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In this manuscript, we introduce the notions of fuzzy strong controlled metric spaces, fuzzy strong controlled quasi-metric spaces,
and non-Archimedean fuzzy strong controlled quasi-metric spaces and generalize the famous Banach contraction principle. We
prove several fixed point results in the context of non-Archimedean fuzzy strong controlled quasi-metric space. Furthermore, we
use our main result to obtain the existence of a solution for a recurrence problem linked with the study of Quicksort algorithms.

1. Introduction and Preliminaries

In 1965, Zadeh [1] introduced the notion of fuzzy sets. The
term “fuzzy” appears to be highly common and prevalent in
modern research linked to the logical and set-theoretical
aspects of mathematics. We believe that the primary cause
of this rapid change is simple to comprehend. The surround-
ing world is full of uncertainty, the information we obtain
from the environment, the notions we use and the data
resulting from our observation or measurement are, in gen-
eral, vague, and incorrect. Because of this, each explicit repre-
sentation of the world’s reality or a portion of it is, in each
instance, merely an estimate and an idealization of the real
situation. Fuzzy concepts, such as fuzzy sets, fuzzy orderings,
fuzzy languages, etc., make it possible to deal with and
explore the aforementioned level of uncertainty in a mathe-
matical and formal manner.

In 1988, Grabiec [2] proved a famous fuzzy version of the
Banach contraction principle by employing the notion of a
fuzzy metric space in the sense of Ivan Kramosil [3]. Although
Grabiec’s fixed point theorem has the drawback of not being
applicable to the fuzzymetric induced by the Euclideanmetric
on R, it is nevertheless useful (for more detail, see [4, 5]).
Rakić et al. [6] proved several fixed-point theorems in the
context of fuzzy b-metric spaces. As an important result,

they gave a sufficient condition for a sequence to be Cauchy
in a fuzzy b-metric space and they simplified the proofs of
many fixed-point theorems in fuzzy b-metric spaces with the
well-known contraction conditions. Mecheraoui et al. [7]
proved several interesting fixed-point results in the context
of E-fuzzy metric spaces. Moussaoui et al. [8] established
several fixed-point results for contraction mappings via
admissible functions and FZ-simulation functions in the
context of fuzzy metric spaces. Zhou et al. [9] proved several
fixed-point results for contraction mappings in the sense of
non-Archimedean fuzzy metric spaces. Recently, Kanwal
et al. [10] have established the notion of fuzzy strong b-metric
spaces and generalized a fuzzy version of the Banach contrac-
tion principle. Sezen [11] presented a generalized version of
Banach contraction principle in the context of controlled
fuzzy metric spaces. Ishtiaq et al. [12] and Farhan et al. [13]
used controlled function in generalization of metric spaces
and proved several fixed point results with applications. Al-
Omeri et al. [14] introduced (Φ, Ψ)-weak contractions in
neutrosophic cone metric spaces and established several fixed
point theorems. Al-Omeri et al. [15] and Al-Omeri [16] intro-
duced several contraction mappings and topological struc-
tures in generalized spaces and derived some interesting
results to find the fixed point for contractionmappings. Ghar-
eeb and Al-Omeri [17] introduced new degrees for functions
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in (L, M)-fuzzy topological spaces based on (L, M)-fuzzy
semiopen and (L, M)-fuzzy preopen operators. Batul et al.
[18] examined several fuzzy fixed point results of fuzzy map-
pings on b-metric spaces. Mohammadi et al. [19] proved
some fixed point results for generalized fuzzy contractive
mappings in fuzzy metric spaces with application to integral
equations. Rezaee et al. [20] worked on JS-Presic contractive
mappings in extended modular S-metric spaces and extended
fuzzy S-metric spaces.

We aim to extend the fuzzy version of the Banach con-
traction principle in the context of fuzzy strong controlled
(fsc) metric spaces, fuzzy strong controlled quasi-metric
spaces and non-Archimedean fuzzy strong controlled quasi-
metric spaces. In fact, we prove results in the broader setting
of non-Archimedean fuzzy strong controlled quasi-metric
spaces, because in this case, measuring the distance between
two words ϰ and ς automatically shows whether ϰ is a prefix
of ς or not. Finally, we will use our approaches to show that
some recurrence equations related to the complexity analysis
of Quicksort algorithms have a solution (and that it is unique)
(see [21–23]).

Kanwal et al. [10] established the following definition:
Consider V ≠ ϕ as an arbitrary set, ∗ is a continuous t-
norm (Ct-norm), g ≥ 1, and @ is a fuzzy set (F-set) on
V×V× 0;ð þ1Þ: It is said to be a fsc-metric if it verifies
for all ώ; κ;N 2V andϖ; k ≥ 0;

(i) @ ώ;ð κ; 0Þ ¼ 0;
(ii) @ ώ;ð κ;ϖÞ ¼ 1if and only if ώ ¼ κ;
(iii) @ ώ;ð κ;ϖÞ ¼ @ κ;ð ώ;ϖÞ;
(iv) @ ώ;ð κ;ϖÞ×@ κ;ð N; kÞ ≤ @ ώ;ð N;ϖþg:kÞ;
(v) @ ώ;ð κ; ⋅Þ : 0;½ þ1Þ À! 0;½ 1� is left continuous.
Then, V;ð @; ×;gÞ is known as a fuzzy strong b-metric

space.

2. Main Results

In this section, several new concepts and fixed-point results
are demonstrated.

Definition 1. Consider V ≠ ϕ is an arbitrary set, ∗ is a
Ct-norm, ζ :V×VÀ! 1;ð þ1Þ and @ is a F-set on V×
V× 0;ð þ1Þ: It is said to be a fsc-metric if it verifies for all
ώ; κ;N 2V andϖ; k ≥ 0;

(i) @ ώ;ð κ;ϖÞ ≥ 0;
(ii) @ ώ;ð κ;ϖÞ ¼ 1 if and only if ώ ¼ κ;
(iii) @ ώ;ð κ;ϖÞ ¼ @ κ;ð ώ;ϖÞ;
(iv) @ ώ;ð κ;ϖÞ×@ κ;ð N; kÞ ≤ @ ώ;ð N;ϖþ ζ ώ;ð NÞ:kÞ;
(v) @ ώ;ð κ; ⋅Þ : 0;½ þ1Þ À! 0;½ 1� is left continuous and

limϖÀ!þ1 @ ώ;ð κ;ϖÞ ¼ 1:

Then V;ð @; ×; ζÞ is known as fsc-metric space.

Remark 1. If we take ζ ώ;ð κÞ ¼ g ≥ 1, then any fsc-metric
space is a fuzzy strong b-metric space.

Proposition 1.AssumeV ¼ R and ζ :R×RÀ! 1;ð þ1Þ is
defined by ζ ώ;ð κÞ ¼ 1þ jώþ κj:

Let @ :V×V× 0;½ þ1Þ À! 0;½ 1� be defined by the fol-
lowing:

@ ώ; κ;ϖð Þ ¼ ατϖτ

ατϖτ þ ώ − κj jρ ; ð1Þ

for all α; τ>0;ϖ ≥ 0; ρ 2 N and ώ; κ 2V: Then V;ð @; ×; ζÞ
is a fsc-metric space with product and minimum Ct-norms.

Proposition 2. Let V ¼ R and ζ :R×RÀ! 1;ð þ1Þ
defined by ζ ώ;ð κÞ ¼ 1þ ώ2 þ κ2:

Let @ :V×V× 0;½ þ1Þ À! 0;½ 1� defined by the follow-
ing:

@ ώ; κ;ϖð Þ ¼ e
ώ−κj jρ
ατϖτ

h i
−1
; ð2Þ

for all α; τ>0;ϖ ≥ 0 and ώ; κ 2V: Then V;ð @; ×; ζÞ is a
fsc-metric space with product and minimum Ct-norms.

Example 2.1. Let V ¼ Rþ and f :VÀ! Rþ be a one-to-one
function. Assume a continuous and increasing function g :
Rþ À! 0;ð þ1Þ, fix α; β>0 and define @ by the following:

@ ώ; κ;ϖð Þ ¼ min f ώð Þ; f κð Þf gð Þα þ g ϖð Þ
max f ώð Þ; f κð Þf gð Þα þ g ϖð Þ

� �
β

: ð3Þ

Then, V;ð @; ×; ζÞ is a fsc-metric space with product
Ct-norm and ζ :V×VÀ! 1;ð þ1Þ is defined by the fol-
lowing:

ζ ώ; κð Þ ¼ 1; if ώ ¼ κ;

max 1þ ώ; 1þ κf g; if otherwise:

( )
ð4Þ

Proof. We examine only triangular inequality. Let f ώð Þ ≤
f Nð Þ; we have three cases:

(1) f ώð Þ ≤ f κð Þ ≤ f Nð Þ;
(2) f ώð Þ ≤ f Nð Þ ≤ f κð Þ;
(3) f κð Þ ≤ f ώð Þ ≤ f Nð Þ:
Now, if we put the following:

@ ώ;N;ϖ þ ζ ⋅ kð Þ
¼ f ώð Þα þ g ϖ þ ζ:kð Þ

f κð Þα þ g ϖ þ ζ:kð Þ
� �

β

⋅
f κð Þα þ g ϖ þ ζ:kð Þ
f Nð Þα þ g ϖ þ ζ:kð Þ
� �

β

:

ð5Þ
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Then, it is easy to examine the above three cases of
inequality

@ ώ; κ;ϖð Þ × @ κ;N; kð Þ ≤ @ ώ;N;ϖ þ ζ:kð Þ; ð6Þ

satisfied, since g is increasing.
The proof in case f ώð Þ> f Nð Þ is similar. □

Definition 2. Suppose V;ð @; ×; ζÞ is a fsc-metric space.

(i) Suppose ώτf g is a sequence in V: The sequence ώτf g
is said to be convergent to ώ if

lim
τÀ!þ1@ ώτ; ώ;ϖð Þ ¼ 1  for allϖ>0: ð7Þ

(ii) We say that a sequence ώτf g is Cauchy if for each
ϖ>0; and any ε 2 0;ð 1Þ, there exists a natural number
N such that @ ώτ;ð ώρ;ϖÞ>1− ε for all τ; ρ>N:

(iii) A fsc-metric space is known as a complete space if
every Cauchy sequence is convergent in V:

We will utilize continuous fsc-metric space in the next
study.

Theorem 1. Suppose V;ð @; ×; ζÞ is a complete fsc-metric
space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V be a map-
ping verifying

@ Qώ;Qκ; kϖð Þ ≥ @ ώ; κ;ϖð Þ for all ώ; κ 2V and k 2 0; 1ð Þ:
ð8Þ

Also, suppose that for each ώ2V; we deduce

lim
τÀ!þ1 ζ ώτ; κð Þ and lim

τÀ!þ1 ζ κ; ώτð Þ; ð9Þ

exists and are finite. Then Q has a unique fixed point in V:

Proof. Assume ώ0 2V is an arbitrary point and ώτf g be a
sequence in V; so that

ώτ ¼ Q ώτ−1 ¼ Qτώ0 for all τ 2 N: ð10Þ

Now,

@ ώτ; ώτþ1; kϖð Þ
¼ @ Qτώ0;Rτþ1ώ0; kϖð Þ ≥ @ Qτ−1ώ0;Qτώ0;ϖð Þ
¼ @ ώτ−1; ώτ;ϖð Þ ¼ @ Qτ−1ώ0;Qτώ0;ϖð Þ
≥ @ Qτ−2ώ0;Qτ−1ώ0;

ϖ

k

� �
¼ @ ώτ−2; ώτ−1;

ϖ

k

� �
≥⋯ ≥ @ ώ0; ώ1;

ϖ

kτ−1

� �
:

ð11Þ

That is,

@ ώτ; ώτþ1; kϖð Þ ≥ @ ώ0; ώ1;
ϖ

kτ−1

� �
; ð12Þ

for each τ 2 N and ϖ ≥ 0: Thus, for any integer ρ>0 by
utilizing triangular inequality, we deduce the following:

@ ώτ; ώτþρ; kϖ
À Á

≥ @ ώτ; ώτþ1;
ϖ

2

� �
× @ ώτþ1; ώτþρ;

ϖ

2ζ ώτþ1; ώτþρ

À Á
 !

≥ @ ώτ; ώτþ1;
ϖ

2

� �
× @ ώτþ1; ώτþ2;

ϖ

4ζ ώτþ1; ώτþρ

À Á
 !

× @ ώτþ2; ώτþ3;
ϖ

8ζ ώτþ1; ώτþρ

À Á
ζ ώτþ2; ώτþρ

À Á
 !

× @ ώτþ3; ώτþρ;
ϖ

8ζ ώτþ1; ώτþρ

À Á
ζ ώτþ2; ώτþρ

À Á
ζ ώτþ3; ώτþρ

À Á
 !

⋮

× @ ώτþρ−1; ώτþρ;
ϖ

2ρ−1ζ ώτþ1; ώτþρ

À Á
ζ ώτþ2; ώτþρ

À Á
ζ ώτþ3; ώτþρ

À Á
⋯ ζ ώτþρ−1; ώτþρ

À Á
 !

:

ð13Þ

By utilizing Equations (12) and (13), we deduce the
following:

@ ώτ; ώτþρ;ϖ
À Á

≥ @ ώ0; ώ1;
ϖ

2kτ

� �
× @ ώ0; ώ1;

ϖ

22ζ ώτþ1; ώτþρ

À Á
kτþ1

 !

× ⋯ × @ ώ0; ώ1;
ϖ

2ρ−1ζ ώτþ1; ώτþρ

À Á
ζ ώτþ2; ώτþρ

À Á
ζ ώτþ3; ώτþρ

À Á
⋯ ζ ώτþρ−1; ώτþρ

À Á
kτþρ−1

 !
:

ð14Þ
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As τ À! þ1 and kτ À! 0 implies that ϖ
2kτ À! þ1, so

by utilizing the definition of fsc-metric space, we get the
following:

@ ώτ; ώτþρ;ϖ
À Á

≥ 1 × 1 × 1 ×⋯ × 1 ¼ 1: ð15Þ

Thus, @ ώτ;ð ώτþρ;ϖÞ ≥ 1 and this implies that ώτf g is a
Cauchy sequence. GivenV is complete, so there exists κ inV
such that limτÀ!þ1 ώτ ¼ ώ:

Using triangular inequality

@ ώ;Qώ;ϖð Þ≥@ ώ; ώτþ1;
ϖ

2

� �
×@ ώτþ1;Qώ;

ϖ

2ζ ώ;Qώð Þ
� �

≥ @ ώ; ώτþ1;
ϖ

2

� �
× @ Qώτ;Qώ;

ϖ

2ζ ώ;Qώð Þ
� �

; @ ώ;Qώ;ϖð Þ

≥ @ ώ; ώτþ1;
ϖ

2

� �
× @ ώτ;ώ;

ϖ

2ζ ώ;Qώð Þ
� �

:

ð16Þ
As τ À! þ1, we get the following:

@ ώ;Qώ;ϖð Þ≥@ ώ; ώ;
ϖ

2

� �
×@ ώ; ώ;

ϖ

2ζ ώ;Qώð Þk
� �

¼ 1×1:

ð17Þ

That is, @ ώ;ð Qώ;ϖÞ ≥ 1: So, Qώ ¼ ώ:
Uniqueness: Let ώ and ώ∗ be two fixed points of the

operatorQ; then Qώ ¼ ώ andQώ∗ ¼ ώ∗ hence,

@ Qκ; κ;ϖð Þ ¼ 1 and@ Qκ∗; κ∗;ϖð Þ ¼ 1: ð18Þ

Then,

@ ώ; ώ∗;ϖð Þ ¼ @ Qώ;Qώ∗;ϖð Þ ≥ @ ώ; ώ∗;
ϖ

k

� �
≥ @ ώ; ώ∗;

ϖ

k2

� �
≥ ⋯ ≥ @ ώ; ώ∗;

ϖ

kτ

� �
;

ð19Þ

for all τ 2 N: By taking limit as τ À! þ1 in the preceding
inequality we get @ ώ;ð ώ∗;ϖÞ ¼ 1for all ϖ>0;
hence ώ ¼ ώ∗: □

Example 2.2. Let V ¼ 0;½ 1� and ζ :R×RÀ! 1;½ þ1Þ be
defined by ζ ώ;ð κÞ ¼ 1þ jώþ κj:

Let @ :V×V× 0;½ þ1Þ À! 0;½ 1� be defined by the fol-
lowing:

@ ώ; κ;ϖð Þ ¼ ατϖτ

ατϖτ þ ώ − κj jρ ; ð20Þ

for all α; τ>0;ϖ ≥ 0 and ώ; κ 2V: Then V;ð @; ×; ζÞ is a
complete fsc-metric space with product t-norm. Let Q ϰð Þ ¼
ϰ
2 ; then

@ Qώ;Qκ;kϖð Þ¼ kατϖτ

kατϖτþ ώ
2 −

κ
2

�� ��ρ ¼ 2ρkατϖτ

2ρkατϖτþ ώ− κj jρ

≥
ατϖτ

ατϖτþ ώ− κj jρ ¼@ ώ;κ;ϖð Þ
:

ð21Þ

That is,

@ Qώ;Qκ; kϖð Þ ≥ @ ώ; κ;ϖð Þ: ð22Þ

So, Q has a unique fixed point 0.

Theorem 2. Suppose V;ð @; ×; ζÞ is a complete fsc-metric
space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V be a map-
ping verifying

@ Qώ;Qκ; kϖð Þ ≥ @ ώ;Qώ;ϖð Þ × @ κ;Qκ;ϖð Þ for all ώ;
κ 2V and k 2 0; 1ð Þ:

ð23Þ
Also, suppose that for each ώ2V;

lim
τÀ!þ1 ζ ώτ; κð Þ and lim

τÀ!þ1 ζ κ; ώτð Þ; ð24Þ

exists and are finite. Then Q has a unique fixed point in V:

Proof. Assume ώ0 2V is an arbitrary point and ώτf g be a
sequence in V; so that

ώτ ¼ Q ώτ−1 ¼ Qτώ0 for all τ 2 N: ð25Þ
Now,

@ ώτ;ώτþ1;kϖð Þ¼@ Qώτ−1;Qώτ; kϖð Þ≥@ ώτ−1;Qώτ−1;ϖð Þ
× @ ώτ;Qώτ;ϖð Þ¼@ ώτ−1; ώτ;ϖð Þ× @ ώτ;ώτþ1;ϖð Þ:

ð26Þ
Since, @ ώ;ð κ;ϖÞ is strictly increasing and kϖ<ϖ; we

cannot write the following:

@ ώτ; ώτþ1; kϖð Þ ≥ @ ώτ; ώτþ1;ϖð Þ: ð27Þ

Therefore,

@ ώτ; ώτþ1; kϖð Þ ≥ @ ώτ−1; ώτ;ϖð Þ ¼ @ Qώτ−2;Qώτ−1;ϖð Þ ≥ @ ώτ−2;Qώτ−2;
ϖ

k

� �
× @ ώτ−1;Qώτ−1;

ϖ

k

� �
≥ @ ώτ−2; ώτ−1;

ϖ

k

� �
× @ ώτ−1; ώτ;

ϖ

k

� �
≥ ⋯ ≥ @ ώ0; ώ1;

ϖ

kτ−1

� �
;@ ώτ; ώτþ1; kϖð Þ ≥ @ ώ0; ώ1;

ϖ

kτ−1

� �
:

ð28Þ

4 Advances in Mathematical Physics



For every τ 2 N and ϖ ≥ 0. Thus, for any integer ρ>0
and by utilizing triangular inequality, we deduce the
following:

@ ώτ; ώτþρ; kϖ
À Á

≥ @ ώτ; ώτþ1;
ϖ

2

� �
× @ ώτþ1; ώτþρ;

ϖ

2ζ ώτþ1; ώτþρ

À Á
 !

≥ @ ώτ; ώτþ1;
ϖ

2

� �
× @ ώτþ1; ώτþ2;

ϖ

4ζ ώτþ1; ώτþρ

À Á
 !

× @ ώτþ2; ώτþ3;
ϖ

8ζ ώτþ1; ώτþρ

À Á
ζ ώτþ2; ώτþρ

À Á
 !

× @ ώτþ3; ώτþρ;
ϖ

8ζ ώτþ1; ώτþρ

À Á
ζ ώτþ2; ώτþρ

À Á
ζ ώτþ3; ώτþρ

À Á
 !

⋮

× @ ώτþρ−1; ώτþρ;
ϖ

2ρ−1ζ ώτþ1; ώτþρ

À Á
ζ ώτþ2; ώτþρ

À Á
ζ ώτþ3; ώτþρ

À Á
⋯ ζ ώτþρ−1; ώτþρ

À Á
 !

:

ð29Þ

By utilizing Equations (28) and (29), we deduce the
following:

@ ώτ; ώτþρ;ϖ
À Á

≥ @ ώ0; ώ1;
ϖ

2kτ

� �
× @ ώ0; ώ1;

ϖ

22ζ ώτþ1; ώτþρ

À Á
kτþ1

 !
×⋯

× @ ώ0; ώ1;
ϖ

2ρ−1ζ ώτþ1; ώτþρ

À Á
ζ ώτþ2; ώτþρ

À Á
ζ ώτþ3; ώτþρ

À Á
⋯ ζ ώτþρ−1; ώτþρ

À Á
kτþρ−1

 !
:

ð30Þ

Taking as τ À! þ1; kτ À! 0; this implies that ϖ
2kτ À!þ1, so by utilizing definition of a fsc-metric space, we get

the following:

@ ώτ; ώτþρ;ϖ
À Á

≥ 1 × 1 × 1 ×⋯ × 1 ¼ 1: ð31Þ

Thus, @ ώτ;ð ώτþρ;ϖÞ ≥ 1 and this implies that ώτf g is a
Cauchy sequence. Given V is complete and so, there exists κ
in V such that limτÀ!þ1 ώτ ¼ ώ:

Now, utilizing the contractive condition,

@ Qώτ;Qώ; kϖð Þ ≥ @ ώτ;Qώτ;ϖð Þ × @ ώ; Qώ; ϖð Þ
≥ @ ώτ; ώτþ1;ϖð Þ × @ ώ;Q ώ;ϖð Þ;

ð32Þ

As τ À! þ1; we have the following:

@ ώ; Qώ; kϖð Þ ≥ @ ώ; ώ;ϖð Þ × @ ώ; Qώ; ϖð Þ
¼ 1 × @ ώ; Qώ; ϖð Þ;
@ ώ; Qώ; kϖð Þ ≥ @ ώ; Qώ; ϖð Þ;

ð33Þ

which is a contradiction. Hence, Qώ ¼ ώ: So, ώ is a fixed
point of Q:

Uniqueness: Let ώ and ώ∗ be two fixed points of Q. So,
Qώ ¼ ώ andQώ∗ ¼ ώ∗; then

@ ώ; ώ∗;ϖð Þ ¼ @ Qώ;Qώ∗;ϖð Þ
≥ @ ώ; Qώ;

ϖ

k

� �
× @ ώ∗;Qώ∗;

ϖ

k

� �
¼ 1 × 1:

ð34Þ

That is, @ ώ;ð ώ∗;ϖÞ ¼ 1: Hence, ώ ¼ ώ∗: □

Corollary 1. Suppose V;ð @; ×; ζÞ is a complete fsc-metric
space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V be a map-
ping verifying.

@ Qώ;Qκ; kϖð Þ ≥ @ ώ;Qκ;ϖð Þ × @ κ;Qώ;ϖð Þ for all ώ;
κ 2V and k 2 0; 1ð Þ:

ð35Þ

Also, suppose that for each ώ 2V; we obtain the follow-
ing:

lim
τÀ!þ1 ζ ώτ; κð Þ and lim

τÀ!þ1 ζ κ; ώτð Þ; ð36Þ

exists and are finite. Then Q has a unique fixed point in V:

Proof. Immediate from Theorem 2. □

Definition 3. Suppose h :VÀ!V and O ώ0ð Þ ¼ ώ0;f hώ0;
h2ώ0;⋯g for some ώ0 2V is an orbit of h. A function T :
VÀ! R is known as h-orbitally lower semi continuous at
v 2V if for ώτf g ⊂ O ώ0ð Þ such that ώτ À! v; then we
obtain T vð Þ ≥ limτÀ!þ1 supT ώτð Þ:
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Example 2.3. Let V ¼ 0;½ 1� and h :VÀ!V defined by
h ϰð Þ ¼ ϰ

2 : Pick an element ώ0 ¼ 1
2 in V; then we obtain

the following:

O ώ0ð Þ ¼ O
1
2

� �
¼ 1

2
;
1
22

;
1
23

;
1
24

;⋯
� �

; ð37Þ

Observe that for any sequence ώτf g ⊂ O 1
2

À Á
; we examine

ώτ À! 0: Let T :VÀ! R be defined by the following:

T ϰð Þ ¼
1; ifϰ ¼ 0

3ϰ þ ffiffiffi
ϰ

p
3

; if
0<ϰ ≤ 1:

8<
: ð38Þ

Now, T 0ð Þ ¼ 3 and ώτ À! v ¼ 0 implies that

T 0ð Þ ¼ 1>0 ¼ lim
τÀ!þ1 supT ώτð Þ ¼ lim

τÀ!þ1 sup
3ώτ þ

ffiffiffiffiffiffi
ώτ

p
3

;

ð39Þ

which implies that h is orbital lower semicontinuous.

Theorem 3. Suppose V;ð @; ×; ζÞ is a complete fsc-metric
space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V be a map-
ping verifying

@ hώ;h2ώ;kϖð Þ≥@ ώ;hώ;ϖð Þ forall ώ;κ2V andk2 0;1ð Þ;
ð40Þ

for every ώ 2 O ώð Þ andϖ>0; where 0<k<1: Then hτώ0 À!
v: Furthermore, v is a fixed point of h if and only if Tώ ¼ @ ώ;ð
hώ;ϖÞ is h is orbital lower semi continuous at v:

Proof. Assume ώ0 2V is an arbitrary point and ώτf g be a
sequence in V; so that

ώτ ¼ hώτ−1 ¼ hώ0 for all τ 2 N ; ð41Þ

Now,

@ ώτ; ώτþ1; kϖð Þ ¼ @ hτώ0; hτþ1ώ0; kϖð Þ
≥@ hτ−1ώ0; hτώ0;ϖð Þ
¼ @ ώτ−1; ώτ;ϖð Þ ¼ @ hτ−1ώ0; hτώ0;ϖð Þ
≥@ hτ−2ώ0; hτ−1ώ0;

ϖ

k

� �
¼ @ ώτ−2; ώτ−1;

ϖ

k

� �
≥⋯ ≥ @ ώ0; ώ1;

ϖ

kτ−1

� �
;

ð42Þ

That is,

@ ώτ; ώτþ1; kϖð Þ ≥ @ ώ0; ώ1;
ϖ

kτ−1

� �
: ð43Þ

Same manners of Theorem 1, we get ώτf g is a Cauchy
sequence. From the completeness of V, we have ώτ À! v:
Suppose that T is orbitally lower semicontinuous at v 2V;

then we obtain the following:

@ v; hv; kϖð Þ ≥ lim
τÀ!þ1 sup@ ώτ; ώτþ1; kϖð Þ

≥ lim
τÀ!þ1 sup@ ώ0; ώ1;

ϖ

kτ−1

� �
¼ 1:

ð44Þ

Conversely, suppose hv ¼ v and ώτ ⊂ O ώð Þwith ώτ À! v;
then we have the following:

T vð Þ ¼ @ v; hv; kϖð Þ ≥ lim
τÀ!þ1 supT ώτð Þ ¼ @ ώτ; ώτþ1; kϖð Þ:

ð45Þ
□

Corollary 2. Suppose V;ð @; ×; ζÞ be a complete fsb-metric
space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V be a map-
ping verifying

@ hώ;h2ώ;kϖð Þ≥@ ώ;hώ;ϖð Þ forallώ;κ2V andk2 0;1ð Þ;
ð46Þ

for every ώ 2 O ώð Þ;ϖ>0; where 0<k<1: Then hτώ0 À!
ϖ: Furthermore, ϖ is a fixed point of h if and only if Tώ ¼
@ ώ;ð hώ;ϖÞ is h is orbital lower semi continuous at v:

Proof. Immediate from Theorem 3. □

Definition 4. Consider V ≠ ϕ be an arbitrary set, ∗ be a Ct-
norm, ζ :V×VÀ! 1;ð þ1Þ and @ be a F-set on V×V×
0;ð þ1Þ: It is said to be a fsc-quasi-metric if it verifies for all
ώ; κ;N 2V andϖ; k ≥ 0;

(i) @ ώ;ð κ; 0Þ ¼ 0;
(ii) @ ώ;ð κ;ϖÞ ¼ @ κ;ð ώ;ϖÞ ¼ 1if and only if ώ ¼ κ;
(iii) @ ώ;ð κ;ϖÞ×@ κ;ð N; kÞ ≤ @ ώ;ð N;ϖþ ζ ώ;ð NÞ:kÞ;
(iv) @ ώ;ð κ; ⋅Þ : 0;½ þ1Þ À! 0;½ 1� is left continuous and

limϖÀ!þ1 @ ώ;ð κ;ϖÞ ¼ 1:

Then V;ð @; ×; ζÞ is known as a fsc-quasi-metric space.

Remark 2. Every fsc-quasi-metric space V;ð @; ×; ζÞ is
nondecreasing.

Remark 3. If V;ð @; ×; ζÞ is a fsc-quasi-metric space, then
V;ð @−1; ×; ζÞ is also a fsc-quasi-metric space, where @−1 is a
fuzzy set defined by @−1 ϰ;ð ς;ϖÞ ¼ @ ς;ð ϰ;ϖÞ: Moreover,
we denote fuzzy set @i by @i ϰ;ð ς;ϖÞ ¼ min @ ϰ;ðf ς;ϖÞ;
@−1 ϰ;ð ς;ϖÞg; then V;ð @i; ×; ζÞ is a fsc-metric space.

Theorem 4. Suppose V;ð @; ×; ζÞ be a complete fsc-quasi-
metric space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V be
a mapping verifying

@ Qώ;Qκ; kϖð Þ ≥ @ ώ; κ;ϖð Þ for all ώ; κ 2V and k 2 0; 1ð Þ:
ð47Þ
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Also, suppose that for each ώ2V;we deduce

lim
τÀ!þ1 ζ ώτ; κð Þ and lim

τÀ!þ1 ζ κ; ώτð Þ; ð48Þ
exists and are finite. Then Q has a unique fixed point in V:

Theorem 5. Suppose V;ð @; ×; ζÞ is a complete fsc-quasi-
metric space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V
be a mapping verifying

@ Qώ;Rκ; kϖð Þ ≥ @ ώ;Qώ;ϖð Þ × @ κ;Qκ;ϖð Þ for all ώ;
κ 2V and k 2 0; 1ð Þ:

ð49Þ
Also, suppose that for each ώ 2V;we deduce the following:

lim
τÀ!þ1 ζ ώτ; κð Þ and lim

τÀ!þ1 ζ κ; ώτð Þ; ð50Þ
exists and are finite. Then Q has a unique fixed point in V:

Theorem 6. Suppose V;ð @; ×; ζÞ is a complete fsc-quasi-
metric space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V
be a mapping verifying

@ Qώ;Qκ; kϖð Þ ≥ @ ώ;Qκ;ϖð Þ × @ κ;Qώ;ϖð Þ for all ώ;
κ 2V and k 2 0; 1ð Þ:

ð51Þ
Also, suppose that for each ώ 2V; we deduce the following:

lim
τÀ!þ1 ζ ώτ; κð Þ and lim

τÀ!þ1 ζ κ; ώτð Þ; ð52Þ

exists and are finite. Then Q has a unique fixed point in V:

Theorem 7. Suppose V;ð @; ×; ζÞ is a complete fsc-quasi-
metric space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V
be a mapping verifying

@ hώ;h2ώ;kϖð Þ≥@ ώ;hώ;ϖð Þ forall ώ;κ2V andk2 0;1ð Þ;
ð53Þ

for every ώ 2 O ώð Þ;ϖ>0; where 0<k<1: Then hτώ0 À!
ϖ: Furthermore, ϖ is a fixed point of h if and only if Tώ ¼
@ ώ;ð hώ;ϖÞ is h orbital lower semi continuous at v:

Definition 5. If V;ð @; ×; ζÞ is a fsc-quasi-metric space, then
it is known as bicomplete fsc-quasi-metric space if V;ð @i; ×;
ζÞ is complete.

