The Separation Properties of Binary Topological Spaces

Xiaoli Qiang, ${ }^{1}$ Saber Omidi $\mathbb{D}^{(},{ }^{2}$ P. Sathishmohan, ${ }^{3}$ K. Lavanya, ${ }^{3}$ and K. Rajalakshmi ${ }^{4}$
${ }^{1}$ Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
${ }^{2}$ Ministry of Education Iran, Department of Education, Tehran, Iran
${ }^{3}$ Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore, 641029 Tamil Nadu, India
${ }^{4}$ Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore, 641008 Tamil Nadu, India

Correspondence should be addressed to Saber Omidi; omidi.saber@yahoo.com
Received 26 July 2022; Revised 4 December 2022; Accepted 2 March 2023; Published 3 April 2023
Academic Editor: Khalid K. Ali
Copyright © 2023 Xiaoli Qiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the present study, we introduce some new separation axioms for binary topological spaces. This new idea gives the notion of generalized binary ($T_{0}, T_{1}, T_{2}, T_{3}$, and T_{4} spaces) and binary generalized semi ($T_{0}, T_{1}, T_{2}, T_{3}$, and T_{4} spaces) using generalized binary open sets and binary generalized semi open sets to investigate their properties. We also provide adequate examples to assist and understand abstract concepts. In the similar manner, we begin researching the $\mathrm{b}-\mathrm{sg}-T_{0}, \mathrm{~b}-\mathrm{sg}-T_{1}, \mathrm{~b}-\mathrm{sg}-T_{2}, \mathrm{~b}-\mathrm{sg}-T_{3}$, and b -sg$T_{4}$ spaces in binary topological spaces. The study on the axioms is done over binary- T_{0}, binary- T_{1}, binary- T_{2}, binary- T_{3}, and binary- T_{4} spaces, motivated to do the analysis of the spaces $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{0}, \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{1}, \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{2}, \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{3}$, and $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-$ T_{4} as well.

1. Introduction and Preliminaries

Topology is the most advanced area of pure mathematics which studies mathematical structures. Many scholars have recently analyzed the binary topology that was originally developed by Nithyanantha Jothi and Thangavelu [1]. They also investigated topological structures, displaying their many characteristics in relation to binary topological spaces. In 2011, Nithyanantha Jothi and Thangavelu [1, 2] introduced $\mathscr{B} \mathscr{T}$ from X to Y. The authors explored the ideas of binary closed, binary closure, binary interior, binary continuity, base, and subbase of a $\mathscr{B} \mathscr{T} \mathcal{S}$. In 2012, the authors [3] introduced the concept of binary- T_{0}, binary- T_{1}, binaryT_{2}, binary- T_{3}, and binary- T_{4} spaces. The binary points (x_{1}, $\left.y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ are distinct if $x_{1} \neq x_{2}, y_{1} \neq y_{2}$. In a $\mathscr{B} \mathscr{T}$ $\mathcal{S}(X, Y, \mathscr{M})$, a subset (A, B) is said to be binary semi open [4] if there exists a binary open set (U, V) so that (U, V) $\subseteq(A, B) \subseteq b-\mathrm{cl}(U, V)$, in which $b-\mathrm{cl}(U, V)$ denotes the binary closure of (U, V) in (X, Y). The complement of a binary semi open set is called binary semi closed, and a subset (A, B) of (X, Y) is said to be generalized binary closed [5] if $b-\mathrm{cl}(A, B) \subseteq(U, V)$ whenever $(A, B) \subseteq(U, V)$ and (U, V) is
binary open. The complement of generalized binary closed set is called generalized binary open. Izadi et al. and Kosari et al. $[6,7]$ tried to transform quartic Diophantine equations into cubic elliptic curves in 2021, and Shao et al. [8] introduced some extensions of Fejér-divergences in 2022. Recently, Sathishmohan et al. [9] proposed the idea of b-gs(b-sg)-closed sets in $\mathscr{B} \mathscr{T} \mathcal{S}$. Consequently, they [10] introduced the concept of bs- T_{0}, bs- T_{1}, bs $-T_{2}, \mathrm{bs}-T_{3}$, and bs- T_{4} spaces. This work introduces and identifies the basic features of the $\mathrm{gb}(\mathrm{b}-\mathrm{gs})$ $T_{0}, \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{1}, \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{2}, \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{3}$, and $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{4}$ spaces in $\mathscr{B} \mathscr{T} \mathcal{S}$. The analysis ended up with b -sg- T_{0}, b-sg$T_{1}, \mathrm{~b}-\mathrm{sg}-T_{2}, \mathrm{~b}-\mathrm{sg}-T_{3}$, and b -sg- T_{4} spaces in $\mathscr{B} \mathscr{T} \mathcal{S}$ with various illustrations to demonstrate the behaviour of these new classes of functions.

In the present examination, we use the following symbols: $\mathscr{T} \mathcal{S}, \mathscr{G} \mathcal{S}, \mathscr{G} \mathcal{S} \mathscr{C}, \mathcal{S} \mathscr{G}, \mathcal{S} \mathscr{G}, \mathscr{B} \mathscr{T}, \mathscr{B} \mathscr{C}, \mathscr{B} \mathcal{O}, \mathscr{G}$ $\mathscr{B} \mathcal{O}, \mathscr{G} \mathscr{B}, \mathscr{B} \mathscr{G} \mathscr{C}, \mathscr{B} \mathscr{G} \mathcal{O}, \mathscr{B} \mathcal{S} \mathscr{G} \mathscr{C}$, and $\mathscr{B} \mathcal{S} \mathscr{G}$ (topological spaces, binary topological spaces, generalized semi open set, generalized semi closed set semi generalized closed set, semi generalized open set, binary closed set, binary open set, generalized binary open, generalized binary closed, binary generalized semi closed set, binary generalized semi
open set, binary semi generalized closed set, and binary semi generalized open set).

2. $\mathbf{g b}(\mathbf{b}-\mathbf{g s})-T_{0}, \mathbf{g b}(\mathbf{b}-\mathbf{g s})-T_{1}$, and $\mathbf{g b}(\mathbf{b}-\mathbf{g s})-T_{2}$ Spaces

We define the concept of $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{0}, \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{1}$, and $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{2}$ spaces and explore some of their characterizations in the study.

Definition 1. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a generalized binary- T_{0} (briefly, $\mathrm{gb}-T_{0}$) if for any two jointly distinct points $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$, there exists $\mathscr{G} \mathscr{B} \mathcal{O}(\mathscr{H}, \mathscr{J})$ such that exactly one of the following holds:
(i) $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$
(ii) $\left(k_{1}, l_{1}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J}),\left(k_{2}, l_{2}\right) \in(\mathscr{H}, \mathscr{J})$

Definition 2. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a generalized binary- T_{1} (briefly, gb- T_{1}) if for every two jointly distinct points $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$ with $k_{1} \neq x_{2}, y_{1} \neq y_{2}$, there exists $\mathscr{G} \mathscr{B} \mathscr{O}(\mathscr{H}, \mathcal{F})$ and $(\mathscr{Q}, \mathscr{W})$ with $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathcal{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W})$ such that $\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$, $\left(k_{1}, l_{1}\right) \in(\mathscr{K}-\mathscr{Q}, \mathscr{L}-\mathscr{W})$.

Definition 3. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a generalized binary- T_{2} (briefly, gb- T_{2}) if for any two jointly distinct points $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$, with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$, there exists disjoint $\mathscr{G} \mathscr{B} \mathscr{O}(\mathscr{H}, \mathscr{F})$ and $(\mathscr{Q}, \mathscr{W})$ such that $\left(k_{1}, l_{1}\right)$ $\in(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W})$.

Definition 4. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a binary generalized semi- T_{0} (briefly, b-gs- T_{0}) if for any two jointly distinct points $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$, there exists $\mathscr{B} \mathscr{G} \mathcal{O}(\mathscr{H}, \mathcal{J})$ such that exactly one of the following holds:
(i) $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$
(ii) $\left(k_{1}, l_{1}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J}),\left(k_{2}, l_{2}\right) \in(\mathscr{H}, \mathscr{J})$

Definition 5. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a binary generalized semi- T_{1} (briefly, b-gs- T_{1}) if for every two jointly distinct points $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$ with $k_{1} \neq k_{2}, l_{1} \neq$ l_{2}, there exists $\mathscr{B} \mathscr{G} \mathcal{O}(\mathscr{H}, \mathscr{J})$ and $(\mathscr{Q}, \mathscr{W})$ with $\left(k_{1}, l_{1}\right)$ $\in(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W})$ such that $\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}$, $\mathscr{L}-\mathscr{J}),\left(k_{1}, l_{1}\right) \in(\mathscr{K}-\mathscr{Q}, \mathscr{L}-\mathscr{W})$.

