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This article is concerned with the initial-value problem of a Schrödinger–Hartree equation in the presence of anisotropic partial/
whole harmonic confinement. First, we get a sharp threshold for global existence and finite time blow-up on the ground state mass
in the L2-critical case. Then, some new cross-invariant manifolds and variational problems are constructed to study blow-up versus
global well-posedness criterion in the L2-critical and L2-supercritical cases. Finally, we research the mass concentration phenome-
non of blow-up solutions and the dynamics of the L2-minimal blow-up solutions in the L2-critical case. The main ingredients of the
proofs are the variational characterisation of the ground state, a suitably refined compactness lemma, and scaling techniques. Our
conclusions extend and compensate for some previous results.

1. Introduction

In this paper, we consider the initial-value problem of the
following Schrödinger–Hartree equation in the presence of
anisotropic partial/whole harmonic confinement:

iφt þ Δφ − ∑
k

j¼1
ν2j x

2
j φþ λ Iα ∗ φj jpð Þ φj jp−2φ¼ 0; t; xð Þ 2 0;T½ Þ × RN ;

φ 0; xð Þ ¼ φ0; x 2 RN ;

8><>:
ð1Þ

where φ : 0;½ TÞ×RN → C is a complex valued function,
0<T ≤1 and φ0 is a given function in RN , 1≤ k≤N , νj ≠
0 and νj 2R (1≤ j≤ k), λ>0, 2≤ p< Nð þ αÞ= N −ð 2Þ, Iα :
RN → R is the Riesz potential defined by the following:

Iα xð Þ ¼ Γ N−α
2

À Á
Γ α

2

À Á
π

N
2 2α xj jN−α

; ð2Þ

with 0<α<N and Γ is the Gamma function.

Nonlinear Schrödinger equations of Hartree-type have a
broad physical background. They often appear as models of
quantum semiconductor devices [1]. When k¼N , Equation
(1), known as Schrödinger–Hartree equation with complete
harmonic confinement, can be used to characterise Bose–
Einstein condensation (BEC) in a gas with very weak two-
body interactions, which was found in 23Na or 87Rb atomic
systems [2]. When 1≤ k<N , Equation (1) is called a nonlin-
ear Hartree equation with partial confinement, arising also as
a typical model to describe the BEC [3]. When removing the
harmonic confinement in Equation (1), for N ¼ 3, p¼ 2, and
α¼ 2, Equation (1) is used to describe electrons trapped in
their own holes, which is similar to the Hartree–Fock theory
of single component plasma to some extent [4].

When k¼N , Equation (1) with complete harmonic con-
finement has been well-studied. In the special case ν1 ¼ ν2 ¼
⋯¼ νN and p¼ 2, Huang et al. [5] applied the Hamiltonian
invariants and the Gagliardo–Nirenberg inequality of convo-
lution type and scaling technique to investigate the sharp
threshold of global existence and showed the stability of
standing waves in the mass-critical case α¼N − 2. Wang [6]
proved the existence of blow-up solutions and studied the
strong instability of standing waves by variational methods
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in the mass-supercritical case 2<N − α<min 4;f Ng. It’s
worth mentioning that, Feng [7] derived the sharp threshold
for global existence and finite time blow-up on mass for ν1 ¼
ν2 ¼⋯¼ νN and p¼ 1þ 2ð þ αÞ=N ≥ 2 in Equation (1), by
using the variational characterisation of the ground state
solution to a nonlinear Schrödinger–Hartree equation with-
out potential (see Equation (14)). Moreover, in the general
L2-supercritical case 1þ 2ð þ αÞ=N ≤ p< Nð þ αÞ= N −ð 2Þ
with 0<α<N , Feng [7] obtained blow-up versus global
well-posedness criteria in both the L2-critical and L2-super-
critical cases by constructing some cross-invariant mani-
folds and variational problems and studied the stability
and instability of standing waves. If the nonlinearity
Iα ∗ φj jpð Þ φj jp−2φ is replaced by φj jp−1φ, there exist exten-
sive literatures on the Cauchy problem of nonlinear Schrö-
dinger equation with complete harmonic potential, see, e.g.,
[8–10]. In particular, Shu and Zhang [9] and Zhang [10]
derived the sharp criterion of global existence to Equation
(1) in the L2-critical and L2-supercritical cases by variational
methods and constructing different cross-constrained varia-
tional problems and so-called invariant sets.

When 1≤ k<N , the main difference between nonlinear
Schrödinger-type equation with partial harmonic confine-
ment and complete confinement is that the embedding
from natural energy space Σ (see Section 2) to Lp RNð Þ(p2
2;½ 2N= N − 2ð ÞÞ) is lack of compactness, resulting the main
difficulty on the study of blow-up dynamics and stability of
standing waves to the corresponding Cauchy problem. Due
to the fact, the existence of stable standing waves, global and
blow-up dynamics, and sharp criterion of global existence to
the nonlinear Schrödinger-type equations with partial con-
finement have attracted considerable interest. A lot of studies
have been made in these directions to Equation (1) with
power type nonlinearity xj j−b φj jp−1φ b≥ð 0Þ, see [11–16] for
example and the references therein. More precisely, in the
L2-supercritical case with b¼ 0 and k¼ 2<N ¼ 3, Bellazzini
et al. [11] applied the concentration compactness principle to
overcome the lack of compactness and obtained the existence
and stability of normalised standing waves. Ardila and Carles
[12] studied the criteria of blow-up and scattering below the
ground state in the focusing L2-supercritical case. Zhang [13]
and Pan and Zhang [14] studied the sharp threshold for
finite time blow-up and global existence in the mass-critical
case by making full use of the ground state to a classical
nonlinear elliptic equation without harmonic confinement
and Hamilton conservation, as well as scaling arguments.
It is worth noting that by exploiting the refined compactness
lemma proposed by Hmidi and Keraani [17] and the varia-
tional characterisation of the ground state and scaling techni-
ques, Pan and Zhang [14] investigated the mass concentration
properties and limiting profile of the blow-up solutions pos-
sessing small super-critical mass for the 2D L2-critical Schrö-
dinger equation with k¼ 1. More recently, when k¼ 2 and
N ¼ 3, Wang and Zhang [15] derived the sharp condition for
global existence and blow-up to the solutions by constructing
cross-constrained variational problems and invariant mani-
folds of the evolution flow. Liu et al. [16] studied the existence
and stability of normalised standing waves for Equation (1)

with anisotropic partial confinement and inhomogeneous
nonlinearity xj j−b φj jp−1φ b>0ð Þ by making use of profile
decomposition theory and concentration compactness princi-
ple. Besides, based on the ideas of Bellazzini et al. [11], the
existence and orbital stability of standing waves for Equation
(1) with k¼N − 1 were obtained by Xiao et al. [18]. As far as
we know, the research of the sharp threshold of global exis-
tence and mass concentration phenomenon to the blow-up
solutions of nonlinear Schrödinger-type equation with Hartree
nonlinearity Iα ∗ φj jpð Þ φj jp−2φ and partial confinement are
still open, which is greatly pursued in physics. This is the main
motivation for us to study the Cauchy problem (1).

In the absence of harmonic confinement in Equation (1),
the corresponding equation is also known as the Choquard
equation, which has also been extensively studied, see for
instance [8, 19–23]. In particular, by constructing invariant
sets and using variational methods, Chen and Guo [19]
obtained the existence of blow-up solutions for some suitable
initial data and showed strong instability of standing waves
in the case N ¼ 3 and 2<N − α<3. Miao et al. [20] studied
the mass concentration properties of blow-up solutions as
well as the dynamics of blow-up solutions with minimal
mass for Equation (1) in the L2-critical case with α¼ 2 and
N ¼ 4. When p¼ 1þ 4=N Nð ¼ 3; 4Þ, Genev and Venkov
[21] gave a sharp sufficient condition of global existence to
Equation (1). Furthermore, they proved the existence of
blow-up solutions and considered the blow-up dynamics to
the solutions in the L2-critical setting, i.e., p¼ 1þ 2ð þ αÞ=N
with α¼ 2. Notice that Feng and Yuan [22] not only consid-
ered the local and global well-posedness and finite time
blow-up to the corresponding initial-value problem (1)
in the general case 2≤ p< Nð þ αÞ= N −ð 2Þ with max 0;f
N − 4g<α<N , but also took into account the concentration
phenomenon of blow-up solutions and the blow-up dynamics
of blow-up solutions possessing minimal mass in the case
p¼ 1þ 2ð þ αÞ=N ≥ 2, by establishing a new refined com-
pactness lemma with respect to the nonlocal nonlinearity
Iα ∗ φj jpð Þ φj jp−2φ.

