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In this paper, we survey some non-blow-up results for the following generalized modified inviscid surface quasigeostrophic

equation (GSQG)

θt + u · ∇θ = 0,
u = ∇⊥ψ,
−Λβψ = θ,
θ x, 0 = θ0 x

. This is a generalized surface quasigeostrophic equation (GSQG) with the velocity field u

related to the scalar θ by u = −∇⊥Λ−βθ, where 1 ≤ β ≤ 2. We prove that there is no finite-time singularity if the level set of
generalized quasigeostrophic equation does not have a hyperbolic saddle, and the angle of opening of the saddle can go to zero
at most as an exponential decay. Moreover, we give some conditions that rule out the formation of sharp fronts for generalized
inviscid surface quasigeostrophic equation, and we obtain some estimates on the formation of semiuniform fronts. These
results greatly weaken the geometrical assumptions which rule out the collapse of a simple hyperbolic saddle in finite time.

1. Introduction

In this paper, we consider the generalized inviscid quasigeos-
trophic equation:

∂tθ + u · ∇θ = 0, x, t ∈ℝ2 × 0,+∞
u = ∇⊥ψ,  

−Λβψ = θ,  

θ x, 0 = θ0 x  

, 1

where θ ℝ2 ⟶ℝ is a scalar function, representing the
temperature, and u x, t is the velocity field of fluid with
incompressible condition ∇·u = 0, where 1 ≤ β ≤ 2 is a
parameter. When β = 2, (1) becomes 2D Euler vorticity
equation while (1) with β = 1 is the surface quasigeostrophic
equation. Clearly, (1) bridges the 2D Euler equation and the

surface quasigeostrophic equation. Except in the case when
β = 0, the global regularity issue for (1) remains open. The
gradient ∇ = ∂x1 , ∂x2 ,Λα = −Δ α/2 and ∇⊥ = −∂x2 , ∂x1 ,
R⊥θ = −R2θ,R1θ with Ri, i = 1, 2, for the Riesz trans-
form defined by

Ri θ x, t = 1
2π P V

ℝ2

xi − yi θ y, t
x − y 3 dy 2

Obviously, we have

u = −∇⊥Λ−βθ 3

This model of generalized 2D Euler/SQG equations had
been proposed by Pierrehumbert et al. in 1994 in [1]; then,
this model was studied by Chae et al. in [2], and they
obtained a regularity criterion in terms of the norm of θ in
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the Hölder space C2−β R2 to the generalized inviscid surface
quasigeostrophic equations. Then, they researched the global
regularity in [3] for a class of generalized equations that the
velocity field u is determined by the active scalar θ through
RΛ−1P Λ θ where P Λ represents a family of Fourier mul-
tiplier operators. Subsequently, they obtained the global
existence of a weak solution in [2] by Galerkin method and
the local existence of patch-type solutions for the inviscid
model. Kiselev et al. in [4, 5] studied the patch dynamics
on the whole plane and on the half-plane for modified sur-
face quasigeostrophic equations involving a parameter α that
appears in the power of the kernel in their Biot-Savart laws,
and they established local-in-time regularity for α ∈ 0, 1/2
on the whole plane and finite-time singularity for all small
α > 0. It is hoped that this research sheds some light on the
global regularity issue concerning the Euler equation and
surface quasigeostrophic equation. However, in this paper,
we pay more attention to the generalized modified quasi-
geostrophic equations without dissipative term, and we give
some conditions of non-blow-up of the generalized inviscid
surface quasigeostrophic equation.

The rest of this paper is organized as follows. Section 2 is
devoted to the main results. Section 3 details the proof of
these theorems and corollaries. Furthermore, throughout
this paper, we use C to denote the positive constants which
may vary from line to line.

2. Main Results

Similar to [6], firstly, we give a definition of a hyperbolic
saddle.

Definition 1. A simple hyperbolic saddle in a neighborhood
U of the origin is the set of curves ρ = constant where

ρ = y1α t + y2 y1β t − y2 , 4

where y1, y2 are nonlinear time-dependent coordinate
change

y1 = F1 x1, x2, t ,
y2 = F2 x1, x2, t ,

5

with α t , β t ∈ C1 0, T∗ , Fi ∈ C2 U × 0, T∗ , α , β ≤
C, α t + β t ≥ 0, det ∂Fi/∂xj ≥ c > 0, and x ∈U , t ∈ 0, T∗

Remark 2. Set (4) represents the hyperbola in y1, y2 -coor-
dinate. In particular, we get the asymptote for a hyperbola
when ρ = 0. The angle of opening of the saddle is γ t ≃
α t + β t when α t , β t ≤ C, while the angle of open-
ing of the saddle is γ t ≃ 1/α t + 1/β t when α t , β t
≥ C (see also [7]).

The possible singularity is due to γ t becoming zero in
finite time. The following theorems will show that this is
not possible, and γ t can go to zero at most as an exponen-
tial decay.

Theorem 3. Suppose θ x1, x2, t is a smooth solution of (1)
defined for 0 ≤ t < T∗, x1, x2 ∈ℝ2. Assume that θ is a con-
stant along the hyperbolas defined in Definition 1 for 0 ≤ t
< T∗, and for each, fixed t that θ is not a constant on any disc
in U , and then, lim

t⟶T∗

γ t exists and is not 0.

Corollary 4. Let θ x, t be as in Theorem 3, let ξ = ∇⊥θ/ ∇⊥θ
, and assume ∇ξ < C on ℝ2 \U × 0, T∗ . Then, θ x, t
continues to some solution of (1) on ℝ2 × 0, T∗ + ε , for some
ε > 0.

Theorem 5. Let θ x1, x2, t , α, β,U and Fi be as in Definition
1 but with T∗ = +∞. Assume that the C2 seminorms of Fi are
bounded for all time 0 ≤ t ≤ +∞. Then

log γ ≤ C1t + C2, 6

for all t, where C1 and C2 are constants.

Corollary 6. Let θ x, t be as in Theorem 5, let ξ = ∇⊥θ/ ∇⊥θ
, and assume ∇ξ < ϕ t on ℝ2 \U × 0, T∗ , then

∇⊥θ
L∞

≤ 2
T

0
C C + ϕ t dt + ∇⊥θ 0 2

L∞

1/2
7

Moreover, we give a condition that rules out the forma-
tion of sharp fronts for generalized surface quasigeostrophic
equations and obtains estimates on the formation of semiu-
niform fronts.

Theorem 7. For a generalized modified inviscid quasigeos-
trophic equations with a semiuniform front, if 1 < β < 2, the
thickness δ t satisfies:

δ t > e− C1t+C2 , ∀t ∈ 0, T , 8

where the constants C1 and C2 depend only on the length of
the front, the semiuniformity constant, the initial thickness
δ 0 , and the norm of the initial datum L1 ∩ L∞.

3. Proofs of Theorems and Corollaries

3.1. Proof of Theorems 3 and 5. Suppose θ x, t be a smooth
solution of (1) defined for 0 ≤ t < T∗, x1, x2 ∈ℝ2. If for 0
≤ t < T∗ that θ is constant along the curves ρ = constant,
where ρ = ρ x1, x2, t , we denote θ x, t = θ ρ, t for a func-

tion θ, and ψ x, t = ψ ρ, σ, t . Besides, we have

∇⊥θ

∇⊥θ
= η1, η2

η21 + η22
9

In the following analysis, we introduce a new set of var-
iables ρ, σ to analyze the level set. The first variable ρ is
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defined in Definition 1, and the σ is from the following iden-
tities

∂x1
∂σ

= −
∂ρ
∂x2

, ∂x2
∂σ

= ∂ρ
∂x1

, 10

where we write ϕ x for ϕ ρ x , and ϕ ρ x is the intersec-
tion of the bisector B y1, y2, t = 0 of the angle δ with ρ > 0.
We write the stream function ψ and system (1) in terms of a
time-independent change of variables

x1, x2 ⟶ ρ x1, x2, t , σ x1, x2, t 11

By performing the change of variables in the first equa-
tion of (1), we get

u · ∇xθ =
∂θ
∂ρ

u · ∇xρ = −
∂θ
∂ρ

∂ψ
∂x2

∂ρ
∂x1

−
∂ψ
∂x1

∂ρ
∂x2

= −
∂θ
∂ρ

∂ψ
∂x2

∂x2
∂σ

+ ∂ψ
∂x1

∂x1
∂σ

= −
∂θ
∂ρ

∂ψ
∂σ

12

Since θ x, t = θ ρ, t , we have

dθ
dt

= ∂θ
∂t

+ ∂θ
∂ρ

∂tρ 13

By θt + u · ∇xθ = 0, we have

dθ
dt

+ u · ∇xθ = 0 14

Substitute (12) and (13) into (14), we get

∂θ
∂t

+ ∂θ
∂ρ

∂tρ + −
∂θ
∂ρ

∂ψ
∂σ

= 0 15

Thus

∂θ
∂t

+ ∂θ
∂ρ

∂ρ
∂t

−
∂ψ
∂σ

= 0 16

Since ∂θ/∂t and ∂θ/∂ρ are independent of σ, we easily
deduce that

∂ψ
∂σ

= ∂ρ
∂t

+G1 ρ, t 17

Furthermore, the integration with respect to σ of (17)
gives

ψ ρ, σ, t = G1 ρ, t σ +
σ

0

∂ρ
∂t

dσ +G2 ρ, t 18

It is obvious that G2 ρ, t = ψ ρ, 0, t . We obtain a new
expression for the stream function. The expression (18) for

the velocity stream function in terms of the new variable
ρ, σ will be used in following part to obtain an estimate
on the angle of the saddle.

The main strategy is to estimate the difference of the value
of the stream function at a point p that lies in the branch of the
saddle y2 = β t y1 with the value of the stream function at a
point q that lies in the other branch y2 = −α t y1. Both point
p and point q have the same y1 coordinate. We need two
expressions of the stream function; one was derived from the
equality ψ = −Λ−βθ, and the other one was derived from the
change of variables done in the above analysis. To prove both
theorems, we give a lemma.

Firstly, we need the key estimate of the difference of the
value of the stream function at two different points that are
close to each other that is obtained by the stream function
as follows:

ψ x, t = −
ℝ2

θ y

y − x 2−β dy, 19

because of the fact ψ = − −Δ −β/2θ Similar results for the 2D
Euler equations have been announced in [8], and the similar
phenomenon has been noticed in 2D quasigeostrophic ther-
mal active scalar in [9, 10].

Lemma 8. Let θ be a solution of (1), ψ be given by the equal-
ity ψ = − −Δ −β/2θ = −Λ−βθ, and p and q be defined as
before, and if 1 < β < 2, then, we have

ψ p − ψ q ≤ kγ, 20

where k satisfies 0 ≤ c ≤ k ≤ C, and c and C are constants, and
p − q ~ γ.

Proof. We evaluate ψ at the point p = ρ, σ1 and q = ρ, σ2
with σ1 ≠ σ2; thus, we

I = ψ p − ψ q =
ℝ2
θ y

1
y − p 2−β −

1
y − q 2−β dy

21

If we denote τ = p − q . We split the integral I:

I x =
y−p ≤2τ

θ y
1

y − p 2−β −
1

y − q 2−β dy

+
2τ< y−p ≤k

θ y
1

y − p 2−β −
1

y − q 2−β dy

+
k< y−p

θ y
1

y − p 2−β −
1

y − q 2−β dy

= I1 + I2 + I3,

22

where k is a fixed number.
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Next, we estimate every term in (22), respectively.

I1 ≤ θ L∞
y−p ≤2τ

1
y − p 2−β −

1
y − q 2−β dy

≤ C
y−p ≤2τ

1
y − p 2−β + 1

y − q 2−β dy

≤ C
y−p ≤3τ

1
y − p 2−β dy ≤

C
β

3τ β ≤ Cτβ

23

If we choose s to be a point in the line between p and q,
then, y − p ≤ 2 y − s , and we estimate I2 by

I2 ≤ Cτ
2τ< y−p ≤k

max
s

∇
1

y − s 2−β dy

≤ Cτ
2τ< y−p ≤k

2 − β max
s

y − s β−3dy

≤ Cτ 2 − β
2τ< y−p ≤k

max
s

y − s β−3dy

≤ Cτ kβ−1 − cτβ ≤ Cτ

24

For the third term I3, we have

I3 ≤ Cτ, 25

where we have used the fact that the norm θ L2 is con-
served for all time. Collecting (23), (24), and (25), we have
the needed result in (20).

Then, we need to divide it into two cases to prove the
main theorem. However, we only deal with the case α , β
≤ C, and for the case α , β > C, we can use a similar
method to prove the result, and we omit it here.

Assume α , β ≤ C. In this case, the angle of the saddle is
r t = α t + β t . We take two points p and q lying in the
same level set but in different arms. Using the identity (4),
we define

p y1, t = y1, β t y1 , q y1, t = y1,−α t y1 26

Then, we take the limit approaching points p and q,
respectively. Then, necessarily, ρ⟶ 0 and σ grow logarith-
mically. Then, we have the following lemma.

Lemma 9. Under the assumptions in Theorem 3, α , β ≤ C,
let ψ be given by expression (18) and p, q defined as before,
then

S1 = ψ p − ψ q = dα
dt

y1

0

y1
D q y1, t

dy1

+ dβ
dt

y1

0

y1
D q y1, t

dy1 +O γ ,
27

where D = det ∂Fi/∂xj .

Proof. We evaluate the stream function ψ at the points p1
= ρ, σ1 and q1 = ρ, σ2 with σ1 = σ2. According to (18),
we have

ψ q1 − ψ p1 = G1 ρ, t σ2 − σ1 +
σ2

σ1

∂ρ
∂t

dσ 28

Next, we take the limit when p1 ⟶ p and q1 ⟶ q, and
it means ρ⟶ 0.

By (17), we have

G1 ρ, t = ∂ψ
∂σ

−
∂ρ
∂t

= ∂ψ
∂x1

∂x1
∂σ

+ ∂ψ
∂x2

∂x2
∂σ

−
∂ρ
∂t

= −
∂ψ
∂x1

∂ρ
∂x2

+ ∂ψ
∂x2

∂ρ
∂x1

−
∂ρ
∂t

= −u · ∇ρ − ∂ρ
∂t

,

29

where we have used (10).
For a fixed t ∈ 0, T∗ , we can estimate G1 ρ, t by

G1 ρ, t ≤ u · ∇ρ + ∂ρ
∂t

, 30

where

∂ρ
∂xi

= ∂ρ
∂y1

∂y1
∂xi

+ ∂ρ
∂y2

∂y2
∂xi

, 31

∂ρ
∂t

= ∂ρ
∂y1

∂y1
∂t

+ ∂ρ
∂y2

∂y2
∂t

+ d δ − β

dt
y1y2 +

d βδ

dt
y21

32

Considering the definition of ρ = ρ y1, y2, t , y = F x1,
x2, t , and Fi ∈ C2 U × 0, T∗ , we have

∂ρ
∂xi

≤ y const ,

∂ρ
∂t

≤ y const
33

Now, we derive an estimate for the velocity u x :

u x, t =
ℝ2

y⊥θ x + y, t
y 4−β dy 34

We consider ε > 0, and we define N ε to be a smooth
nonnegative function such that N ε = 1 for 0 ≤ ε ≤ 1, and
N ε = 0 for ε ≥ 2. Then, we have

u x =
y ≤2ε

N
y
ε

y⊥θ x + y

y 4−β dy

+
y ≥ε

1 −N
y
ε

y⊥θ x + y

y 4−β dy = I1 + I2

35
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For the first term, by integrating by parts, we have

I1 =
y ≤2ε

N
y
ε

1
2 − β

∇⊥ y − 2−β θ x + y dy

≤
1

2 − β y ≤2ε
y − 2−β ∇⊥ N

y
ε

θ x + y dy

≤
1

2 − β y ≤2ε
y − 2−β ∇⊥ N

y
ε

θ x + y dy

+ 1
2 − β y ≤2ε

y − 2−β ