15 × 10−7 1:94 × 10−5 1:53 × 10−5 2.42× 10-11

0.8 0.117866 7:33 × 10−7 3:37 × 10−5 2:68 × 10−5 2.90× 10(-11)
0.9 0.098649 2:19 × 10−6 5:35 × 10−5 4:32 × 105 3:44 × 10−11

1.0 0.078307 5:90 × 10−6 7:86 × 10−5 6:45 × 10−5 3:84 × 10−11

Table 2: Numerical result for Example 7.2.

t Approximate solution (RK4) Absolute error
|RK4-ADM| |RK4-HPM| |RK4-VIESK| |RK4-SODE|

0 -0.288680 0 0 2:63 × 10−10 1:13 × 10−11

0.1 -0.277018 1:13 × 10−7 3:05 × 10−5 3:99 × 10−6 3:04 × 10−12

0.2 -0.265993 8:40 × 10−6 4:87 × 10−5 2:76 × 10−5 8:79 × 10−13

0.3 -0.255551 1:11 × 10−4 1:11 × 10−4 8:37 × 10−5 1:21 × 10−12

0.4 -0.245646 7:23 × 10−4 6:97 × 10−4 1:80 × 10−4 4:04 × 10−12

0.5 -0.236235 3:20 × 10−3 2:06 × 10−3 3:19 × 10−4 6:73 × 10−12

0.6 -0.227283 1:11 × 10−2 4:67 × 10−3 5:03 × 10−4 2:81 × 10−12

0.7 -0.218756 3:25 × 10−2 9:16 × 10−3 7:30 × 10−4 1:99 × 10−12

0.8 -0.210624 8:41 × 10−2 1:64 × 10−2 9:96 × 10−4 2:25 × 10−12

0.9 -0.202863 1:98 × 10−1 2:74 × 10−2 1:30 × 10−3 2:54 × 10−12

1.0 -0.195446 4:32 × 10−1 4:37 × 10−2 1:63 × 10−3 2:19 × 10−12
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The approximate analytical solution of Equation (100) is
obtained by method’s RK4, HPM, and ADM.

Now, we converted Equation (100) into nonlinear
VIESK, by integrating of this equation in order to have

y tð Þ = 0:2 + 0:03t −
ðt
0

0:15 + 1:2ð Þ2 s − tð ÞÀ Á
y sð ÞÀ

+ 0:03y2 sð ÞÀ Á
− 0:15y3 sð ÞÀ ÁÞds: ð101Þ

We solve above-mentioned equation using the present
method, as well as we converted Equation (100) into a SODE
that gives

w′1 =w2

w′2 + 0:15 1 −w2
1

À Á
w2 + 1:2ð Þ2w1 = 0

w1 0ð Þ = 0:2, w2 0ð Þ = 0

8>><
>>: , ð102Þ

where w1 = y and w2 = y′. Again, we solve Equation (102)
with the present method. Now, according to Subsection
5.1, we solve Equation (100) with HPM, and we have

p0 : y0 tð Þ = 0:2 + 0:03t
p1 : y1 tð Þ = −0:03t − 0:14616t2 − 0:007191t3 + 3:375 × 10−7t4

p2 : y2 tð Þ = 0:00216108t2 + 0:0142068t3 + 0:0177539t4+⋯
p3 : y3 tð Þ = −2:1438 × 10−6t2 + 0:000111068t3 − 0:000771989t4−⋯
⋮

8>>>>>>>><
>>>>>>>>:

:

ð103Þ

Based on Equation (59), the approximate answer is
obtained as follows:

Y tð Þ = 0:2 − 0:144t2 + 0:00691199t3 + 0:0170059t4

− 0:000979541t5 − 0:000785446t6+⋯
ð104Þ

Table 1 can be used to compare the results of the abso-
lute errors of methods with RK4. Figure 2 shows the approx-
imate answers obtained by HLBPFs for Equations (101) and
(102) with RK4.

Example 7.2. In this example, the famous Duffing-Van der
Pol equation is included like the following [41, 42].

y′′ tð Þ + 4
3 + 3y2 tð Þ
� �

y′ tð Þ + 1
3 y tð Þ + y3 tð Þ = 0

y 0ð Þ = α, y′ 0ð Þ = β

8><
>: ,

ð105Þ

where α = −0:28868 and β = 0:12. The approximate analyti-
cal solution of Equation (105) is obtained by method’s
RK4, HPM, and ADM.

Table 3: Numerical result for Example 7.3.

t Approximate solution (RK4) Absolute error
|RK4-ADM| |RK4-HPM| |RK4-VIESK| |RK4-SODE|