Theorem 8. Suppose V;ð @; ×; ζÞ is a bicomplete fsc-quasi-
metric space, ζ :V×VÀ! 1;ð þ1Þ and let Q :VÀ!V be
a mapping verifies

@ Qώ;Qκ; kϖð Þ ≥ @ ώ; κ;ϖð Þ for all ώ; κ 2V and k 2 0; 1ð Þ:
ð54Þ

Also, suppose that for each ώ 2V; we deduce the fol-
lowing:

lim
τÀ!þ1 ζ ώτ; κð Þ and lim

τÀ!þ1 ζ κ; ώτð Þ; ð55Þ

exists and are finite. Then Q has a unique fixed point in V:

Proof. Immediate if we take @i Qώ;ð Qκ; kϖÞ ≥ @i ώ;ð κ;ϖÞ
and proceeding on the lines of Theorem 1. □

Definition 6. A fsc-quasi-metric space V;ð @; ×; ζÞ such that

@ ϰ; ς;ϖ þ ζ ώ;Nð Þ:kð Þ ≥min @ ϰ; z;ϖð Þ;@ z; ς; kð Þf g;
ð56Þ

for all ϰ; ς; z 2V andϖ>0 is known as a non-Archimedean
fsc-quasi-metric space.

Theorem 9. Suppose V;ð @; ×; ζÞ is a bicomplete non-
Archimedean fsc-quasi-metric space, ζ :V×VÀ! 1;ð þ1Þ
and let Q :VÀ!V is a mapping verifying

@ Qώ;Qκ; kϖð Þ ≥ @ ώ; κ;ϖð Þ  for all ώ; κ 2V and k 2 0; 1ð Þ:
ð57Þ

Also, suppose that for each ώ 2V; we deduce the fol-
lowing:

lim
τÀ!þ1 ζ ώτ; κð Þ and lim

τÀ!þ1 ζ κ; ώτð Þ; ð58Þ

exists and are finite. Then Q has a unique fixed point in V:

3. Quicksort Algorithm

Let τ be the size of the input and E τð Þ be the average (antici-
pated value) of the number of times the algorithm performs
the fundamental operation for an input size of ρ for a given
algorithm. Now we look at the quicksort algorithm, which
was established by Hoare [22] (for more details, see [21]).
Quicksort performs the sort by dividing the array into parti-
tions and then recursively sorting each partition.

Average-case time complexity.
The basic operation compares S i½ � to pivot items in a
partition.
The number of items in the array S determines the size of
the input.

We suppose that there is no reason to believe the num-
bers in the array are in any particular order and that the value
of the pivot point provided by partition might be any integer
from 1 to τ. This study would be invalid if there were cause to
believe the different distributions. When every conceivable
ordering is sorted the same number of times, the average
achieved is the average sorting time. The following recur-
rence gives the average-case time complexity in this case:
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E τð Þ ¼ ∑
τ

ρ¼1

1
τ
E ρ − 1ð Þ þ E τ − ρð Þ½ � þ τ − 1; ð59Þ

1
τ ¼ probability pivot point is ρ;

E ρ − 1ð Þþ½ E τ − ρð Þ� ¼ average time to sort sub arrays
when pivot point is p,

τ− 1 ¼ times of partition.
Therefore,

∑
τ

ρ¼1
E ρ − 1ð Þ þ E τ − ρð Þ½ � ¼ 2 ∑

τ

ρ¼1
E ρ − 1ð Þ: ð60Þ

Combination of Equations (59) and (60) yields

E τð Þ ¼ 2
τ
∑
τ

ρ¼1
E ρ − 1ð Þ þ τ − 1ð Þ; ð61Þ

multiplying τ on both sides, we get the following:

τE τð Þ ¼ 2 ∑
τ

ρ¼1
E ρ − 1ð Þ þ τ τ − 1ð Þ: ð62Þ

Utilizing Equation (62) to τ− 1 yields

τ − 1ð ÞE τ − 1ð Þ ¼ 2 ∑
τ−1

ρ¼1
E ρ − 1ð Þ þ τ − 1ð Þ τ − 2ð Þ: ð63Þ

Subtracting Equation (62) from Equation (63) gives

τE τð Þ − τ − 1ð ÞE τ − 1ð Þ ¼ 2E τ − 1ð Þ þ 2 τ − 1ð Þ; ð64Þ

which yields

E 1ð Þ ¼ 0;E τð Þ ¼ 2 τ − 1ð Þ
τ

þ τ þ 1
τ

E τ − 1ð Þ; τ ≥ 2: ð65Þ

4. Application to Domain Words

Suppose a nonempty alphabet ∑ and assume the set of all
finite and infinite sequences (words) over ∑; that is ∑þ1.
Where we assume that ϕ 2 ∑þ1 : The prefix order on ∑þ1
denoted by ⊑; i.e., ϰ ⊑ ς()ϰ is a prefix of ς: For every ϰ 2
∑þ1 defined by l ϰð Þ, the length of ϰ: That is, l ϰð Þ 2 1;½ þ1Þ
whenever ϰ ≠ ϕ and l ϕð Þ ¼ 0. For every ϰ; ς 2 ∑þ1; sup-
pose ϰ⊓ς be the common prefix of ϰ and ς: Thus the func-
tion d⊑ defined on ∑þ1 ×∑þ1 by the following:

d⊑ ϰ; ςð Þ ¼ 0;   if ϰ ⊑ ς

d⊑ ϰ; ςð Þ ¼ 2−l ϰ⊓ ςð Þ;  if otherwise;
ð66Þ

is a quasi-metric on ∑þ1. We take the convention 2−1 ¼ 0:
Let

@d⊑1 ϰ; ς; 0ð Þ ¼ 0; for all ϰ; ς 2 ∑
þ1

;

@d⊑1 ϰ; ς;ϖð Þ ¼ 1; if ϰ ⊑ ς;
@d⊑1 ϰ; ς;ϖð Þ ¼ 1 − 2−l ϰ⊓ ςð Þ;

if ϰ is not a prefix of ς andϖ 2 0; 1�ð ;
@d⊑1 ϰ; ς;ϖð Þ ¼ 1; if ϰ is not a prefix of ς andϖ>1:

ð67Þ

Remark 4. ∑þ1;ð @d⊑1 ; ×; ζÞ is a bicomplete non-
Archimedean fsc-quasi-metric space with minimum Ct-
norm and ζ :∑þ1 ×∑þ1 À! 1;ð þ1Þ defined by ζ ϰ;ð ςÞ ¼
1þ jϰj þ jςj:

Let @d⊑ ϰ;ð ς;ϖÞ be defined as follows:

@d⊑ ϰ;ς;ϖð Þ¼

0; ifϖ¼ 0; forallϰ;ς2 ∑
þ1

;

ϖ

ϖþ2−l ϰ⊓ ςð Þ ; if ϰ isnotaprefixof ςandϖ>0;

1; if ϰ⊑ςandϖ>0:

8>>><
>>>:

ð68Þ

Remark 5. ∑þ1;ð @d⊑ ; ×; ζÞ is a bicomplete non-
Archimedean fsc-quasi-metric space with minimum Ct-
norm and ζ :∑þ1 ×∑þ1 À! 1;ð þ1Þ defined by ζ ϰ;ð ςÞ ¼
1þ jϰj þ jςj:

Next, for complexity analysis of the quicksort algorithm,
utilize Theorem 9. The below recurrence equation

E 1ð Þ ¼ 0;E τð Þ ¼ 2 τ − 1ð Þ
τ

þ τ þ 1
τ

E τ − 1ð Þ; τ ≥ 2; ð69Þ

is examined in the average case analysis of the quicksort
algorithm. Assume as an alphabet ∑ ¼ 0;ð þ1Þ: We asso-
ciate E with the functional Ψ :∑þ1 À!∑þ1 defined by the
following:

Ψ ϰð Þð Þ1 ¼E 1ð Þand Ψ ϰð Þð Þτ ¼
2 τ−1ð Þ

τ
þ τþ1

τ
ϰ τ−1ð Þ;τ≥2:

ð70Þ

If ϰ 2 ∑þ1 has length τ< þ1; we write ϰ :¼ ϰ1ϰ2 ⋯ ϰτ
otherwise we write ϰ :¼ ϰ1ϰ2 ⋯ : Now we show that Ψ satis-
fies Theorem 9 on ∑þ1;ð @d⊑ ; ×; ζÞ with contraction con-
stant 12 : From construction, we obtain l Ψ ϰð Þð Þ ¼ l ϰð Þþ 1 for
all ϰ; ς 2 ∑þ1 (in particular, l Ψ ϰð Þð Þ ¼ þ1 whenever
l ϰð Þ ¼ þ1Þ: Furthermore, it is obvious that ϰ ⊑ ς if and
only if Ψ ϰð Þ ⊑ Ψ ςð Þ and Ψ ϰ⊓ςð Þ ⊑ Ψ ϰð Þ⊓Ψ ςð Þ: Therefore,
l Ψ ϰð Þ⊓Ψ ςð Þð Þ ≤ l Ψ ϰð Þð Þ⊓ l Ψ ςð Þð Þ. From the following:

@d⊑ Ψ ϰð Þ;Ψ ςð Þ;ϖ
2

� �
¼ @d⊑ ϰ; ς;ϖð Þ ¼ 1; ð71Þ

and if ϰ is not a prefix of ς; then

@d⊑ Ψ ϰð Þ;Ψ ςð Þ;ϖ
2

� �
¼

ϖ
2

ϖ
2 þ2−l Ψ ϰð Þ⊓Ψ ςð Þð Þ≥

ϖ
2

ϖ
2 þ2−l Ψ ϰ⊓ ςð Þð Þ

¼
ϖ
2

ϖ
2 þ2− l ϰ⊓ ςð Þþ1ð Þ ¼

ϖ

ϖþ2−l ϰ⊓ ςð Þ ¼@d⊑ ϰ;ς;ϖð Þ;
;

ð72Þ

for all ϖ>0: That is, @d⊑ Ψ ϰð Þ;ð Ψ ςð Þ; ϖ2 Þ ≥ @d⊑ ϰ;ð ς;ϖÞ:
That is, Ψ has a unique fixed point z ¼ z1z2z3⋯; which is
a unique solution for the recurrence equation E; i.e., z1 ¼ 0
and
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zτ ¼
2 τ − 1ð Þ

τ
þ τ þ 1

τ
zτ−1;  τ ≥ 2: ð73Þ

Remark 6. The above procedure can also be used with prod-
uct Ct-norm instead of minimum Ct-norm.

5. Conclusion

In this manuscript, we established fuzzy strong controlled met-
ric spaces, fuzzy strong controlled quasi-metric spaces, and
non-Archimedean fuzzy strong controlled quasi-metric spaces
and generalized the famous Banach contraction principle. In
fact, we proved our findings in the broader setting of non-
Archimedean fuzzy strong controlled quasi-metric spaces,
because in this case, measuring the distance between two words
ϰ and ς automatically shows whether ϰ is a prefix of ς or not.
Finally, we utilized our approaches to show that some recur-
rence equations related to the complexity analysis of the quick-
sort algorithms have a solution (and that it is unique). In future,
we will work on generalizations of fuzzymetric spaces and fixed
point results for new types of contraction mappings.
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