To the best of our knowledge, there are few papers deal-
ing with the global well-posedness and blow-up dynamics to
the Cauchy problem (1) in the presence of anisotropic par-
tial/whole harmonic confinement. Inspired by the literatures
aforementioned, the purposes of this present article are
devoted to investigate the sharp criterion of global existence
and mass-concentration phenomenon of blow-up solutions
as well as the dynamical properties of minimal mass blow-up
solutions of Equation (1) with anisotropic partial/whole con-
finement. The main difficulties come from the presence of
anisotropic harmonic confinement∑k

j¼1ν
2
j x

2
j and the nonlocal

nonlinearity Iα ∗ φj jpð Þ φj jp−2φ, resulting in the loss of com-
pactness and pseudo-conformal transformation. Motivated
by Feng [7], Zhang [13], Pan and Zhang [14], and Zhang
[24], we utilise the ground state to the nonlinear Schrödin-
ger–Hartree Equation (14), which is without any confined
potential, to study the blow-up phenomenon and overcome
the difficulties. First, we get a sharp threshold for global exis-
tence and finite time blow-up on the ground state mass for the
Schrödinger–Hartree equation with anisotropic partial/whole
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harmonic confinement in the L2-critical case. This result
extends and compensates the work of Feng [7], which only
considered the case with complete confinement for k¼N and
ν1 ¼ ν2 ¼…¼ νk ¼ 1 in Equation (1). Then, in the L2-critical
and L2-supercritical cases, by constructing some new cross-
invariant manifolds of the evolution flow and some varia-
tional problems associated with Equation (1), we derive
blow-up versus global well-posedness criterion for Equation
(1). In the present case, the constructed cross-invariant sets
and variational problems are in light of Shu and Zhang [9],
which differ from those of Feng [7], and some new criterion
of global existence is derived, generalising and complement-
ing the corresponding result of. Finally, based on the ideas of
Pan and Zhang [14], Hmidi and Keraani [17], and Feng and
Yuan [22], we research the mass concentration phenomenon
of blow-up solutions and the dynamics of the L2-minimal
blow-up solutions, including the precise mass-concentration
and blow-up rate of theminimal mass blow-up solutions. The
main ingredients of the proofs are the variational characteri-
sation of the ground state to Equation (14), a refined com-
pactness lemma established by Feng and Yuan [22], and
scaling techniques. Our conclusions about the mass concen-
tration phenomenon of blow-up solutions and the dynamics
of the L2-minimal blow-up solutions extend the results of
Feng and Yuan [22], in which the case without any potential
was considered, to the Schrödinger–Hartree equation with
anisotropic partial/whole confinement.

The rest of this paper is organised as follows: in Section 2,
some notations and preliminaries are given. Section 3 considers
the sharp threshold for global existence and finite time blow-up
of Equation (1) in both the L2-critical and L2-supercritical
cases. The last section focuses on the mass concentration
phenomenon of blow-up solutions and the dynamics of the
L2-minimal blow-up solutions.

2. Notations and Preliminaries

Throughout this paper, we use
R
⋅ dx to represent

R
RN ⋅ dx

and denote φk kp ¼ φk kLp RNð Þ ¼
R
φj jpdxÀ Á1

p, and use C to
stand for positive constants, which may vary from line to
line. Without loss of generality, we assume λ¼ 1 in this and
subsequent sections.

For Equation (1), we equip the natural energy space

Σ¼ φ 2 H1 RNð Þ;
Z

∑
k

j¼1
ν2j x

2
j φj j2dx<1; νj 2 R \ 0f g

( )
;

ð3Þ

with the inner product

ϕ;φh iΣ ¼ Re
Z

ϕφ̄ þrϕ ⋅ rφ̄ þ ∑
k

j¼1
ν2j x

2
j ϕφ̄

 !
dx; 8ϕ;φ 2 Σ;

ð4Þ

and the corresponding norm is given by the following:

φk k2Σ ¼ φk k22 þ rφk k22 þ
Z

∑
k

j¼1
ν2j x

2
j φj j2dx; 8φ 2 Σ:

ð5Þ

The energy function associated with Equation (1) is defined
as follows:

E φ tð Þð Þ ¼ 1
2

Z
rφ tð Þj j2 þ ∑

k

j¼1
ν2j x

2
j φ tð Þj j2

 

−
1
p

Iα ∗ φj jpð Þ φj jp
�
dx; φ 2 Σ:

ð6Þ

Let us now state the local well-posedness of Equation (1)
in energy space Σ according to Feng [7] and Feng and
Yuan [22].

Proposition 1. Let φ0 2Σ and 2≤ p< Nð þ αÞ= N −ð 2Þ. Then
there exists T ¼T φ0k kΣð Þ such that Equation (1) admits a
unique solution φ t;ð xÞ 2C 0;½ð TÞ;ΣÞ: Let 0;½ TÞ be the maxi-
mal time interval such that the solution φ t;ð xÞ is well-defined.
If T<1, then limt→T φ tð Þk kΣ ¼1 (blow-up). Furthermore,
φ t;ð xÞ depends continuously on initial data φ0 and for any
t 2 0;½ TÞ, the following conservation laws of mass and energy
hold, Z

φ tð Þj j2dx ¼
Z

φ0j j2dx; ð7Þ

E φ tð Þð Þ ¼ E φ0ð Þ: ð8Þ

Then we introduce some vital lemmas.

Lemma 2 (see [25]). Let 0<λ<N and s, r>1 be constants
such that

1
r
þ 1

s
þ λ

N
¼ 2: ð9Þ

Assume that g2 Lr RNð Þ and h2 Ls RNð Þ. ThenZ Z
g xð Þ x − yj j−λh yð Þdxdy

���� ���� ≤ C N; s; λð Þ gk kr hk ks:

ð10Þ

By inequality Equation (10), we can obtain the following
generalised Gagliardo–Nirenberg inequality

Z
Iα ∗ φj jpð Þ φj jpdx ≤ Cα;p

Z
rφj j2dx

� �Np−N−α
2

Z
φj j2dx

� �Nþα−Npþ2p
2

:

ð11Þ
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Following Weinstein [26], Feng and Yuan [22] derived the
best constant in the inequality Equation (11) by discussing
the existence of the minimiser of the functional

Jα;p φð Þ ¼

Z
rφj j2dx

� �Np−N−α
2

Z
φj j2dx

� �Nþα−Npþ2p
2

Z
Iα ∗ φj jpð Þ φj jpdx

: ð12Þ

Lemma 3 (see [22]). It follows that the best constant in the
generalised Gagliardo-Nirenberg inequality Equation (11) is

Cα;p ¼
2p

2p − Npþ N þ α

2p − Npþ N þ α

Np − N − α

� �Np−N−α
2

Q xð Þk k2−2p2 ;

ð13Þ

where Q xð Þ is the ground state of the elliptic equation

−4φþ φ − Iα ∗ φj jpð Þ φj jp−2φ¼ 0: ð14Þ

In particular, in the L2-critical case, Cα; p ¼ p Q xð Þk k2−2p2 .

It is known that the ground state is of great importance in
studying global existence and blow-up dynamics to the
initial-value problem of the nonlinear Schrödinger equation;
in the following lemma, we recall some existence results and
properties of the ground state solution to Equation (14).

Lemma 4 (see [27]). Let α2 0;ð NÞ and Nð þ αÞ=N<p<
Nð þ αÞ= N −ð 2Þ: It follows that Equation (14) admits a
ground state solution Q xð Þ in H1 RNð Þ: Every ground state
Q xð Þ of Equation (14) is in L1 ∩ C1, and there exist x0 2RN

and a monotone real function τ2C1 0;ð 1Þ such that for
every x2RN, Q xð Þ¼ τ x − x0j jð Þ. Moreover, the following
Pohoz̆aev identity holds,

N − 2
2

Z
rQ xð Þj j2dx þ N

2

Z
Q xð Þj j2dx

¼ N þ α

2p

Z
Iα ∗ Q xð Þj jpð Þ Q xð Þj jpdx;

ð15Þ

Z
rQ xð Þj j2dx þ

Z
Q xð Þj j2dx

¼
Z

Iα ∗ Q xð Þj jpð Þ Q xð Þj jpdx:
ð16Þ

From Equations (15) and (16), one has

p
Z

rQ xð Þj j2dx ¼
Z

Iα ∗ Q xð Þj jpð Þ Q xð Þj jpdx: ð17Þ

In order to study the blow-up phenomenon of Equation (1),
we also need the following lemma obtained in Weinstein [26].