Definition 6. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a binary generalized semi- T_{2} (briefly, b-gs- T_{2}) if for any two jointly distinct points $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$, with $k_{1} \neq k_{2}, l_{1} \neq l_{2}$, there exists disjoint $\mathscr{B} \mathscr{G} \mathcal{O}(\mathscr{H}, \mathscr{J})$ and $(\mathscr{Q}, \mathscr{W})$ such that $\left(k_{1}, l_{1}\right)$ $\epsilon(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W})$.

Theorem 7. Let $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ be a $\mathscr{B} \mathscr{T}$; then, for
(1) every $b-T_{0}$ space is $g b(b-g s)-T_{0}$ space
(2) every $b-T_{1}$ space is $g b(b-g s)-T_{1}$ space
(3) every $b-T_{2}$ space is $g b(b-g s)-T_{2}$ space.
(4) every $g b(b-g s)-T_{1}$ space is $g b(b-g s)-T_{0}$ space
(5) every $g b(b-g s)-T_{2}$ space is $g b(b-g s)-T_{0}$ space
(6) every $g b(b-g s)-T_{2}$ space is $g b(b-g s)-T_{1}$ space

Proof.
(1) Let $(\mathscr{K}, \mathscr{L})$ be a b- T_{0} space and $\left(k_{1}, l_{1}\right)$ and $\left(k_{2}, l_{2}\right)$ be a two distinct points of $(\mathscr{K}, \mathscr{L})$; as $(\mathscr{K}, \mathscr{L})$ is bT_{0} space, there exists $\mathscr{B} \mathcal{O}(\mathscr{H}, \mathscr{J})$ such that $\left(k_{1}, l_{1}\right)$ $\in(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$. Even before every $\mathscr{B} \mathcal{O}$ is $\mathrm{gb}(\mathrm{b}-\mathrm{gs})$-open and $\operatorname{ergo}(\mathscr{H}, \mathscr{J})$ is $\mathrm{gb}\left(\mathrm{b}\right.$-gs)-open set such that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$, change has occurred $(\mathscr{K}, \mathscr{L})$ is $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{0}$ space
(2) Proof of (2) to (6) is obvious

Example 1. Let $\mathscr{K}=\{\xi, \omega\}, \mathscr{L}=\{\xi, \propto, \mathrm{Q}\}$. Clearly, $\mathscr{M}=\{(\phi, \phi)$, $(\phi,\{\xi\}),(\{\xi\},\{\xi\}),(\{\omega\},\{\xi\}),(\mathscr{K},\{\xi\}),(\mathscr{K}, \mathscr{L})\}$ is a \mathscr{B} \mathscr{T} from \mathscr{K} to \mathscr{L}.
(1) Let $\left(k_{1}, l_{1}\right)=(\{\omega\},\{\xi\})$ and $\left(k_{2}, l_{2}\right)=(\{\xi\},\{\varrho\}),\left(k_{1}\right.$, $\left.l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$; thereexists $\mathrm{gb}(\mathrm{b}-\mathrm{gs})$-open set $(\mathscr{H}, \mathscr{J})=(\{\omega\},\{\xi, \omega\})$; then, it is $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{0}$ space but not $\mathrm{b}-T_{0}$ space
(2) Let $(\mathscr{H}, \mathscr{J})=(\{\xi\},\{\xi, \varpi\})$ and $(\mathscr{Q}, \mathscr{W})=(\{\varpi\}$, $\{\xi, \varrho\})$. Assume $\left(k_{1}, l_{1}\right)=(\{\xi\},\{\omega\})$ and $\left(k_{2}, l_{2}\right)$ $=(\{\omega\},\{\mathrm{Q}\}),\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right)$ $\neq\left(k_{2}, l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J})$, $\left(k_{2}, l_{2}\right) \notin(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W}),\left(k_{1}, l_{1}\right) \notin(\mathbb{Q}$, $\mathscr{W})$.Afterthat,wecandeclareittobegb(b-gs)- T_{1} space butnotb- T_{1} space
(3) Let $(\mathscr{H}, \mathscr{F})=(\{\xi\},\{\omega, \varrho\})$ and $(\mathscr{Q}, \mathscr{W})=(\{\omega\},\{\xi\})$. Suppose $\left(k_{1}, l_{1}\right)=(\{\xi\},\{\varrho\})$ and $\left(k_{2}, l_{2}\right)=(\{\omega\}$, $\{\xi\}),\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}, l_{2}\right) \notin(\mathscr{H}$, $\mathcal{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W}),\left(k_{1}, l_{1}\right) \notin(\mathscr{Q}, \mathscr{W})$. Thereafter, we can formally declare it to be $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{2}$ space but not b- T_{2} space
(4) Let $(\mathscr{H}, \mathscr{J})=(\{\omega\},\{\omega, \varrho\})$ and $(\mathscr{Q}, \mathscr{W})=(\{\xi\}$, $\{\xi, \omega\})$. Assume $\left(k_{1}, l_{1}\right)=(\{\omega\},\{\omega\})$ and $\left(k_{2}, l_{2}\right)$ $=(\{\xi\},\{\xi\}),\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right)$ $\neq\left(k_{2}, l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}\right.$, $\left.l_{2}\right) \notin(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W}),\left(k_{1}, l_{1}\right) \notin(\mathscr{Q}, \mathscr{W})$. Once that is done, we can proclaim it to be $\mathrm{gb}(\mathrm{b}-\mathrm{gs})$ T_{0} space but not $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{1}$ space
(5) Let $\left(k_{1}, l_{1}\right)=(\{\xi\},\{\omega\})$ and $\left(k_{2}, l_{2}\right)=(\{\omega\},\{\xi\})$. Suppose $(\mathscr{H}, \mathscr{J})=(\{\xi\},\{\omega\})$ and $(\mathscr{Q}, \mathscr{W})=(\{\omega\}$, $\{\varrho\}),\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right)$
$\in(\mathscr{Q}, \mathscr{W})$. When that is finished, we can declare it to be $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{0}$ space but not $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{2}$ space
(6) Let $(\mathscr{H}, \mathscr{J})=(\{\xi\},\{\xi, \varrho\})$ and $(\mathscr{Q}, \mathscr{W})=(\{\omega\}$, $\{\xi, \varpi\})$. Consider $\left(k_{1}, l_{1}\right)=(\{\xi\},\{\varrho\})$ and $\left(k_{2}, l_{2}\right)$ $=(\{\omega\},\{\omega\}),\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right)$ $\neq\left(k_{2}, l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}\right.$, $\left.l_{2}\right) \notin(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathbb{Q}, \mathscr{W}),\left(k_{1}, l_{1}\right) \notin(\mathscr{Q}, \mathscr{W})$. We may formally proclaim it after it is done to be $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{1}$ space but not $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{2}$ space

Theorem 8. $A \mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is a $b-g s-T_{1}$ space if and only if every binary point is $\mathscr{B} \mathscr{G} \mathscr{C}$.