0 0.000000 0 0 1:18 × 10−10 8:80 × 10−12

0.1 0.050042 4:18 × 10−12 1:54 × 10−9 6:04 × 10−7 6:04 × 10−12

0.2 0.099832 8:39 × 10−12 5:37 × 10−8 2:66 × 10−6 8:03 × 10−12

0.3 0.148870 1:25 × 10−11 4:36 × 10−7 9:80 × 10−6 1:22 × 10−11

0.4 0.196656 1:64 × 10−11 1:94 × 10−6 2:76 × 10−5 1:80 × 10−11

0.5 0.242704 1:99 × 10−11 6:15 × 10−6 6:38 × 10−5 2:35 × 10−11

0.6 0.286537 2:26 × 10−11 1:57 × 10−5 1:26 × 10−4 2:07 × 10−11

0.7 0.327703 1:90 × 10−11 3:42 × 10−5 2:22 × 10−4 2:64 × 10−11

0.8 0.365772 3:88 × 10−11 6:63 × 10−5 3:58 × 10−4 2:64 × 10−11

0.9 0.400343 4:51 × 10−10 1:17 × 10−4 5:39 × 10−4 2:72 × 10−11

1.0 0.431051 2:67 × 10−9 1:90 × 10−4 7:68 × 10−4 2.80× 10-11

0.050000
0.070000
0.090000
0.110000
0.130000
0.150000
0.170000
0.190000
0.210000

y
 (t

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

RK4
SODE
VIESK

Figure 2: The comparison results by HLBPF method with RK4 for
Example 7.1.

11Advances in Mathematical Physics



Now, we converted Equation (105) into nonlinear
VIESK, by integrating the both sides in order to have

y tð Þ = α + βt + 4
3 αt −

ðt
0

4
3 + 1

3 s − tð Þ
� �

y sð Þ + 3αy2 sð Þ
�

+ 3 + s − tð Þð Þy3 sð ÞÞds:
ð106Þ

We solve above-mentioned equation using the present
method, as well as we converted Equation (105) into a SODE
that gives

w′1 =w2

w′2 +
4
3 + 3w2

1

� �
w2 +

1
3w1 +w3

1 = 0

w1 0ð Þ = −0:28868, w2 0ð Þ = 0:12

8>>>><
>>>>:

, ð107Þ

where w1 = y and w2 = y′. Again, we solve Equation (107)
with the present method. According to Subsection 5.1, we
solve Equation (105) with HPM that gives

according to Equation (59), the approximate answer is
obtained as follows:

Y tð Þ = −0:28868 + 0:12t − 0:0391704t2 + 0:0207341t3

+ 0:0233674t4 + 0:0051368t5 + 0:00417601t6+⋯
ð109Þ

Table 2 can be used to compare the results of the abso-
lute errors of methods with RK4. Figure 3 shows the approx-
imate answers obtained by HLBPFs for Equations (106) and
(107) with RK4.

Example 7.3. Let us solve the following oscillator equation
[11, 43–45].

y′′ tð Þ − 0:05 1 − y2
À Á

y′ tð Þ + y = 0

y 0ð Þ = 0, y′ 0ð Þ = 0:5

(
: ð110Þ

The approximate analytical solution of Equation (110) is
obtained by method’s RK4, HPM, and ADM.

Now, we converted Equation (110) into nonlinear
VIESK, by integrating of this equation in order to have

y tð Þ = 0:5t +
ðt
0

0:05 − s − tð Þð Þy sð Þ − 0:05y3 sð ÞÀ Á
ds: ð111Þ

We solve above-mentioned equation using the present
method, as well as we converted Equation (110) into a SODE
that gives

w′1 =w2

w′2 − 0:05 1 −w2
1

À Á
w2 +w1 = 0

w1 0ð Þ = 0, w2 0ð Þ = 0:5

,

8>><
>>: ð112Þ

where w1 = y and w2 = y′. Again, we solve Equation (112)
with the present method. According to Subsection 5.1, we
solve Equation (110) with HPM, and we have

p0 : y0 tð Þ = −0:28868 − 0:2649066667t
p1 : y1 tð Þ = 0:384907t + 0:269861t2 + 0:0460135t3 + 0:00971206t4 + 0:000929498t5

p2 : y2 tð Þ = −0:296895t2 − 0:185222t3 − 0:0486435t4−⋯
p3 : y3 tð Þ = −0:0171263t2 + 0:131683t3 + 0:0823714t4+⋯
⋮

,

8>>>>>>>><
>>>>>>>>:

ð108Þ

p0 : y0 tð Þ = 0:5t
p1 : y1 tð Þ = 0:0125t2 − 0:0833333t3 − 0:000520833t4

p2 : y2 tð Þ = 0:000208333t3 − 0:00208333t4 + 0:00398958t5+⋯
p3 : y3 tð Þ = 2:60417 × 10−6t4 − 0:00003125t5 + 0:0000269097t6 − 0:0000172371t7−⋯
⋮

:

8>>>>>>>><
>>>>>>>>:

ð113Þ
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According to Equation (59), the approximate answer is
obtained as follows:

Y tð Þ = 0:5t + 0:0125t2 − 0:083125t3

− 0:00260156t4 + 0:00395836t5

+ 0:00014809t6 − 0:0000555835t7+⋯
ð114Þ

Table 3 can be used to compare the results of the abso-
lute errors of methods with RK4. Figure 4 shows the approx-
imate answers obtained by HLBPFs for Equations (111) and
(112) with RK4.

8. Conclusions

In this work, we solved the D-VdP problem by transforma-
tion into a Volterra integral equation of the second kind and
a system of ordinary differential equation of the first order. It
was found that the numerical solution of these equations is
using the expansion based on HLBPFs and their integration
operational matrix. In this technique, integration is not
needed because examples are solved quickly, and calculation
time is minimized by employing the matrices P and ~C. The
advantage of our proposed method is its high accuracy when
the D-VdP equation converted to a SODE.
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