Lemma 5 (see [26]). Let φ2H1 RNð Þ, then we have thatZ
φj j2dx ≤ 2

N

Z
rφj j2dx

� �1
2
Z

xj j2 φj j2dx
� �1

2

: ð18Þ

Following the idea of Glassey [28] (see also Feng [7]), we
will adopt the convexity method to study the existence of
blow-up solutions. More precisely, we need to consider the
variance

V tð Þ ¼
Z

xj j2 φ t; xð Þj j2dx; ð19Þ

and show that there exists time T>0 such that V Tð Þ¼ 0.
With some formal computations (which can be rigorously
proved by Cazenave [8]), we have the following virial identities:

Proposition 6. Let 2≤ p< N þð αÞ= N −ð 2Þ and assume that
φ t;ð xÞ is a solution of problem (1) in C 0;½ð TÞ; ΣÞ with φ0 2
H1 RNð Þ and xj jφ0 2 L2 RNð Þ. Then the function t → ⋅j jφ t;ð ⋅Þ
belongs to C 0;½ð TÞ; L2Þ. Furthermore, the function V tð Þ¼R
xj j2 φ t; xð Þj j2dx belongs to C2 0;½ TÞ, then we obtain that

V 0 tð Þ ¼ 4Im
Z

xrφφ̄dx; ð20Þ

and

V 00 tð Þ ¼ 8
Z

rφj j2dx − 8
Z

∑
k

j¼1
ν2j x

2
j φj j2dx

−
4Np − 4N − 4α

p

Z
Iα ∗ φj jpð Þ φj jpdx

¼ 8 Np − N − αð ÞE φð Þ
þ 8þ 4N þ 4α − 4Npð Þ

Z
rφj j2dx

þ 4N þ 4α − 4Np − 8ð Þ
Z

∑
k

j¼1
ν2j x

2
j φj j2dx;

ð21Þ

for all t 2 0;½ TÞ: In particular, when p¼ 1þ 2ð þ αÞ=N; we
have

V 00 tð Þ ¼ 16E φ0ð Þ − 16
Z

∑
k

j¼1
ν2j x

2
j φj j2dx: ð22Þ

Using Lemma 5 and Proposition 6, we can easily get the
following sufficient conditions on the existence of blow-up
solutions.

Corollary 7. Assume thatmax 0;f N − 4g<α<N andmax 1þf
2þ αð Þ=N; 2g≤ p< Nð þ αÞ= N −ð 2Þ. Let φ0 2H1 RNð Þ and
xj jφ0 2 L2 RNð Þ, and satisfy one of the following conditions:

Case (1): E φ0ð Þ<0;
Case (2): E φ0ð Þ¼ 0 and Im

R
xrφ0φ̄0dx<0;

4 Advances in Mathematical Physics



Case (3): E φ0ð Þ>0 and Im
R
xrφ0φ̄0dxþ 2V 0ð ÞE φ0ð Þð Þ12

≤ 0.

Then the corresponding solution φ t;ð xÞ of Equation (1)
blows up in finite time.

3. Sharp Threshold for Global Existence
and Blow-up

3.1. The L2-Critical Case. The aim of this subsection is mainly
to consider the global existence and blow-up of the solutions
to Equation (1) in the L2-critical case, i.e., p¼ 1þ 2ð þ αÞ=N .
The ground state mass Q xð Þk k2 gives a sufficient condition
on the global existence of the solution to Equation (1).

Theorem 8. Let p¼ 1þ 2ð þ αÞ=N ≥ 2 and Q xð Þ be the posi-
tive radially symmetric ground state solution of Equation (14).
If φ0 2 Σ and φ0 satisfies

φ0k k2< Q xð Þk k2; ð23Þ

then the Cauchy problem (1) has a global solution φ t;ð xÞ in
C 0;½ð 1Þ; ΣÞ. Furthermore, we have for any 0≤ t<1;

Z
rφj j2 þ ∑

k

j¼1
ν2j x

2
j φj j2

 !
dx

<
2E φ0ð Þ

1 − Q xð Þk k2−2p2

Z
φ0j j2dx

� �
p−1 þ 2E φ0ð Þ:

ð24Þ

Proof. Let φ t;ð xÞ be the corresponding solution of Equation
(1) in C 0;½ð TÞ;ΣÞ with initial value φ0 2 Σ. By Equation (8),
Equation (6), Lemma 3, and Equation (7), we obtain

E φ0ð Þ ¼ E φð Þ ¼ 1
2

Z
rφj j2 þ ∑

k

j¼1
ν2j x

2
j φj j2 − 1

p
Iα ∗ φj jpð Þ φj jp

 !
dx

≥
1
2

Z
rφj j2 þ ∑

k

j¼1
ν2j x

2
j φj j2

 !
dx −

1
2p

p Q xð Þk k2−2p2

Z
rφj j2dx

Z
φj j2dx

� �
p−1

¼ 1
2

Z
∑
k

j¼1
ν2j x

2
j φj j2dx þ 1

2

Z
1 − Q xð Þk k2−2p2

Z
φj j2dx

� �
p−1

� �
rφj j2dx

¼ 1
2

Z
∑
k

j¼1
ν2j x

2
j φj j2dx þ 1

2

Z
1 − Q xð Þk k2−2p2

Z
φ0j j2dx

� �
p−1

� �
rφj j2dx:

ð25Þ

From Equations (25) and (23), we have for all t 2 0;½ TÞ,
where T is arbitrary and T<1, there exists C such that

Z
rφj j2dx þ

Z
∑
k

j¼1
ν2j x

2
j φj j2dx ≤ C: ð26Þ

Then, according to Proposition 1, φ t;ð xÞ exists globally in
time. Moreover, we have

Z
rφj j2dx< 2E φ0ð Þ

1 − Q xð Þk k2−2p2

Z
φ0j j2dx

� �
p−1 ; ð27Þ

and

Z
∑
k

j¼1
ν2j x

2
j φj j2dx<2E φ0ð Þ: ð28Þ

It follows from Equations (27) and (28) that Equation (24)
holds true. □

Remark 9.

(i) When k¼N and ν1 ¼ ν2 ¼⋯¼ νk ¼ 1 inEquation (1),
Feng [7] proved that the solution φ t;ð xÞ of Equation (1)
exists globally (see Theorem 3.2 by Feng [7]). Theorem 8
can be viewed as the complement of the corresponding
result of Feng [7] for Equation (1) with whole harmonic
confinement.

(ii) We give an explicit bound to the global solution of
Equation (1) in Σ (see Equation (24)).

By using the variational characterisation of the ground
state solution to Equation (14), some scaling arguments and
energy conservation, we can get the existence result of blow-
up solutions to Equation (1).

Theorem 10. Let Q xð Þ be the positive radially symmetric solu-
tion of Equation (14), p¼ 1þ 2ð þ αÞ=N ≥ 2. Then for any
ε>0, there exist φ0 2Σ and

R
xj j2 φ0j j2dx<1 such that

φ0k k22 ¼ Q xð Þk k22 þ ε; ð29Þ

and the solution φ t;ð xÞ of the Cauchy problem (1) blows up in
finite time.
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Proof. For any a>1; b>0, we take Qa;b xð Þ¼ ab
N
2Q bxð Þ.

Based on some scaling arguments, one has that

Z
Qa;b xð Þ�� ��2dx ¼ a2

Z
Q xð Þj j2dx; ð30Þ

Z
rQa;b xð Þ�� ��2dx ¼ a2b2

Z
rQ xð Þj j2dx; ð31Þ

Z
∑
k

j¼1
ν2j x

2
j Qa;b xð Þ�� ��2dx ¼ a2b−2

Z
∑
k

j¼1
ν2j x

2
j Q xð Þj j2dx;

ð32Þ

Z
Iα ∗ Qa;b xð Þ�� ��pÀ Á

Qa;b xð Þ�� ��pdx ¼ a2þ
2 2þαð Þ

N b2Z
Iα ∗ Q xð Þj jpð Þ Q xð Þj jpdx:

ð33Þ

Now we set

a ¼

Z
Q xð Þj j2dx þ εZ
Q xð Þj j2dx

>1;

b >

Z
∑
k

j¼1
ν2j x

2
j Q xð Þj j2dx

a
2 2þαð Þ

N − 1
� �Z

rQ xð Þj j2dx

26664
37775

1
4

;  and φ0 xð Þ ¼ ab
N
2Q bxð Þ;

ð34Þ
then we have φ0 xð Þ 2Σ and

R
xj j2 φ0j j2dx<1. In fact, since

Qa; b xð Þ¼ ab
N
2Q bxð Þ 2H1 RNð Þ, by utilising the exponential

decay of ground state solution Q xð Þ (see [27]):

Q xj jð Þ;rQ xj jð Þ ¼ O xj j−N−1
2 e− xj jÀ Á

; as xj j→1; ð35Þ

we conclude that Qa;b xð Þ 2 L2 RNð Þ and so φ0 ¼ ab
N
2Q bxð Þ 2

H1 RNð Þ and
R
xj j2 φ0j j2dx<1. Thus, we also deduce that

φ0 2 Σ. Moreover, it follows from Equation (30) thatZ
φ0j j2dx ¼

Z
Q xð Þj j2dx þ ε: ð36Þ

From Equations (6), (8), (17), and (31)–(33), we get

E φð Þ ¼ E φ0ð Þ ¼ 1
2

Z
rφ0j j2 þ ∑

k

j¼1
ν2j x

2
j φ0j j2 − 1

p
Iα ∗ φ0j jpð Þ φ0j jp

 !
dx

¼ 1
2

1 − a
2 2þαð Þ

N

� �
a2b2

Z
rQ xð Þj j2dx þ a2

2b2

Z
∑
k

j¼1
ν2j x

2
j Q xð Þj j2dx

¼ 1
2
a2b2 1 − a

2 2þαð Þ
N

� �Z
rQ xð Þj j2dx þ 1

b4

Z
∑
k

j¼1
ν2j x

2
j Q xð Þj j2dx

 !
< 0:

ð37Þ

Thus, it follows from Corollary 7 that the solution φ t;ð xÞ of
Equation (1) blows up in finite time. □

Remark 11.

(i) When k¼N and ν1 ¼ ν2 ¼⋯¼ νk ¼ 1 in Equation
(1), Feng [7] proved the existence of blow-up solu-
tions (see Theorem 3.2 by Feng [7]). When consid-
ering Equation (1) in the presence of anisotropic
partial/complete harmonic confinement, we derive
the corresponding blow-up result by scaling approach,
which differs from the method of Feng [7].

(ii) Theorems 8 and 10 declare that Q xð Þk k2 provides a
sharp threshold for global existence and blow-up to
Equation (1) in terms of the initial data, which is
called minimal mass for the blow-up solutions.

3.2. The L2-Supercritical Case. For φ2Σ and Nð þ αÞ=N<
p< Nð þ αÞ= N −ð 2Þ, define the following functionals:

I φð Þ ¼ 1
2

Z
rφj j2 þ φj j2 þ ∑

k

j¼1
ν2j x

2
j φj j2

 !
dx

−
1
2p

Z
Iα ∗ φj jpð Þ φj jpdx;

ð38Þ

J φð Þ ¼
Z

rφj j2 þ φj j2 − Iα ∗ φj jpð Þ φj jpð Þdx; ð39Þ

S φð Þ ¼
Z

rφj j2 − Np − N − α

2p
Iα ∗ φj jpð Þ φj jp

� �
dx:

ð40Þ
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Then, we define the set

M¼ φ 2 Σ \ 0f g; J φð Þ<0; S φð Þ ¼ 0f g; ð41Þ

and consider the following two constrained minimisation
problems:

d1 ¼ inf
φ2Σ\ 0f g;J φð Þ¼0f g

I φð Þ; ð42Þ

d2 ¼ inf
φ2M

I φð Þ: ð43Þ

Proposition 12. If 1þ 2ð þ αÞ=N ≤ p< Nð þ αÞ= N −ð 2Þ,
then d2>0.

Proof. First, we prove M ≠ ∅. According to Lemma 3, there
exists φ2 Σ \ 0f g such that φ is a solution of Equation (14).
By multiplying both sides of Equation (14) by φ and inte-
grating over RN , we getZ

rφj j2dx þ
Z

φj j2dx ¼
Z

Iα ∗ φj jpð Þ φj jpdx: ð44Þ

It follows from Equation (44) that J φð Þ¼ 0: Moreover, by
taking the inner product of Equation (14) with x ⋅ rφ, we
have the following Pohŏzaev identity

−
N − 2
2

Z
rφj j2dx − N

2

Z
φj j2 þ N þ α

2pZ
Iα ∗ φj jpð Þ φj jpdx ¼ 0:

ð45Þ

Thenmultiplying both sides of Equation (44) byN=2, we have

N
2

Z
rφj j2 þ φj j2 − Iα ∗ φj jpð Þ φj jpð Þdx ¼ 0: ð46Þ

From Equations (45) and (46), one has thatZ
rφj j2dx þ N þ α − Np

2p

� �Z
Iα ∗ φj jpð Þ φj jpdx ¼ 0;

ð47Þ

which implies S φð Þ¼ 0. Thus, there exists φ2Σ \ 0f g such
that S φð Þ¼ 0 and J φð Þ¼ 0.

Set

u xð Þ ¼ μ
2þα
2p−2φ μxð Þ; μ>0: ð48Þ

By some simple computations, we obtain

J u xð Þð Þ ¼ μ
2pþα−NpþN

p−1

Z
rφj j2dx −

Z
Iα ∗ φj jpð Þ φj jpdx

� �
þμ

2þα
p−1−N

Z
φj j2dx;

ð49Þ

and

S u xð Þð Þ ¼ μ
2pþα−NpþN

p−1

Z
rφj j2dx − Np − N − α

2p

Z
Iα ∗ φj jpð Þ φj jpdx

� �
:

ð50Þ

Note that S φð Þ¼ 0. Thus S u xð Þð Þ¼ 0 for every μ>0. More-
over,

J u xð Þð Þ ¼ μ
2þα
p−1−N − μ

2pþα−NpþN
p−1

� �Z
φj j2dx

¼ μ
2þα
p−1−N 1 − μ2ð Þ

Z
φj j2dx:

ð51Þ

Thus, there exists μ>1 such that J u xð Þð Þ<0. Therefore,
when μ>1, we have S u xð Þð Þ¼ 0 and J u xð Þð Þ<0 which
implies M ≠ ∅.

Next, we prove d2>0: Let φ2M, from J φð Þ<0, we get
φ ≠ 0. Since S φð Þ¼ 0, we have

I φð Þ ¼ 1
2
−

1
Np − N − α

� �Z
rφj j2dx þ 1

2

Z
∑
k

j¼1
ν2j x

2
j φj j2dx

þ 1
2

Z
φj j2dx:

ð52Þ

It follows from 1þ 2ð þ αÞ=N ≤ p< Nð þ αÞ= N −ð 2Þ, Equa-
tion (52) and φ ≠ 0 that I φð Þ>0 for all φ2M. Thus, by
Equation (43), we obtain d2 ≥ 0. In the following, we will
divide the proof into two cases: the L2-supercritical case and
the L2-critical case.

We first consider the L2-supercritical case 2≤ 1þ 2ð þ αÞ=
N<p< Nð þ αÞ= N −ð 2Þ. In this case, it follows from Equation
(10) that

Z
Iα ∗ φj jpð Þ φj jpdx ≤ C

Z
φj j 2NpNþαdx

� �Nþα
N

≤ C
Z

rφj j2 þ φj j2ð Þdx
� �

p
;

ð53Þ
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which together with J φð Þ<0 impliesZ
rφj j2 þ φj j2ð Þdx <

Z
Iα ∗ φj jpð Þ φj jpdx

≤ C
Z

rφj j2 þ φj j2ð Þdx
� �

p
:

ð54Þ

Thus, one has thatZ
rφj j2 þ φj j2ð Þdx ≥ C>0: ð55Þ

Since p>1þ 2ð þ αÞ=N , we deduce from Equation (52) and
(55) that

I φð Þ ≥ C>0; for allφ 2M; ð56Þ

which implies d2>0 for 1þ 2ð þ αÞ=N<p< Nð þ αÞ= N −ð 2Þ.
Now we deal with the L2-critical case p¼ 1þ 2ð þ αÞ=N .

Suppose by contradiction that d2 ¼ 0, then we derive from
Equation (43) that there exists a sequence φnf g⊂M such that
S φnð Þ¼ 0; J φnð Þ<0 and I φnð Þ→0 as n→1. Since p¼ 1þ
2ð þ αÞ=N , one can derive from Equation (52) thatZ

φnj j2dx→ 0;
Z

∑
k

j¼1
ν2j x

2
j φnj j2dx→ 0; as n→1:

ð57Þ

On the other hand, it follows from J φnð Þ<0 and Equation
(11) thatZ

rφnj j2 þ φnj j2ð Þdx<
Z

Iα ∗ φnj jpð Þ φnj jpdx

≤ C
Z

rφnj j2dx
Z

φnj j2dx
� �

p−1
:

ð58Þ

However, when n is sufficiently large, from Equation (57),
one has thatZ

rφnj j2 þ φnj j2ð Þdx>C
Z

rφnj j2dx
Z

φnj j2dx
� �

p−1
:

ð59Þ

It is obvious that Equation (59) contradicts Equation (58).
Thus, d2>0 for p¼ 1þ 2ð þ αÞ=N . Therefore, we have d2>0
for 1þ 2ð þ αÞ=N ≤ p< Nð þ αÞ= N −ð 2Þ. □

Now we define

d ¼min d1; d2f g: ð60Þ

Then, we have the following conclusion.

Proposition 13. Let 1þ 2ð þ αÞ=N ≤ p< Nð þ αÞ= N −ð 2Þ,
then d>0.

Proof. From Equations (38) and (39), we obtain

d1 ¼ inf
φ2Σ\ 0f g;J φð Þ¼0f g

1
2
−

1
2p

� �Z
rφj j2 þ φj j2ð Þdx

þ 1
2

Z
∑
k

j¼1
ν2j x

2
j φj j2dx:

ð61Þ

Therefore, d1>0. This, together with Proposition 12, implies
that the proposition holds true. □

To study the sharp threshold of global existence for
Equation (1) in the L2-supercritical case, we introduce
some new cross-constrained invariant sets as follows:

Proposition 14. Define

K¼ φ 2 Σ; I φð Þ<d; S φð Þ<0; J φð Þ<0f g;
Kþ ¼ φ 2 Σ; I φð Þ<d; S φð Þ>0; J φð Þ<0f g;
R− ¼ φ 2 Σ; I φð Þ<d; J φð Þ<0f g;
Rþ ¼ φ 2 Σ; I φð Þ<d; J φð Þ>0f g:

ð62Þ

Then K, Kþ, R−, Rþ are invariant sets of Equation (1), that
is, if φ0 2K, Kþ, R− or Rþ then the solution φ t;ð xÞ of the
Equation (1) also satisfies φ t;ð xÞ 2K, Kþ, R− or Rþ for any
t 2 0;½ TÞ:

Proof. We first prove that K is an invariant set of Equation
(1). Let φ0 2Σ and φ t;ð xÞ be the corresponding solution of
Equation (1). From Equations (7) and (8), one has that

I φð Þ ¼ I φ0ð Þ; for t 2 0;T½ Þ: ð63Þ

Thus I φ0ð Þ<d implies that I φð Þ<d for any t 2 0;½ TÞ:
Now we show J φð Þ<0 for t 2 0;½ TÞ: If otherwise, by the

continuity of J φð Þ on t, there exists t0 2 0;½ TÞ such that
J φ t0;ð ð ⋅ÞÞ¼ 0. By Equation (63), we have φ t0;ð ⋅Þ≠0. It is
clear that Equations (42) and (60) imply I φ t0;ð ð ⋅ÞÞ≥ d: This
is contradictory to I φ t;ð ð ⋅ÞÞ<d for t 2 0;½ TÞ. Thus J φ t;ð ð ⋅ÞÞ
<0 for all t 2 0;½ TÞ.

Then we show S φ t;ð ð ⋅ÞÞ<0 for all t 2 0;½ TÞ. On the
contrary, from the continuity, there exists t0 2 0;½ TÞ such
that S φ t0;ð ð ⋅ÞÞ¼ 0. Because we have shown S φ t0;ð ð ⋅ÞÞ¼ 0
and J φ t0;ð ð ⋅ÞÞ<0, it follows that φ t0;ð ⋅Þ 2M. Thus, Equa-
tions (43) and (60) imply I φ t0;ð ð ⋅ÞÞ≥ d2 ≥ d. This contra-
dicts to I φ t;ð ð ⋅ÞÞ<d for all t 2 0;½ TÞ. Therefore S φ t;ð ð ⋅ÞÞ
<0 for all t 2 0;½ TÞ. From the above we have proved φ t;ð xÞ
2K for any t 2 0;½ TÞ.

Similar to the proof above, we can also prove that Kþ,
R−, Rþ are invariant manifolds. □
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In the below, we will use the cross-constrained varia-
tional approach to investigate the sharp condition of global
existence for Equation (1).

Theorem 15. If φ0 2Kþ ∪ Rþ, then the solutionφ t;ð xÞ of the
Cauchy problem (1) globally exists.

Proof. For φ0 2Kþ, we have φ t;ð xÞ 2Kþ for t 2 0;½ TÞ by
Proposition 14. For t 2 0;½ TÞ, one has I φð Þ<d and S φð Þ>0.
It follows from Equations (38) and (40) that

Z
1
2
−

1
Np − N − α

� �
rφj j2 þ 1

2
φj j2 þ 1

2
∑
k

j¼1
ν2j x

2
j φj j2

 !
dx<d:

ð64Þ

First, we deal with the L2-critical case p¼ 1þ 2ð þ αÞ=N .
In this case, we infer from Equation (64) that

1
2

Z
φj j2 þ ∑

k

j¼1
ν2j x

2
j φj j2

 !
dx<d: ð65Þ

Denote φω xð Þ¼ω
αþN
2p φ ωxð Þ, then one has

S φω xð Þð Þ ¼ ω
2αþ4

Nþ2þα

Z
rφ xð Þj j2dx þ N þ α − Np

2pZ
Iα ∗ φj jpð Þ φj jpdx:

ð66Þ

It follows from S φð Þ>0 that there exists 0<ω1<1 such that
S φω1 xð Þð Þ¼ 0. Combining Equation (38) with Equation (40),
we deduce that

I φω1 xð Þð Þ ¼ 1
2

Z
φω1 xð Þj j2 þ ∑

k

j¼1
ν2j x

2
j φ

ω1 xð Þj j2
 !

dx

¼ 1
2

Z
ω
−

2N
Nþ2þα

1 φ xð Þj j2 þ ω
−
4Nþ4þ2α
Nþ2þα

1 ∑
k

j¼1
ν2j x

2
j φ xð Þj j2

 !
dx;

ð67Þ

which, together with Equation (64), yields

I φω1 xð Þð Þ<ω
−
4Nþ4þ2α
Nþ2þα

1 d: ð68Þ

Now we see J φω1ð Þ, which only has two possibilities. One is
J φω1ð Þ<0. In this case, noting that S φω1ð Þ¼ 0, we infer from
Equations (43) and (60) that

I φω1ð Þ ≥ d2 ≥ d>I φð Þ: ð69Þ

Thus,

I φð Þ − I φω1ð Þ<0: ð70Þ

That is,

1
2

1 − ω
4þ2α

Nþ2þα
1

� �Z
rφj j2dx þ 1

2
1 − ω

−
4Nþ4þ2α
Nþ2þα

1

� �Z
∑
k

j¼1
ν2j x

2
j φj j2dx

þ 1
2

1 − ω
−

2N
Nþ2þα

1

� �Z
φj j2dx<0:

ð71Þ

It follows thatZ
rφj j2dx<C

Z
∑
k

j¼1
ν2j x

2
j φj j2 þ φj j2

 !
dx: ð72Þ

By Equation (65), we obtainZ
rφj j2dx<C: ð73Þ

For J φω1ð Þ, the other possible case is J φω1ð Þ≥ 0. In the
present case, we deduce from the inequality Equation (68)
that

I φω1 xð Þð Þ − 1
2p

J φω1 xð Þð Þ<ω
−
4Nþ4þ2α
Nþ2þα

1 d: ð74Þ

Since S φω1ð Þ¼ 0 and Equation (74), one has

ω
4þ2α

Nþ2þα
1

Z
rφj j2dx þ p

p − 1
ω
−
4Nþ4þ2α
Nþ2þα

1

Z
∑
k

j¼1
ν2j x

2
j φj j2dx

þ ω
−

2N
Nþ2þα

1

Z
φj j2dx< 2p

p − 1
ω
−
4Nþ4þ2α
Nþ2þα

1 d:

ð75Þ

It follows from Equation (75) thatZ
rφj j2dx<C: ð76Þ

Thus, according to Proposition 1, we obtain that the solution
φ t;ð xÞ is global in time.

When 1þ 2ð þ αÞ=N<p< Nð þ αÞ= N −ð 2Þ, by Equation
(64), we also haveZ

rφj j2 þ ∑
k

j¼1
ν2j x

2
j φj j2dx<C: ð77Þ

By Proposition 1, the solution φ t;ð xÞ of Equation (1) exists
globally. Thus, the solution φ t;ð xÞ of Equation (1) with ini-
tial data φ0 2Kþ exists globally on t 2 0;½ þ1Þ.

Now we consider φ0 2Rþ. In view of Proposition 14, this
gives immediately that the solution φ t;ð xÞ of Equation (1)
satisfies that φ t;ð xÞ 2Rþ for t 2 0;½ TÞ. That is, I φð Þ<d and
J φð Þ>0 for t 2 0;½ TÞ. By Equations (38) and (39), we get
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1
2
−

1
2p

� �Z
rφj j2 þ φj j2 þ ∑

k

j¼1
ν2j x

2
j φj j2

 !
dx<d: ð78Þ

Thus, the solution of φ t;ð xÞ of Equation (1) exists globally.
This completes the proof. □

Theorem 16. Let max 2;f 1þ 2þ αð Þ=Ng≤ p< Nð þ αÞ=
N −ð 2Þ. If R xj j2 φ0j j2dx<1 and φ0 2K, then the solution
φ t;ð xÞ of Cauchy problem (1) blows up in finite time.

Proof. For φ0 2K, we know from Proposition 14 that the
solution φ t;ð xÞ of Equation (1) satisfies: φ t;ð xÞ 2K for t 2
0;½ TÞ. For V tð Þ¼ R xj j2 φj j2dx, it follows from Equations (22)
and (40) that

V 00 tð Þ<8S φ t; ⋅ð Þð Þ; for t 2 0;T½ Þ: ð79Þ

Thus for t 2 0;½ TÞ, φ satisfies that S φð Þ<0, J φð Þ<0. For

μ>0, we take φμ ¼ μ
Nþα
2p φ μxð Þ. Thus

J φμ

À Á ¼ μ
Nþαþ2p−Np

p

Z
rφj j2dx þ μ

Nþα−Np
p

Z
φj j2dx

−

Z
Iα ∗ φj jpð Þ φj jpdx;

S φμ

À Á ¼ μ
Nþαþ2p−Np

p

Z
rφj j2dx − Np − N − α

2pZ
Iα ∗ φj jpð Þ φj jpdx:

ð80Þ

Since 1þ 2ð þ αÞ=N ≤ p< Nð þ αÞ= N −ð 2Þ, S φð Þ<0, then
there exists μ1>1 such that S φμ1

À Á¼ 0, and when μ2 1;½
μ1Þ, S φμ

À Á
<0. For μ2 1;½ μ1�; since J φð Þ<0, J φμ

À Á
has the

following two cases:

(i) J φμ

À Á
<0 for μ2 1;½ μ1�;

(ii) There exists 1<μ2 ≤ μ1 such that J φμ2

À Á¼ 0.

For the case (i), we have S φμ1

À Á¼ 0 and J φμ1

À Á
<0. It

follows from Equations (43) and (60) that

I φμ1

À Á
≥ d2 ≥ d: ð81Þ

Furthermore, one has

I φð Þ − I φμ1

À Á ¼ 1
2

1 − μ
Nþαþ2p−Np

p

1

� �Z
rφj j2dx

þ 1
2

1 − μ
Nþα−Np

p

1

� �Z
φj j2dx

þ 1
2

1 − μ
Nþα−2p−Np

p

1

� �Z
∑
k

j¼1
ν2j x

2
j φj j2dx;

ð82Þ

S φð Þ − S φμ1

À Á¼ 1
2

1 − μ
Nþαþ2p−Np

p

1

� �Z
rφj j2dx: ð83Þ

Taking into account that μ1>1 and 1þ 2ð þ αÞ=N ≤ p<
Nð þ αÞ= N −ð 2Þ, we infer from Equations (82) and (83) that

I φð Þ − I φμ1

À Á
≥ S φð Þ − S φμ1

À Á¼ 1
2
S φð Þ: ð84Þ

For the case (ii), we have J φμ2

À Á¼ 0 and S φμ2

À Á
≤ 0. Thus,

Equations (42) and (60) yield that

I φμ2

À Á
≥ d1 ≥ d: ð85Þ

It follows from Equations (82) and (83) that

I φð Þ − I φμ2

À Á
≥ S φð Þ − S φμ2

À Á¼ 1
2
S φð Þ: ð86Þ

Since I φμ1

À Á
≥ d, I φμ2

À Á
≥ d, from Equations (84) and (86),

we obtain

S φð Þ<2 I φð Þ − d½ �: ð87Þ

From I φð Þ¼ I φ0ð Þ, φ0 2K and Equation (87), one can esti-
mate as follows:

V 00 tð Þ<8S φð Þ<16 I φ0ð Þ − d½ �<0: ð88Þ

Then, by the convexity method introduced by Glassey [28],
there must exist time 0<T<1 such that V Tð Þ¼ 0. Then
from Proposition 1 or Lemma 5, we have

lim
t→T

φk kΣ ¼1: ð89Þ

Thus, the proof is completed. □

Remark 17. When k¼N and ν1 ¼ ν2 ¼⋯¼ νk ¼ 1 in
Equation (1), Feng [7] derived the sharp threshold for global
existence and blow-up to the solutions of Equation (1) (see
Theorem 3.10 and Theorem 3.11 by Feng [7]). Our results in
Theorems 15 and 16 extend and compensate for the ones of
Feng [7] for Equation (1) with anisotropic partial/whole har-
monic confinement by constructing some new cross-
invariant sets and minimisation problems.

Remark 18. It is obvious that

φ 2 Σ \ 0f g; I φð Þ<df g ¼ Rþ ∪Kþ ∪K: ð90Þ

In this sense, Theorem 16 implies that Theorem 15 is sharp
when

R
xj j2 φ0j j2dx<1.

By the above corollary, we immediately have
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Corollary 19. Let max 2;f 1þ 2þ αð Þ=Ng≤ p< Nð þ αÞ=
N −ð 2Þ and φ0 satisfy

R
xj j2 φ0j j2dx<1 and I φð Þ<d. Then

the solution φ t;ð xÞ of Equation (1) blows up in finite time if
and only if φ0 2K.

By Theorem 15, we can get another sufficient condition
of the global existence of Equation (1).

Corollary 20. If φ0 2 Σ and φ0k k2Σ<2d, then the correspond-
ing solution φ t;ð xÞ of Equation (1) exists globally.

Proof. Since φ0k k2Σ<2d, we have I φ0ð Þ<d. Thus, we only
need to prove J φ0ð Þ>0. If otherwise, there exists γ with
0<γ ≤ 1, such that J γφ0ð Þ¼ 0. From Equations (40), (59),
and J γφ0ð Þ¼ 0, we have

I γφ0ð Þ ≥ d: ð91Þ

On the other hand,

γφ0k k2Σ ¼ γ2 φ0k k2Σ<2γ2d ≤ 2d: ð92Þ

Therefore, we have I γφ0ð Þ<d, which gives a contradiction.
Thus one has φ0 2Rþ. It follows from Theorem 15 that the
corollary holds true. □

4. Mass Concentration and Dynamics of the
L2-Minimal Blow-up Solutions

In this section, we are devoted to the dynamical properties of
blow-up solutions to Equation (1) with partial/whole har-
monic confinement. We first study the mass concentration
phenomenon and then the dynamics of the L2-minimal
blow-up solutions, including the precise mass-concentration
and blow-up rate to the blow-up solutions with mini-
mal mass.

In order to study the dynamical properties of the blow-
up solutions of Equation (1), we recall the refined compact-
ness lemma established by Feng and Yuan [22].

Lemma 21. Let p¼ 1þ 2ð þ αÞ=N, vnf g1n¼1 be a bounded
sequence in H1 RNð Þ and satisfy

lim sup
n→1

rvnk k22 ≤M; lim sup
n→1

Z
Iα ∗ vnj jpð Þ vnj jpdx ≥m:

ð93Þ

Then, there exists xnf g1n¼1 ⊂ RN such that, up to a subsequence,

vn x þ xnð Þ⇀U weakly in H1 RNð Þ; ð94Þ

with Uk k2 ≥ m=pMð Þ 1
2p−2 Q xð Þk k2.

Using the refined compactness lemma, we can establish the
following concentration property to the blow-up solutions of
Equation (1).

Theorem 22. (L2-concentration) Assume N − 2≤ α<N and
p¼ 1þ 2þð αÞ=N. Let φ t;ð xÞ be a solution of Equation (1)
that blows up in finite time T, and s tð Þ be a real-valued
nonnegative function on 0;½ TÞ such that s tð Þ rφk k2 →1
as t → T. Then there exists a function x tð Þ 2RN for t<T such
that

lim inf
t→T

Z
x−x tð Þj j≤s tð Þ

φ t; xð Þj j2dx ≥
Z

Q xð Þ2dx; ð95Þ

where Q xð Þ is the ground state solution of Equation (14).

Proof. Set

ρ tð Þ ¼ rQ xð Þk k2
rφk k2

; v t; xð Þ ¼ ρ tð ÞN2φ t; ρ tð Þxð Þ: ð96Þ

Let tnf g1n¼1 be an arbitrary time sequence such that tn → T
as n→1, and denote ρn ¼ ρ tnð Þ and vn xð Þ¼ v tn;ð xÞ. By
Equations (7), (8), and (96), we obtain

vnk k2 ¼ φ tnð Þk k2 ¼ φ0k k2; rvnk k2 ¼ ρn rφ tnð Þk k2
¼ rQ xð Þk k2:

ð97Þ

For f xð Þ 2H1 RNð Þ, we define the functional

H f xð Þð Þ ¼ 1
2

Z
rf xð Þj j2 − 1

p
Iα ∗ f xð Þj jpð Þ f xð Þj jp

� �
dx:

ð98Þ

From Equations (97), (6), and (96), one has that

H vnð Þ ¼ 1
2

Z
rvnj j2 − 1

p
Iα ∗ vnj jpð Þ vnj jp

� �
dx

¼ ρ2n

Z
1
2

rφ tnð Þj j2 − 1
p

Iα ∗ φ tnð Þj jpð Þ φ tnð Þj jp
� �

dx

¼ ρ2n E φ tnð Þð Þ − 1
2

Z
∑
k

j¼1
ν2j x

2
j φ tnð Þj j2dx

 !
≤ ρ2nE φ tnð Þð Þ ¼ ρ2nE φ0ð Þ→ 0 since ρn → 0 as n→1;

ð99Þ

which yields, in particular,Z
Iα ∗ φ tnð Þj jpð Þ φ tnð Þj jpdx→ p rQ xð Þk k22 as n→1:

ð100Þ

Take M¼ rQ xð Þk k22 and m¼ p rQ xð Þk k22. Then by Lemma
21, there exist U xð Þ 2H1 RNð Þ and xnf g1n¼1 ⊂ RN such that,
up to a subsequence,
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vn ⋅ þxnð Þ ¼ ρ
N
2
nφ tn; ρn ⋅ þxnð Þ⇀U weakly inH1 RNð Þ;

ð101Þ

with Uk k2 ≥ Q xð Þk k2. From Equation (101), it follows that

vn ⋅ þxnð Þ⇀U weakly in L2 RNð Þ: ð102Þ

Then, from Equation (102) and the weakly lower semicon-
tinuous of the L2-norm, it ensures that for any A>0,

lim inf
n→1

Z
xj j≤A

ρNn φ tn; ρnx þ xnð Þj j2dx ≥
Z

xj j≤A
Uj j2dx:

ð103Þ

Since

lim
n→1

s tnð Þ
ρn

¼1; ð104Þ

then there exists n0>0 such that for any n>n0, we obtain
that Aρn<s tnð Þ. It follows from Aρn<s tnð Þ and Equation
(103) that

lim inf
n→1 sup

y2RN

Z
x−yj j≤s tnð Þ

φ tn; xð Þj j2dx ≥ lim inf
n→1

Z
x−xnj j≤Aρn

φ tn; xð Þj j2dx

¼ lim inf
n→1

Z
xj j≤A

ρNn φ tn; ρnx þ xnð Þj j2dx

≥
Z

xj j≤A
Uj j2dx; for anyA>0;

ð105Þ

which implies that

lim inf
n→1 sup

y2RN

Z
x−yj j≤s tnð Þ

φ tn; xð Þj j2dx ≥
Z

Uj j2dx ¼ Uk k22:

ð106Þ

Due to the arbitrariness of the sequence tnf g1n¼1, from
Uk k2 ≥ Q xð Þk k2, we get that

lim inf
t→T

sup
y2RN

Z
x−yj j≤s tð Þ

φ t; xð Þj j2dx ≥ Qk k22: ð107Þ

For every t 2 0;½ TÞ, one can easily see that the function
g yð Þ: ¼ R x−yj j≤s tð Þ φ t; xð Þj j2dx is continuous on y2RN and
lim yj j→1 g yð Þ¼ 0. Therefore, for every t 2 0;½ TÞ, there exists
a function x tð Þ 2RN such that

sup
y2RN

Z
x−yj j≤s tð Þ

φ t; xð Þj j2dx ¼
Z

x−x tð Þj j≤s tð Þ
φ t; xð Þj j2dx:

ð108Þ

Thus, it follows from Equations (107) and (108) that (101)
holds true. □

Remark 23. According to Theorem 22, we know that the
blow-up solutions of Equation (1) must have a lower L2-
bound, i.e., φ0k k2 ≥ Q xð Þk k2, which on the contrary, indi-
cates that Theorem 8 holds true.

By Theorem 22, we can immediately obtain the conclu-
sion below.

Corollary 24. Let φ t;ð xÞ be a solution of Equation (1) that
blows up in finite time T. Then for all l>0, there exists x tð Þ 2
RN for t<T such that

lim inf
t→T

Z
B x tð Þ;lð Þ

φ t; xð Þj j2dx ≥
Z

Q2dx; ð109Þ

where Q xð Þ is the ground state solution of Equation (14) and
B x tð Þ;ð lÞ¼ x2f RN x − x tð Þk j≤ lg:

Theorem 25. Assume that N − 2≤ α<N and p¼ 1þ 2ð þ αÞ=
N. Let φ0 2Σ and φ t;ð xÞ be the corresponding solution of
problem Equation (1) that blows up in finite time T with
φ0k k2 ¼ Q xð Þk k2. Then

(i) (Location of L2-concentration point) there exists x0 2
RN such that

lim
t→T

x tð Þ ¼ x0; and φ t; xð Þj j2 → Qk k22δx¼x0 in the distribution sense as t → T; ð110Þ

where Q xð Þ is the ground state solution of Equation (14). (ii) (Blow-up rate) There exists a positive constant C>0
such that
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rφ tð Þk k2 ≥
C

T − t
; 8 t 2 0;T½ Þ: ð111Þ

Proof.

(i) According to Equation (7) and φ0k k2 ¼ Q xð Þk k2, for
t<T , we have

φk k2 ¼ φ0k k2 ¼ Q xð Þk k2: ð112Þ

On the other hand, from Theorem 22 and Corollary 24, for
all l>0, one has that

Q xð Þk k22 ≤ lim inf
t→T

Z
x−x tð Þj j≤l

φ t; xð Þj j2dx

≤ lim inf
t→T

Z
φ t; xð Þj j2dx ≤ φ0k k22:

ð113Þ

It is distinct that Equations (112) and (113) deduce

lim inf
t→T

Z
x−x tð Þj j< l

φ t; xð Þj j2dx ¼ Q xð Þk k22; ð114Þ

which implies that

φ t; x þ x tð Þð Þj j2 → Q xð Þk k22δx¼0; in the distribution sense as t → T:

ð115Þ

Next, we will prove that there exists x0 2RN such that

φ t; xð Þj j2 → Q xð Þk k22δx¼x0 in the distribution sense as t → T:

ð116Þ

In fact, for any real-valued function θ xð Þ defined on RN and
any real number β, from Equations (11) and (7), one can
estimate

E eiβθ xð Þφ
À Á ¼ 1

2

Z
r eiβθ xð Þφ
À Á�� ��2 þ ∑

k

j¼1
ν2j x

2
j eiβθ xð Þφ
�� ��2 − 1

p
Iα ∗ eiβθ xð Þφ

�� ��pÀ Á
eiβθ xð Þφ
�� ��p !

dx

≥
1
2

Z
r eiβθ xð Þφ
À Á�� ��2dx − 1

2p

Z
Iα ∗ eiβθ xð Þφ

�� ��pÀ Á
eiβθ xð Þφ
�� ��pdx

≥
1
2

Z
r eiβθ xð Þφ
À Á�� ��2dx 1 −

Z
φj j2dx

� �
p−1

Z
Q xð Þj j2dx

� �
p−1

0BB@
1CCA

¼ 0:

ð117Þ

Therefore, for any β2R, we infer from Equation (8) that

0 ≤ E eiβθ xð Þφ
À Á ¼ 1

2

Z
r eiβθ xð Þφ
À Á�� ��2 þ ∑

k

j¼1
ν2j x

2
j eiβθ xð Þφ
�� ��2 − 1

p
Iα ∗ eiβθ xð Þφ

�� ��pÀ Á
eiβθ xð Þφ
�� ��p !

dx

¼ 1
2
β2
Z

rθ xð Þ ⋅ φj j2dx þ βIm
Z

rθ xð Þ ⋅ rφ ⋅ φdx þ E φð Þ

¼ 1
2
β2
Z

rθ xð Þj j2 φj j2dx þ βIm
Z

rθ xð Þ ⋅ rφ ⋅ φdx þ E φ0ð Þ;

ð118Þ

which implies that

Im
Z

rθ xð Þ ⋅ rφ ⋅ φdx
���� ���� ≤ 2E φ0ð Þ

Z
rθj j2 φj j2dx

� �1
2

: ð119Þ
Then, choosing θa xð Þ¼ xj for j¼ 1; 2; ⋅⋅⋅;N in Equation
(119), using Equations (1), (119), and (8), we derive
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d
dt

Z
φ t; xð Þj j2xjdx

���� ���� ¼ 2Im
Z

iφt ⋅ φ ⋅ xjdx
���� ����

¼ 2Im
Z

−Δφþ ∑
k

j¼1
ν2j x

2
j φ

 �����
−λ Iα ∗ φj jpð Þ φj jp−2Þφ ⋅ xjdx

��
¼ 2Im

Z
− Δφ ⋅ φ ⋅ xjdx

���� ����
¼ 2Im

Z
rφ ⋅ φ ⋅ rxjdx

���� ����
≤ 2 2E φ0ð Þ

Z
φ0j j2dx

� �1
2 ¼ C:

ð120Þ

Taking any two sequences tnf g1n¼1, tmf g1m¼1 ⊂ 0;½ TÞ such
that limn→1 tn¼ limm→1 tm ¼T . Therefore, for all j¼ 1; 2;
…;N , we deduce from the inequality Equation (120) that

Z
φ tn; xð Þj j2xjdx −

Z
φ tm; xð Þj j2xjdx

���� ����
≤
Z

tn

tm

d
dt

Z
φ t; xð Þj j2xjdx

���� ����dt
≤ C tn − tmj j→ 0 as n; m→1;

ð121Þ

which implies that

lim
t→T

Z
φ t; xð Þj j2xjdx exists for any j¼ 1; 2;…;N: ð122Þ

In other words,

lim
t→T

Z
φ t; xð Þj j2xdx exists: ð123Þ

Set x0 ¼
limt→T

R
φ t; xð Þj j2xdx

Q xð Þk k22 , then x0 2RN and we obtain

lim
t→T

Z
φ t; xð Þj j2xdx ¼ x0 Q xð Þk k22: ð124Þ

On the other hand, we infer from Equation (22) that

d2

dt2

Z
xj j2 φ t; xð Þj j2dx ¼ 16E φ0ð Þ − 16

Z
∑
k

j¼1
ν2j x

2
j φj j2dx<16E φ0ð Þ:

ð125Þ

Thus, for any t 2 0;½ TÞ, there exists a constant c1>0 such
that

Z
xj j2 φ t; xð Þj j2dx ≤ c1: ð126Þ

Hence, we deduce thatZ
xj j2 φ t; x þ x tð Þð Þj j2dx ≤ 2

Z
x þ x tð Þj j2 φ t; x þ x tð Þð Þj j2dx

þ 2
Z

x tð Þj j2 φ t; x þ x tð Þð Þj j2dx
≤ 2c1 þ 2 x tð Þj j2 φ0k k22
¼ 2c1 þ 2 x tð Þj j2 Q xð Þk k22:

ð127Þ

From Equation (115), it follows that

lim sup
t→T

x tð Þj j2 Q xð Þk k22 ¼ lim sup
t→T

Z
xj j<1

x þ x tð Þj j2 φ t; x þ x tð Þð Þj j2dx

≤
Z

xj j2 φ t; xð Þj j2dx ≤ c0:

ð128Þ

From Equation (128), one can estimate

lim sup
t→T

x tð Þj j ≤
ffiffiffiffi
c1

p
Q xð Þk k2

: ð129Þ

Combined Equation (127) with Equation (129), we have

lim sup
t→T

Z
xj j2 φ t; x þ x tð Þð Þj j2dx ≤ C; ð130Þ

where C¼ 4c1. Thus, for any l0>0, one has

lim sup
t→T

Z
xj j≥l0

l0 xj j φ t; x þ x tð Þð Þj j2dx

≤ lim sup
t→T

Z
xj j≥l0

xj j2 φ t; x þ x tð Þð Þj j2dx ≤ C:
ð131Þ

Therefore, for any ε>0, there exists a large enough l0 ¼ l0 εð Þ
>0 such that

lim sup
t→T

Z
xj j≥l0

x φ t; x þ x tð Þð Þj j2dx
���� ���� ≤ C

l0
<ε: ð132Þ

Then, using Equations (132) and (115), we infer that for
any ε>0
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lim sup
t→T

Z
x φ t; xð Þj j2dx − x tð Þ Q xð Þk k22

���� ���� ¼ lim sup
t→T

Z
x φ t; xð Þj j2dx − x tð Þ

Z
φ t; xð Þj j2dx

���� ����
¼ lim sup

t→T

Z
φ t; xð Þj j2 x − x tð Þð Þdx

���� ����
¼ lim sup

t→T

Z
φ t; x þ x tð Þð Þj j2xdx

���� ����
≤ lim sup

t→T

Z
xj j≤l0

φ t; x þ x tð Þð Þj j2xdx
���� ���� þ ε

¼ ε:

ð133Þ

It follows from Equations (124) and (133) that

lim
t→T

x tð Þ ¼ x0; and lim sup
t→T

Z
x φ t; xð Þj j2dx ¼ x0 Q xð Þk k22:

ð134Þ

Therefore, there exists x0 2RN (see Equation (124)) such
that

φ t; xð Þj j2 → Q xð Þk k22δx¼x0 in the distribution sense as t → T:

ð135Þ

Thus, we know that Equation (110) holds true.

(ii) Taking z xð Þ 2C1
0 RNð Þ is a nonnegative radial func-

tion such that

z xð Þ ¼ z xj jð Þ ¼ xj j2; if xj j<1 and rz xð Þj j2 ≤ Cz xð Þ:
ð136Þ

For h>0, we define that zh xð Þ¼ h2z x=hð Þ and fh tð Þ¼R
zh x−ð x0Þ φ t; xð Þj j2dx with x0 define by Equation (124) (see

also Equation (135)). From Equation (119), for every t 2
0;½ TÞ, we derive

d
dt

fh tð Þ
���� ���� ¼ d

dt

Z
φ t; xð Þj j2zh x − x0ð Þdx

���� ����
¼ 2Im

Z
rφ ⋅ φ ⋅ rzh x − x0ð Þdx

���� ����
≤ 2 2E φ0ð Þ

Z
φ t; xð Þj j2 rzh x − x0ð Þj j2dx

� �1
2

≤ C
ffiffiffiffiffiffiffiffiffi
fh tð Þp

;

ð137Þ

which implies that

d
dt

ffiffiffiffiffiffiffiffiffi
fh tð Þ

p���� ���� ≤ C: ð138Þ

By integrating on both sides, one has thatffiffiffiffiffiffiffiffiffi
fh tð Þp

−

ffiffiffiffiffiffiffiffiffiffiffi
fh t∗ð Þp�� �� ≤ C t − t∗j j: ð139Þ

It is clear that Equation (110) implies

fh t∗ð Þ→ Q xð Þk k2zh 0ð Þ as t∗ → T; ð140Þ

where Q xð Þk k2zh 0ð Þ¼ 0. Thus, by letting t∗ → T in Equation
(139), we deduce that

fh tð Þ ≤ C T − tð Þ2: ð141Þ

Fix t 2 0;½ TÞ and let h→1, we obtainZ
φ t; xð Þj j2 x − x0j j2dx ≤ C T − tð Þ2: ð142Þ

It follows from the uncertainty principle and the above
inequality that

φ0k k22 ¼
Z

φ t; xð Þj j2dx

¼ −
2
N
Re
Z

rφ ⋅ φ ⋅ x − x0ð Þdx

≤ C
Z

φ t; xð Þj j2 x − x0j j2dx
� �1

2
Z

rφj j2dx
� �1

2

≤ C̄ T − tð Þ rφ tð Þk k2;
ð143Þ

which means that

rφ tð Þk k2 ≥
eC

T − t
; for 8 t 2 0;T½ Þ: ð144Þ

Therefore, the whole proof is completed. □

Remark 26.

(i) For Equation (1) without harmonic confinement, Feng
and Yuan [22] derived the similar mass concentration
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properties of blow-up solutions and dynamical proper-
ties of the L2-minimal blow-up solutions in the L2-crit-
ical case (see Theorems 1.4 and 1.5 by Feng and Yuan
[22]). Theorems 22 and 25 in our present paper extend
the corresponding conclusions of Feng and Yuan [22]
to the Schrödinger–Hartree equation with anisotropic
partial/whole harmonic confinement.

(ii) As we know, the characterisation of the blow-up
solutions with minimal mass depends strongly on
the uniqueness of the ground state of Equation (14).
However, in the general case 2≤ p< Nð þ αÞ= N −ð 2Þ
and 0<α<N , the uniqueness of the ground state of
Equation (14) is still open, so we cannot obtain the
limiting profile of the minimal mass blow-up solutions
to initial-value problem Equation (1) at the moment,
except for some special cases discussed by Miao et al.
[20] and Genev and Venkov [21].
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