Proof. Consider that $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is a b-gs- T_{1}. Let $(k, l) \in \mathscr{K}$ $\times \mathscr{L}$. Let $(\{k\},\{l\}) \in \mathscr{P}(\mathscr{K}) \times \mathscr{P}(\mathscr{L})$. By demonstrating it, $(\{k\},\{l\})$ is $\mathscr{B} \mathscr{G} \mathscr{S} \mathscr{C}$. It appears likely to depict this. $(\mathscr{K}-$ $\{k\}, \mathscr{L}-\{l\})$ is $\mathscr{B} \mathscr{G} \mathcal{O} \mathcal{O}$. Let $(\mathscr{H}, \mathscr{J}) \in(\mathscr{K}-\{k\}, \mathscr{L}-\{l\})$. This indicates that $h \in \mathscr{K}-\{k\}$ and $j \in \mathscr{L}-\{l\}$. Ergo $h \neq k$ and $j \neq l$. That is, $(\mathscr{H}, \mathscr{J})$ and $(\mathscr{K}, \mathscr{L})$ are jointly distinct binary points of $\mathscr{K} \times \mathscr{L}$. Even before $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is b-gsT_{1}, there exists $\mathscr{B} \mathscr{G} \mathcal{S}(\mathscr{H}, \mathcal{J})$ and $(\mathscr{Q}, \mathscr{W}),(\mathscr{H}, \mathscr{J}) \in$ $(\mathscr{H}, \mathscr{J})$ and $(\mathscr{K}, \mathscr{L}) \in(\mathscr{Q}, \mathscr{W})$, such that $(\mathscr{H}, \mathscr{J}) \in(\mathscr{K}$ $-\mathscr{Q}, \mathscr{L}-\mathscr{W})$ and $(\mathscr{K}, \mathscr{L}) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$, although $(\mathscr{H}, \mathscr{J}) \subseteq(\mathscr{K}-\{k\}, \mathscr{L}-\{l\})$. Hence, $(\mathscr{K}-\{k\}, \mathscr{L}-\{l\})$ is a binary neighbourhood of $(\mathscr{H}, \mathscr{J})$. This implies that ($\{k\},\{l\}$) is $\mathscr{B} \mathscr{G} \mathcal{S} \mathscr{C}$.

Conversely, assume that $(\{k\},\{l\})$ is $\mathscr{B} \mathscr{G} \mathcal{C}$, for every $(\mathscr{K}, \mathscr{L}) \in \mathscr{K} \times \mathscr{L}$. Let $\left(k_{1}, l_{1}\right)$ and $\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$ with k_{1} $\neq k_{2}, l_{1} \neq l_{2}$. Therefore, $\left(k_{2}, l_{2}\right) \in\left(\mathscr{K}-\left\{k_{1}\right\}, \mathscr{L}-\left\{l_{1}\right\}\right)$ and $\left(\mathscr{K}-\left\{k_{1}\right\}, \mathscr{L}-\left\{l_{1}\right\}\right)$ is $\mathscr{B} \mathscr{G} \mathcal{O}$. Also, $\left(k_{1}, l_{1}\right) \in\left(\mathscr{K}-\left\{k_{2}\right\}\right.$, $\left.\mathscr{L}-\left\{l_{2}\right\}\right)$ and $\left(\mathscr{K}-\left\{k_{2}\right\}, \mathscr{L}-\left\{l_{2}\right\}\right)$ is $\mathscr{B} \mathscr{G} \mathcal{O} \mathcal{O}$. This shows that $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is a b-gs- T_{1}.

Theorem 9. If a $\mathscr{B T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is a $b-g s-T_{0}$, then $(\mathscr{K}$, $\left.\mathscr{M}_{\mathscr{K}}\right)$ is $g s-T_{0}$ and $\left(\mathscr{L}, \mathscr{M}_{\mathscr{L}}\right)$ is $g s-T_{0}$.

Proof. Even before (\mathscr{M}) is a $\mathscr{B} \mathscr{T}$ from \mathscr{K} to \mathscr{L}, we have $\left(\mathscr{M}_{\mathscr{K}}\right)=\{\mathscr{H} \subseteq \mathscr{K}:(\mathscr{H}, \mathscr{F}) \in(\mathscr{M})$ for some $\mathscr{J} \subseteq \mathscr{L}\}$ as a topology on \mathscr{K} and $\left(\mathscr{M}_{\mathscr{L}}\right)=\{\mathscr{J} \subseteq \mathscr{L}:(\mathscr{H}, \mathscr{J}) \in(\mathscr{M})$ for some $\mathscr{H} \subseteq \mathscr{K}\}$ as a topology on \mathscr{L}. Let $\left(k_{1}, k_{2}\right) \in \mathscr{K}$ and $\left(l_{1}, l_{2}\right) \in \mathscr{L}$ with $k_{1} \neq k_{2}, l_{1} \neq l_{2}$. Even before $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is b-gs- T_{0}, there exists $\mathscr{G} \mathcal{O} \mathcal{O}(\mathscr{H}, \mathscr{J})$ such that either $\left(k_{1}, l_{1}\right)$ $\in(\mathscr{H}, \mathscr{J}),\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$ or $\left(k_{1}, l_{1}\right) \in(\mathscr{K}-\mathscr{H}$, $\mathscr{L}-\mathscr{J}),\left(k_{2}, l_{2}\right) \in(\mathscr{H}, \mathscr{J})$. This implies that either $k_{1} \in \mathscr{H}$, $k_{2} \in \mathscr{K}-\mathscr{H}, l_{1} \in \mathscr{J}, l_{2} \in \mathscr{L}-\mathscr{J}$ or $k_{1} \in \mathscr{K}-\mathscr{H}, k_{2} \in \mathscr{H}, l_{1} \in$ $\mathscr{L}-\mathscr{J}, l_{2} \in \mathscr{J}$. This implies that $\left(\mathscr{K}, \mathscr{M}_{\mathscr{K}}\right)$ is $\mathrm{gs}-T_{0}$ and $\left(\mathscr{L}, \mathscr{M}_{\mathscr{L}}\right)$ is gs- T_{0}.

Theorem 10. If a $\mathscr{B} \mathscr{T} \mathcal{S}\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is a $b-g s-T_{0}$, then the $\mathscr{T} \mathcal{S}(\mathscr{K}, \tau)$ and (\mathscr{L}, σ) are $g s-T_{0}$.

Proof. Suppose that $\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is b-gs- T_{0}. Let $\left(k_{1}, k_{2}\right) \in \mathscr{K}$ and $\left(l_{1}, l_{2}\right) \in \mathscr{L}$ with $k_{1} \neq k_{2}, l_{1} \neq l_{2}$. Even before $\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is b-gs- T_{0}, there exists $(\mathscr{H}, \mathcal{J})$ $\in \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}$ such that either $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}, l_{2}\right)$ $\in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$ or $\left(k_{1}, l_{1}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J}),\left(k_{2}, l_{2}\right) \in$ $(\mathscr{H}, \mathscr{J})$. This implies that either $k_{1} \in \mathscr{H}, k_{2} \in \mathscr{K}-\mathscr{H}, l_{1} \in$
$\mathscr{J}, l_{2} \in \mathscr{L}-\mathscr{J}$ or $k_{1} \in \mathscr{K}-\mathscr{H}, k_{2} \in \mathscr{H}, l_{1} \in \mathscr{L}-\mathscr{J}, l_{2} \in \mathscr{H}$. This implies that either $k_{1} \in \mathscr{H}, k_{2} \in \mathscr{K}-\mathscr{H}$ or $k_{1} \in \mathscr{K}-\mathscr{H}$, $k_{2} \in \mathscr{H}$ and $l_{1} \in \mathscr{F}, l_{2} \in \mathscr{L}-\mathscr{J}$ or $l_{1} \in \mathscr{L}-\mathscr{F}, l_{2} \in \mathscr{F}$. Even before $(\mathscr{H}, \mathscr{J}) \in \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}$, we have $\mathscr{H} \in \tau$ and $\mathscr{J} \in \sigma$. Change has occurred; (\mathscr{K}, τ) and (\mathscr{L}, σ) are gs- T_{0}.

Theorem 11. If a $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is a $b-g s-T_{1}$, then $(\mathscr{K}$, $\left.\mathscr{M}_{\mathscr{K}}\right)$ is $g s-T_{1}$ and $\left(\mathscr{L}, \mathscr{M}_{\mathscr{L}}\right)$ is $g s-T_{1}$.

Proof. Even before (\mathscr{M}) is a $\mathscr{B} \mathscr{T}$ from \mathscr{K} to \mathscr{L}, we have $\left(\mathscr{M}_{\mathscr{K}}\right)=\{\mathscr{H} \subseteq \mathscr{K}:(\mathscr{H}, \mathscr{F}) \in(\mathscr{M})$ for some $\mathscr{J} \subseteq \mathscr{L}\}$ as a topology on \mathscr{K} and $\left(\mathscr{M}_{\mathscr{L}}\right)=\{\mathscr{J} \subseteq \mathscr{L}:(\mathscr{H}, \mathscr{F}) \in(\mathscr{M})$ for some $\mathscr{H} \subseteq \mathscr{K}\}$ as a topology on \mathscr{L}. Let $\left(k_{1}, k_{2}\right) \in \mathscr{K}$ and $\left(l_{1}, l_{2}\right) \in \mathscr{L}$ with $k_{1} \neq k_{2}, l_{1} \neq l_{2}$. Even before $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is b-gs- T_{1}, there exists $\mathscr{B} \mathscr{G} \mathcal{S O}\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ with $\left(k_{1}\right.$, $\left.l_{1}\right) \in\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),\left(k_{2}, l_{2}\right) \in\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$, such that $\left(k_{1}, l_{1}\right) \in(\mathscr{K}$ $\left.-\mathscr{F}_{2}, \mathscr{L}-\mathscr{G}_{2}\right),\left(k_{2}, l_{2}\right) \in\left(\mathscr{K}-\mathscr{F}_{1}, \mathscr{L}-\mathscr{G}_{1}\right)$. This implies that $k_{1} \in \mathscr{F}_{1}, l_{2} \in \mathscr{F}_{2}$ and $l_{1} \in \mathscr{G}_{1}, l_{2} \in \mathscr{G}_{2}$ such that $k_{1} \in$ $\mathscr{K}-\mathscr{F}_{2}, k_{2} \in \mathscr{K}-\mathscr{F}_{1}$ and $l_{1} \in \mathscr{L}-\mathscr{G}_{2}, l_{2} \in \mathscr{L}-\mathscr{G}_{1}$. Hence, $\left(\mathscr{K}, \mathscr{M}_{\mathscr{K}}\right)$ is $\mathrm{gs}-T_{1}$ and $\left(\mathscr{L}, \mathscr{M}_{\mathscr{L}}\right)$ is $\mathrm{gs}-T_{1}$.

Theorem 12. $A \mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is a
(1) $g b-T_{1}$ space if and only if every binary point is $\mathscr{G} \mathscr{B} \mathscr{C}$
(2) $g b-T_{0}$, then $\left(\mathscr{K}, \mathscr{M}_{\mathscr{K}}\right)$ is $g-T_{0}$ and $\left(\mathscr{L}, \mathscr{M}_{\mathscr{L}}\right)$ is $g-T_{0}$
(3) If a $\mathscr{B} \mathscr{T} \mathcal{S}\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is a $g b-T_{0}$, then the $\mathscr{T} \mathcal{S}(\mathscr{K}, \tau)$ and (\mathscr{L}, σ) are $g b-T_{0}$
(4) $g b-T_{1}$, then $\left(\mathscr{K}, \mathscr{M}_{\mathscr{K}}\right)$ is $g-T_{1}$ and $\left(\mathscr{L}, \mathscr{M}_{\mathscr{L}}\right)$ is $g-T_{1}$

Proof. Proof of (1) to (4) follows from Definitions 1, 2, and 3 and Theorems 8, 9, 10, and 11.

3. $\mathbf{g b}(\mathbf{b}-\mathbf{g s})-T_{3}$ and $\mathbf{g b}(\mathbf{b}-\mathbf{g s})-T_{4}$ Spaces

We use $\mathrm{gb}(\mathrm{b}-\mathrm{gs})$-open sets to create $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{3}$ and $\mathrm{gb}(\mathrm{b}-$ $\mathrm{gs})-T_{4}$ spaces and examine some of their characteristics in this section.

Definition 13. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a generalized binary- T_{3} (briefly, gb- T_{3}) or generalized binary regular if $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is $\mathrm{gb}-T_{1}$ and for every $(\mathscr{K}, \mathscr{L}) \in \mathscr{K} \times \mathscr{L}$ and every $\mathscr{G} \mathscr{B} \mathscr{C}(\mathscr{H}, \mathscr{J}) \subseteq \mathscr{K} \times \mathscr{L}$ such that $(\mathscr{K}, \mathscr{L}) \in(\mathscr{K}-\mathscr{H}$, $\mathscr{L}-\mathcal{J})$, there exists jointly disjoint $\mathscr{G} \mathscr{B} \mathcal{O}$ $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ such that $(\mathscr{K}, \mathscr{L}) \in\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),(\mathscr{H}, \mathscr{J})$ $\subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$.

Definition 14. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a generalized binary- T_{4} (briefly, gb- T_{4}) or generalized binary normal if $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is $\mathrm{gb}-T_{1}$ and for every pair of jointly disjoint $\mathscr{G} \mathscr{B} \mathscr{C}\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right),\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right)$, there exists jointly disjoint \mathscr{G} $\mathscr{B} O \mathcal{S}\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ such that $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right) \subseteq\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right) \subseteq\left(\mathscr{F}_{2}, \mathscr{E}_{2}\right)$.

Definition 15. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a b-gs- T_{3} or b-gs regular if $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is b-gs- T_{1} and for every $(\mathscr{K}, \mathscr{L}) \in \mathscr{K}$ $\times \mathscr{L}$ and every $\mathscr{B} \mathscr{G} \mathcal{S C}$ set $(\mathscr{H}, \mathscr{J}) \subseteq \mathscr{K} \times \mathscr{L}$ such that
$(\mathscr{K}, \mathscr{L}) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$, there exists jointly disjoint $\mathscr{B} \mathscr{G} \mathcal{O}\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ such that $(\mathscr{K}, \mathscr{L}) \in\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$, $(\mathscr{H}, \mathscr{J}) \subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$.

Definition 16. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a b-gs- T_{4} or b-gs normal if $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is b-gs- T_{1} and for every pair of jointly disjoint $\mathscr{B} \mathscr{G} \mathscr{S}\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right),\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right)$, there exists jointly disjoint $\mathscr{B} \mathscr{G} \mathcal{O}\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ such that $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right) \subseteq\left(\mathscr{F}_{1}\right.$, $\left.\mathscr{G}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right) \subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$.

Theorem 17.

(1) Every binary- T_{3} is $g b(b-g s)$-regular space
(2) Every $g b(b-g s)-T_{3}$ is $g b(b-g s)-T_{0}$ space
(3) Every $g b(b-g s)-T_{3}$ is $b-g s-T_{2}$ space
(4) Every binary- T_{4} is $g b(b-g s)-T_{4}$
(5) Every $g b(b-g s)-T_{4}$ is $g b(b-g s)-T_{3}$

Proof.

(1) Let $(\mathscr{K}, \mathscr{L})$ be a binary regular and $(\mathscr{H}, \mathscr{J})$ be a $\mathscr{B} \mathscr{C}$ not containing $(\mathscr{K}, \mathscr{L})$ which implies $(\mathscr{H}, \mathscr{F})$ to be a $\mathscr{B} \mathscr{G} \mathscr{S}$ set not containing $(\mathscr{K}, \mathscr{L})$. As $(\mathscr{K}, \mathscr{L})$ is b-gs regular, there exists jointly disjoint $\mathscr{B} \mathscr{G} \mathcal{O}$ $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ such that $(\mathscr{K}, \mathscr{L}) \in\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),(\mathscr{H}$, $\mathscr{J}) \subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$. Hence, $(\mathscr{K}, \mathscr{L})$ is b-gs regular
(2) Proof of (2) to (5) is obvious

Example 2. From Example 1,
(1) let $(\mathscr{H}, \mathscr{J})=(\{\omega\},\{\omega\}),(k, l)=(\phi,\{\varrho\}),\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ $=(\{\xi\},\{\varrho\})$, and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\{\omega\},\{\xi, \omega\})$; that is why it is $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{3}$ space but not $\mathrm{b}-T_{3}$ space
(2) let $\left(k_{1}, l_{1}\right)=(\phi,\{\omega\})$ and $\left(k_{2}, l_{2}\right)=(\{\xi\},\{\mathrm{e}\}),\left(k_{1}\right.$, $\left.l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$; there exists $\mathscr{B} \mathscr{G} \mathcal{S}(\mathscr{H}, \mathscr{J})=(\{\omega\},\{\xi, \omega\})$ and $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ $=(\{\omega\},\{\omega\}),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\phi,\{\xi, \mathrm{\varrho}\})$ because of this $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{0}$ space but not $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{3}$
(3) let $\left(k_{1}, l_{1}\right)=(\{\xi\},\{\varrho\})$ and $\left(k_{2}, l_{2}\right)=(\phi,\{\xi\})$. Let $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)=(\{\xi\},\{\omega\})$ and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\{\omega\},\{\varrho\})$, $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$, and $(\mathscr{H}, \mathscr{J})=(\mathscr{K},\{\mathrm{e}\})$ and $(\mathscr{Q}, \mathscr{W})=(\phi,\{\xi, \omega\})$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathbb{Q}$, $\mathscr{W})$. After that, we can declare it to be $\mathrm{gb}(\mathrm{b}-\mathrm{gs})$ T_{2} space but not $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{3}$ space
(4) let $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right)=(\phi,\{\mathrm{e}\}),\left(\mathscr{H}_{2}, \mathscr{F}_{2}\right)=(\{\xi\},\{\omega\}),\left(\mathscr{F}_{1}\right.$, $\left.\mathscr{G}_{1}\right)=(\{\omega\},\{\mathrm{Q}\})$, and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\{\xi\},\{\xi, \omega\})$. Otherwise, we might officially declare it to be $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{4}$ space but not binary- T_{4} space
(5) let $(k, l)=(\{\xi\}, \phi)$ and $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right)=(\{\omega\},\{\omega\})$, $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right)=(\{\xi\},\{\xi, \omega\}),\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)=(\{\xi\},\{\varrho\})$, and
$\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\{\omega\},\{\xi, \omega\})$. Thereafter, we can formally
declare it to be $\operatorname{gb}(\mathrm{b}-\mathrm{gs})-T_{3}$ space but not $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{4}$
space

Theorem 18. Let $\mathscr{T} \mathcal{S}(\mathscr{K}, \tau)$ and (\mathscr{L}, σ) to be gs- T_{3} spaces if and only if $\mathscr{B} \mathscr{T} \mathcal{S}\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is called a $b-g s-T_{3}$.

Proof. Suppose (\mathscr{K}, τ) and (\mathscr{L}, σ) are gs- T_{3} spaces. Let $(\mathscr{K}, \mathscr{L}) \in \mathscr{K} \times \mathscr{L}$ and $(\mathscr{H}, \mathscr{J}) \subseteq \mathscr{K} \times \mathscr{L}$ be a $\mathscr{B} \mathscr{G} \mathcal{S}$ $(\mathscr{K}, \mathscr{L}) \in(\mathscr{K}-\mathscr{H} \times \mathscr{L}-\mathscr{J})$. Therefore, $k \in \mathscr{K}, l \in \mathscr{L}$ and $\mathscr{H} \subseteq \mathscr{K}, \mathscr{J} \subseteq \mathscr{L}$. Even before (\mathscr{K}, τ) is gs- T_{3}, there exists disjoint $\mathscr{F}_{1}, \mathscr{F}_{2} \in \tau, \mathrm{k} \in \mathscr{F}_{1}$, and $\mathscr{H} \subseteq \mathscr{F}_{2}$. Also, even before (\mathscr{L}, σ) is gs- T_{3}, there exists disjoint $\mathscr{G}_{1}, \mathscr{G}_{2} \in \sigma, \mathrm{l} \in \mathscr{G}_{1}$, and $\mathscr{J} \subseteq \mathscr{G}_{2}$. This implies that $(\mathscr{K}, \mathscr{L}) \in\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $(\mathscr{H}$, $\mathscr{J}) \in\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$. Even before \mathscr{F}_{1} and \mathscr{F}_{2} are disjoint $\mathscr{G} \mathcal{S} \mathcal{O}$, we have $\mathscr{F}_{1} \cap \mathscr{F}_{2}=\phi$. Also even before \mathscr{G}_{1} and \mathscr{G}_{2} are disjoint $\mathscr{G} \mathcal{O} \mathcal{O}$, we have $\mathscr{G}_{1} \cap \mathscr{G}_{2}=\phi$. Thus, $\left(\mathscr{F}_{1} \cap \mathscr{F}_{2}, \mathscr{G}_{1} \cap \mathscr{G}_{2}\right)$ $=(\phi, \phi)$. Ergo $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ are disjoint $\mathscr{B} \mathscr{G} \mathcal{S} \mathcal{O}$. This implies that $\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is b-gs- T_{3}.

Conversely, assume that $\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is b-gsT_{3}. Let $k \in \mathscr{K}$ and \mathscr{H} be a $\mathscr{G} \mathcal{S C}$ subset of (\mathscr{K}, τ). Let $l \in \mathscr{L}$ and \mathscr{J} be a subset of (\mathscr{L}, σ). Therefore, $(\mathscr{K}, \mathscr{L}) \in \mathscr{K} \times \mathscr{L}$ and $(\mathscr{H}, \mathscr{J})$ is $\mathscr{B} \mathscr{G} \mathscr{\mathscr { C }}$ in $\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$. Even before $\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is b-gs- T_{3}, there exists disjoint $\mathscr{G} \mathcal{S O}\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ such that $(\mathscr{K}, \mathscr{L}) \in\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $(\mathscr{H}, \mathscr{J}) \subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$. Ergo $k \in \mathscr{F}_{1}$ and $\mathscr{H} \subseteq \mathscr{F}_{2}, l \in \mathscr{G}_{1}$ and $\mathscr{J} \subseteq \mathscr{G}_{2}$. This consistently shows that (\mathscr{K}, τ) and (\mathscr{L}, σ) are gs- T_{3} spaces.

Theorem 19. A $\mathscr{B} \mathscr{G} \mathscr{C}$ subspace of a b-gs normal space is b-gs normal.

Proof. Let $(\mathscr{D}, \mathscr{E})$ be a $\mathscr{B} \mathscr{G} \mathcal{S}$ subspace of a b-gs normal space. Let $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right)$ be disjoint $\mathscr{B} \mathscr{G} \mathcal{S} \mathscr{C}$ subset of $(\mathscr{D}, \mathscr{E})$. Even before $(\mathscr{D}, \mathscr{E})$ is $\mathscr{B} \mathscr{G} \mathcal{S} \mathscr{C}$ in $(\mathscr{K}, \mathscr{L}),\left(\mathscr{H}_{1}\right.$, $\left.\mathcal{J}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right)$ are $\mathscr{B} \mathscr{G} \mathscr{S}$ in $(\mathscr{K}, \mathscr{L})$. Even before $(\mathscr{K}, \mathscr{L})$ is b-gs normal, there exists disjoint $\mathscr{B} \mathscr{G} \mathcal{O}$ $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ in ($\left.\mathscr{K}, \mathscr{L}\right)$, such that $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right)$ $\subseteq\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right) \subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$. Even before $(\mathscr{D}, \mathscr{E})$ contains both $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right)$, we have $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right)$ $\subseteq(\mathscr{D}, \mathscr{E}) \cap\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right), \quad\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right) \subseteq(\mathscr{D}, \mathscr{E}) \cap\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$, and $\left((\mathscr{D}, \mathscr{E}) \cap\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)\right) \cap(\mathscr{D}, \mathscr{E}) \cap\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\phi, \phi)$. Even before $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ are $\mathscr{B} \mathscr{G} \mathcal{S O}$ in $(\mathscr{K}, \mathscr{L})$, $(\mathscr{D}, \mathscr{E}) \cap\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $(\mathscr{D}, \mathscr{E}) \cap\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ are $\mathscr{B} \mathscr{G} \mathscr{S} \mathscr{O}$ in $(\mathscr{D}, \mathscr{E})$. Thus in the subspace $(\mathscr{D}, \mathscr{E})$, we have disjoint $\mathscr{B} \mathscr{G} \mathcal{O}\left((\mathscr{D}, \mathscr{E}) \cap\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)\right)$ containing $\left(\mathscr{H}_{1}, \mathscr{F}_{1}\right)$ and $((\mathscr{D}$, $\left.\mathscr{E}) \cap\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)\right)$ containing $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right)$. Ergo the subspace (\mathscr{D}, \mathscr{E}) is b-gs normal.

Theorem 20. Let $\mathscr{T} \mathcal{S}(\mathscr{K}, \tau)$ and (\mathscr{L}, σ) be $g s-T_{4}$ spaces iff the $\mathscr{B} \mathscr{T} \mathcal{S}\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is called a $b-g s-T_{4}$.

Proof. Suppose (\mathscr{K}, τ) and (\mathscr{L}, σ) are gs- T_{4} spaces. $\left(\mathscr{H}_{1}\right.$, $\left.\mathscr{J}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right)$ are disjoint pair of $\mathscr{B} \mathscr{G} \mathcal{S} \mathscr{C}$ in $(\mathscr{K}, \mathscr{L}$, $\mathscr{M})$. Then, $\mathscr{H}_{1}, \mathscr{H}_{2}$ are disjoint $\mathscr{G} \mathcal{S} \mathscr{C}$ in (\mathscr{K}, τ) and \mathscr{J}_{1}, \mathscr{J}_{2} are disjoint $\mathscr{G} \mathcal{S} \mathscr{C}$ in (\mathscr{L}, σ). Even before (\mathscr{K}, τ) is gsT_{4}, there exists disjoint $\mathscr{G S O}$ in $\mathscr{F}_{1}, \mathscr{F}_{2} \in \tau, \mathscr{H}_{1} \subseteq \mathscr{F}_{1}$, and
$\mathscr{H}_{2} \subseteq \mathscr{F}_{2}$. Also, even before (\mathscr{L}, σ) is gs- T_{4}, there exists disjoint $\mathscr{G}_{1}, \mathscr{G}_{2} \in \sigma, \mathscr{J}_{1} \subseteq \mathscr{G}_{1}$, and $\mathscr{J}_{2} \subseteq \mathscr{G}_{2}$. This implies that $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right) \subseteq\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right) \subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$. Even before \mathscr{F}_{1} and \mathscr{F}_{2} are disjoint $\mathscr{G} \mathcal{O}$, we have $\mathscr{F}_{1} \cap \mathscr{F}_{2}=\phi$. Also even before \mathscr{G}_{1} and \mathscr{G}_{2} are disjoint $\mathscr{G} \mathcal{S} \mathcal{O}$, we have $\mathscr{G}_{1} \cap \mathscr{G}_{2}$ $=\phi$. Thus, $\left(\mathscr{F}_{1} \cap \mathscr{F}_{2}, \mathscr{G}_{1} \cap \mathscr{G}_{2}\right)=(\phi, \phi)$. Hence, $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ are disjoint $\mathscr{B} \mathscr{G} \mathcal{S O}$. This implies that (\mathscr{K}, $\left.\mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is a b-gs- T_{4}.

Conversely, assume that $\left(\mathscr{K}, \mathscr{L}, \tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is b-gsT_{4}. Let $\mathscr{H}_{1}, \mathscr{H}_{2}$ be disjoint $\mathscr{G} \mathscr{S} \mathscr{C}$ in (\mathscr{K}, τ) and $\mathscr{J}_{1}, \mathscr{J}_{2}$ be disjoint $\mathscr{G} \mathcal{S} \mathscr{C}$ in (\mathscr{L}, σ). Then, $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right)$ are $\mathscr{B} \mathscr{G} \mathcal{S} \mathscr{C}$ in $\left(\mathscr{K}, \mathscr{L}, \tau_{M(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$. Even before $(\mathscr{K}, \mathscr{L}$, $\left.\tau_{\mathscr{M}(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is b-gs- T_{4}, there exists disjoint $\mathscr{B} \mathscr{G} \mathcal{S O}$ $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ such that $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right) \subseteq\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ and $\left(\mathscr{H}_{2}, \mathscr{J}_{2}\right) \subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$. That is, $\mathscr{H}_{1} \subseteq \mathscr{F}_{1}, \mathscr{H}_{2} \subseteq \mathscr{F}_{2}$ and \mathscr{J}_{1} $\subseteq \mathscr{G}_{1}, \mathscr{J}_{2} \subseteq \mathscr{E}_{2}$. Hence, (\mathscr{K}, τ) and (\mathscr{L}, σ) are gs- T_{4} spaces

Theorem 21.

(1) Let $\mathscr{T} \mathcal{S}(\mathscr{K}, \tau)$ and (\mathscr{L}, σ) be $g-T_{3}$ spaces iff $\mathscr{B} \mathscr{T} \mathcal{S}$ $\left(\mathscr{K}, \mathscr{L}, \tau_{M(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is called a $g b-T_{3}$
(2) A $\mathscr{G B C}$ subspace of a gb-normal space is gb-normal
(3) Let $\mathscr{T} \mathcal{S}(\mathscr{K}, \tau)$ and (\mathscr{L}, σ) be $g-T_{4}$ spaces iff $\mathscr{B} \mathscr{T} \mathcal{S}$ $\left(\mathscr{K}, \mathscr{L}, \tau_{M(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{L})}\right)$ is called a $g b-T_{4}$

Proof. Proof of (1) to (3) follows from Definitions 13 and 14 and Theorems 18, 19, and 20.

4. bsg- T_{0}, bsg- T_{1}, and bsg- T_{2} Spaces

The aspects of $\mathrm{b}-\mathrm{sg}-T_{0}$, b -sg- T_{1}, and b -sg- T_{2} spaces are established, and some of their corresponding characterizations are studied in the section.

Definition 22. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a binary semi generalized- T_{0} (briefly, bsg- T_{0}) if for any two jointly distinct points $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$, there exists $\mathscr{B} \mathcal{S} \mathscr{G} \mathcal{O}(\mathscr{H}, \mathscr{J})$ such that exactly one of the following holds:
(i) $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{F})$
(ii) $\left(k_{1}, l_{1}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J}),\left(k_{2}, l_{2}\right) \in(\mathscr{H}, \mathscr{J})$

Definition 23. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a binary semi generalized- T_{1} (briefly, bsg- T_{1}) if for every two jointly distinct points $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$ with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$, there exists $\mathscr{B} \mathcal{S} \mathscr{G} \mathcal{O}(\mathscr{H}, \mathscr{J})$ and $(\mathscr{Q}, \mathscr{W})$ with $\left(k_{1}, l_{1}\right) \in(\mathscr{H}$, $\mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W})$ such that $\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}$ $\mathscr{J}),\left(k_{1}, l_{1}\right) \in(\mathscr{K}-\mathbb{Q}, \mathscr{L}-\mathscr{W})$.

Definition 24. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a binary semi generalized- T_{2} (briefly, bsg- T_{2}) if for every two jointly distinct points $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathscr{K} \times \mathscr{L}$, with $k_{1} \neq k_{2}, l_{1} \neq l_{2}$, there exists disjoint $\mathscr{B} \mathcal{S} \mathscr{G} \mathcal{O}(\mathscr{H}, \mathscr{J})$ and $(\mathscr{Q}, \mathscr{W})$ such that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W})$.

Theorem 25. Let $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ be a $\mathscr{B} \mathscr{T}$; then, for
(1) every binary- T_{0} is $b-s g-T_{0}$
(2) every binary- T_{1} is $b-s g-T_{1}$
(3) every binary- T_{2} is $b-s g-T_{2}$
(4) every $b-s g-T_{1}$ is $b-s g-T_{0}$
(5) every $b-s g-T_{2}$ is $b-s g-T_{0}$
(6) every $b-s g-T_{2}$ is $b-s g-T_{1}$

Proof.
(1) Let $(\mathscr{K}, \mathscr{L})$ be a binary- T_{0} space and $\left(k_{1}, l_{1}\right)$ and $\left(k_{2}, l_{2}\right)$ be a two distinct points of $(\mathscr{K}, \mathscr{L})$; as $(\mathscr{K}, \mathscr{L})$ is binary- T_{0} space, there exists $\mathscr{B} \mathcal{O} \mathcal{S}$ $(\mathscr{H}, \mathscr{J})$ such that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{K}$ - $\mathscr{H}, \mathscr{L}-\mathscr{J})$. Even before every $\mathscr{B} \mathcal{O} \mathcal{S}$ is $\mathscr{B} \mathcal{S} \mathscr{G} \mathcal{O}$ and ergo $(\mathscr{H}, \mathscr{F})$ is $\mathscr{B} \mathscr{S} \mathscr{G} \mathcal{O}$ such that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}$, $\mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{J})$, ergo $(\mathscr{K}, \mathscr{L})$ is b -sg- T_{0} space
(2) Proof of (2) to (6) is obvious

Example 3. Let $\mathscr{K}=\{\xi, \omega\}$ and $\mathscr{L}=\{\xi, \omega, \varrho\}$. Clearly, \mathscr{M} $=\{(\phi, \phi),(\{\omega\},\{\xi\}),(\phi,\{\omega, \varrho\}),(\{\omega\}, \mathscr{L}),(\mathscr{K}, \mathscr{L})\}$ is a $\mathscr{B} \mathscr{T}$ from \mathscr{K} to \mathscr{L}.
(1) Let $\left(k_{1}, l_{1}\right)=(\{\omega\},\{\xi\})$ and $\left(k_{2}, l_{2}\right)=(\{\xi\},\{\varrho\})$, $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$; there exists b-sg-open set $(\mathscr{H}, \mathscr{J})=(\{\omega\},\{\xi, \omega\})$; then, it is b -sg- T_{0} space but not $\mathrm{b}-T_{0}$ space
(2) Let $(\mathscr{H}, \mathscr{J})=(\{\xi\},\{\xi, \omega\})$ and $(\mathscr{Q}, \mathscr{W})=(\{\omega\},\{\xi$, $\varrho\})$. Let $\left(k_{1}, l_{1}\right)=(\{\xi\},\{\omega\})$ and $\left(k_{2}, l_{2}\right)=(\{\omega\}$, $\{\mathrm{\varrho}\}),\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}\right.$, $\left.l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}, l_{2}\right) \notin$ $(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W}), \quad\left(k_{1}, l_{1}\right) \notin(\mathscr{Q}, \mathscr{W})$. Then, we can say that it is b -sg- T_{1} space but not binary- T_{1} space
(3) Let $(\mathscr{H}, \mathscr{J})=(\{\omega\},\{\xi, \omega\})$ and $(\mathscr{Q}, \mathscr{W})=(\phi,\{\varrho\})$. Let $\left(k_{1}, l_{1}\right)=(\{\omega\},\{\omega\})$ and $\left(k_{2}, l_{2}\right)=(\phi,\{\varrho\}),\left(k_{1}\right.$, $\left.l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}, l_{2}\right) \notin(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W}),\left(k_{1}, l_{1}\right) \notin(\mathbb{Q}, \mathscr{W})$. Then, we might declare it to be b-sg- T_{2} space but not binary- T_{2} space
(4) Let $(\mathscr{H}, \mathscr{J})=(\{\varpi\},\{\varpi, \varrho\})$ and $(\mathscr{Q}, \mathscr{W})=(\{\xi\}, \mathscr{L})$. Let $\left(k_{1}, l_{1}\right)=(\{\omega\},\{\xi\})$ and $\left(k_{2}, l_{2}\right)=(\{\xi\}, \phi),\left(k_{1}\right.$, $\left.l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathscr{J}),\left(k_{2}, l_{2}\right) \notin(\mathscr{H}, \mathscr{J})$ and $\left(k_{2}, l_{2}\right) \in(\mathscr{Q}, \mathscr{W}),\left(k_{1}, l_{1}\right) \notin(\mathbb{Q}, \mathscr{W})$. Afterward, we could declare it to be $\mathrm{b}-\mathrm{sg}-T_{0}$ space but not $\mathrm{b}-\mathrm{sg}-T_{1}$ space
(5) Let $\left(k_{1}, l_{1}\right)=(\phi,\{\xi\})$ and $\left(k_{2}, l_{2}\right)=(\{\xi\},\{\varrho\})$. Let $(\mathscr{H}, \mathscr{F})=(\{\varpi\},\{\xi\})$ and $(\mathscr{Q}, \mathscr{W})=(\phi,\{\omega, \mathrm{e}\}),\left(k_{1}\right.$, $\left.l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathcal{F})$ and $\left(k_{2}, l_{2}\right) \in(\mathbb{Q}, \mathscr{W})$. We might then proclaim it to be b -sg- T_{0} space but not b-sg- T_{2} space
(6) Let $(\mathscr{H}, \mathscr{F})=(\{\xi\},\{\omega, \varrho\})$ and $(\mathbb{Q}, \mathscr{W})=(\{\omega\},\{\xi$, $\omega\})$. Let $\left(k_{1}, l_{1}\right)=(\{\xi\},\{\mathrm{e}\})$ and $\left(k_{2}, l_{2}\right)=(\{\Delta\}$, $\{\xi\}),\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}\right.$, $\left.l_{2}\right)$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathcal{F}),\left(k_{2}, l_{2}\right) \notin$ $(\mathscr{H}, \mathcal{F})$ and $\left(k_{2}, l_{2}\right) \in(\mathbb{Q}, \mathscr{W}), \quad\left(k_{1}, l_{1}\right) \notin(\mathbb{Q}, \mathscr{W})$. Then, we can say that it is b - $\mathrm{sg}-T_{1}$ space but not b -sg- T_{2} space

Theorem 26. $A \mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is a
(1) b-sg- T_{1} space if and only if every binary point is \mathscr{B} $\delta \mathscr{G C}$
(2) b-sg-T T_{0}, then $\left(\mathscr{K}, \mathscr{M}_{\mathscr{K}}\right)$ is $\operatorname{sg}-T_{0}$ and $\left(\mathscr{L}, \mathscr{M}_{\mathscr{L}}\right)$ is $\mathrm{sg}-\mathrm{T}_{0}$
(3) If a $\mathscr{B T} \mathcal{S}\left(\mathscr{K}, \mathscr{L}, \tau_{\mathcal{M}(\mathscr{K})} \times \sigma_{M(\mathscr{L})}\right)$ is called a b-sg- T_{0}, then the $\mathscr{T} \mathcal{S}(\mathscr{K}, \tau)$ and (\mathscr{L}, σ) are $\operatorname{sg}-T_{0}$
(4) $b-s g-T_{1}$, then $\left(\mathscr{K}, \mathscr{M}_{\mathscr{K}}\right)$ is $\operatorname{sg}-T_{1}$ and $\left(\mathscr{L}, \mathscr{M}_{\mathscr{L}}\right)$ is $\mathrm{sg}-\mathrm{T}_{1}$

Proof. Proof of (1) to (4) follows from Definitions 22, 23, and 24 and Theorems 8, 9, 10, and 11.

5. b-sg- T_{3} and b-sg- T_{4} Spaces

The initiation of binary semi- T_{3} and semi- T_{4} spaces by utilizing b-sg open sets and their properties are examined in this segment.

Definition 27. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a b-sg- T_{3} or b-sg regular if $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is b -sg- T_{1} and for every $(\mathscr{K}, \mathscr{L}) \in \mathscr{K}$ $\times \mathscr{L}$ and every $\mathscr{B} \mathcal{S} \mathscr{G} \mathscr{C}(\mathscr{H}, \mathcal{F}) \subseteq \mathscr{K} \times \mathscr{L}$ such that $(\mathscr{K}, \mathscr{L})$ $\epsilon(\mathscr{K}-\mathscr{H}, \mathscr{L}-\mathscr{F})$, there exists jointly disjoint $\mathscr{B} \mathcal{S} \mathscr{G}$ $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ such that $(\mathscr{K}, \mathscr{L}) \in\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),(\mathscr{H}, \mathscr{F})$ $\subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$.

Definition 28. A $\mathscr{B} \mathscr{T} \mathcal{S}(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is called a b-sg- T_{4} or b-sg normal if $(\mathscr{K}, \mathscr{L}, \mathscr{M})$ is b -sg- T_{1} and for every pair of jointly disjoint $\mathscr{B} \mathscr{S} \mathscr{G}\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right),\left(A_{2}, B_{2}\right)$, there exists jointly disjoint $\mathscr{B} \mathcal{S} \mathscr{G} \mathcal{O}\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$ such that $\left(\mathscr{H}_{1}, \mathscr{F}_{1}\right) \subseteq\left(\mathscr{F}_{1}\right.$, \mathscr{G}_{1}) and $\left(\mathscr{H}_{2}, \mathscr{F}_{2}\right) \subseteq\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)$.

Theorem 29.

(1) Every binary T_{3} is $b-s g T_{3}$
(2) Every b-sg T_{3} is b-sg- T_{0} space
(3) Every b-sg T_{3} is b-sg- T_{2} space
(4) Every binary normal space is b-sg T_{4}
(5) Every b-sg normal space is b-sg T_{3}

Proof. Proof of (1) to (5) follows from Definitions 27 and 28 and Theorem 17.

Example 4. From Example 3,
(1) let $(\mathscr{H}, \mathscr{F})=(\{\xi\},\{\mathrm{e}\}),(k, l)=(\phi,\{\xi\}),\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ $=(\{\omega\},\{\xi\})$, and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\{\xi\},\{\omega, \mathrm{\varrho}\})$; then, it is b -sg- T_{3} space but not $\mathrm{b}-\mathrm{T}_{3}$ space
(2) let $\left(k_{1}, l_{1}\right)=(\phi,\{\omega\})$ and $\left(k_{2}, l_{2}\right)=(\{\xi\},\{\mathrm{e}\}),\left(k_{1}\right.$, $\left.l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$; there exists $\mathscr{B} \mathscr{G} \mathcal{S O}(\mathscr{H}, \mathscr{F})=(\{\omega\},\{\xi, \omega\})$ and $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)$ $=(\{\omega\},\{\omega\}),\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\phi,\{\xi, \varrho\})$; then, it is b-sg- T_{0} space but not b-sg- T_{3}
(3) let $\left(k_{1}, l_{1}\right)=(\{\xi\},\{\xi\})$ and $\left(k_{2}, l_{2}\right)=(\phi,\{\mathrm{Q}\})$. Let $\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)=(\{\omega\},\{\xi\})$ and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\{\xi\},\{\omega, \mathrm{e}\})$, $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in(\mathscr{K}, \mathscr{L})$ and $\left(k_{1}, l_{1}\right) \neq\left(k_{2}, l_{2}\right)$, and $(\mathscr{H}, \mathcal{F})=(\mathscr{K},\{\xi\})$ and $(\mathbb{Q}, \mathscr{W})=(\phi,\{\omega, \mathrm{Q}\})$; then, it is clear that $\left(k_{1}, l_{1}\right) \in(\mathscr{H}, \mathcal{F})$ and $\left(k_{2}, l_{2}\right) \in(\mathbb{Q}$, $\mathscr{W})$. Then, we can say that it is $\mathrm{b}-\mathrm{sg}-\mathrm{T}_{2}$ space but not b -sg- T_{3} space
(4) let $\left(\mathscr{H}_{1}, \mathscr{F}_{1}\right)=(\phi,\{\xi\}),\left(\mathscr{H}_{2}, \mathscr{F}_{2}\right)=(\{\xi\},\{\omega\}),\left(\mathscr{F}_{1}\right.$, $\left.\mathscr{G}_{1}\right)=(\{\omega\},\{\xi\})$, and $\left(\mathscr{F}_{2}, \mathscr{G}_{2}\right)=(\{\xi\},\{\omega, \mathrm{e}\})$; then, it is b -sg- T_{4} space but not binary- T_{4} space
(5) let $(k, l)=(\{\xi\},\{\varpi\})$ and $\left(\mathscr{H}_{1}, \mathscr{J}_{1}\right)=(\phi,\{\xi\}),\left(\mathscr{H}_{2}\right.$, $\left.\mathscr{F}_{2}\right)=(\{\omega\}, \phi),\left(\mathscr{F}_{1}, \mathscr{G}_{1}\right)=(\{\xi\},\{\omega, \mathrm{\varrho}\})$, and $\left(\mathscr{F}_{2}\right.$, $\left.\mathscr{G}_{2}\right)=(\{\omega\},\{\xi\})$. Then, we can say that it is b -sg- T_{3} space but not b -sg- T_{4} space

Theorem 30.

(1) Let $\mathscr{T} \mathcal{S}(\mathscr{K}, \tau)$ and (\mathscr{L}, σ) be sg - T_{3} spaces if and only if $\mathscr{B} \mathscr{T} \mathcal{S}\left(\mathscr{K}, \mathscr{L}, \tau_{M(\mathscr{K})} \times \sigma_{M(Y)}\right)$ is called a b-sg- T_{3}
(2) $A \mathscr{B} \mathscr{G C}$ subspace of a b-sg normal space is b-sg normal
(3) Let $\mathscr{T} \mathcal{S}(\mathscr{K}, \tau)$ and (\mathscr{L}, σ) be $\operatorname{sg}-T_{4}$ spaces if and only if $\mathscr{B} \mathscr{T} \mathcal{S}\left(\mathscr{K}, \mathscr{L}, \tau_{M(\mathscr{K})} \times \sigma_{\mathscr{M}(\mathscr{S})}\right)$ is called a $b-s g-T_{4}$

Proof. Proof of (1) to (3) follows from Definitions 27 and 28 and Theorems 18, 19, and 20.

6. Conclusion

We defined a few separation axioms in binary topological spaces with respect to binary points of a binary topological spaces, compared their characteristics with those of the existing spaces, and established a few theorems in the paper. The separation axioms, namely, $\mathrm{g}(\mathrm{gs})-T_{0}, \mathrm{~g}(\mathrm{gs})-T_{1}, \mathrm{~g}(\mathrm{gs})-T_{2}$, $\mathrm{g}(\mathrm{gs})-T_{3}$, and $\mathrm{g}(\mathrm{gs})-T_{4}$, are extended to $\mathscr{B} \mathscr{T}$. The perceived result is $\mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{4} \Rightarrow \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{3} \Rightarrow \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{2}$ $\Rightarrow \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{1} \Rightarrow \mathrm{gb}(\mathrm{b}-\mathrm{gs})-T_{0}$. Eventually, we identified $\mathrm{sg}-T_{0}, \mathrm{sg}-T_{1}, \mathrm{sg}-T_{2}, \mathrm{sg}-T_{3}$, and $\mathrm{sg}-T_{4}$ spaces extended to
$\mathscr{B} \mathscr{T} \mathcal{S}$. In our future work, we will extend these structures to infer various results such as binary urysohn space and binary tychonoff space in binary topological spaces.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province of China (2022A1515011468) and the Funding by Science and Technology Projects in Guangzhou (202201020237).

References

[1] S. Nithyanantha Jothi and P. Thangavelu, "Topology between two sets," Journal of Mathematical Sciences and Computer Applications, vol. 1, no. 3, pp. 95-107, 2011.
[2] S. Nithyanantha Jothi, Contribution to Binary Topological Spaces, [Ph.D. thesis], Manonmaniam Sundaranar University, Tirunelveli, 2012.
[3] S. Nithyanantha Jothi and P. Thangavelu, "On binary continuity and separation axioms," Ultra Science, vol. 24, pp. 121-126, 2012.
[4] S. Nithyanantha Jothi, "Binary semi open sets in binary topological spaces," International Journal of Mathematical Archive, vol. 7, no. 9, pp. 73-76, 2016.
[5] S. Nithyanantha Jothi and P. Thangavelu, "Generalized binary closed sets in binary topological spaces," Ultra Scientist of Physical Sciences, vol. 26, pp. 25-30, 2014.
[6] F. Izadi, M. Baghalaghdam, and S. Kosari, "On a class of quartic Diophantine equations," Note on Number Theory and Discrete Mathematics, vol. 27, no. 1, pp. 1-6, 2021.
[7] S. Kosari, Z. Shao, M. Yadollahzadeh, and Y. Rao, "Existence and uniqueness of solution for quantum fractional pantograph equations," Science, vol. 45, no. 4, pp. 1383-1388, 2021.
[8] Z. Shao, S. Kosari, and M. Yadollahzadeh, "Generalized FejérDivergence in information theory," Journal of Science and Technology, vol. 46, no. 4, pp. 1241-1247, 2022.
[9] P. Sathishmohan, K. Lavanya, and U. Mehar sudha, "On b-gsclosed and b-sg-closed sets in binary topological spaces," Strad Research, vol. 8, no. 3, pp. 20-24, 2021.
[10] P. Sathishmohan, V. Rajendran, K. Lavanya, and K. Rajalakshmi, "A certain character connected with separation axioms in binary topological spaces," Journal of Mathematical Computational Science, vol. 11, no. 4, pp. 4863-4876, 2021.

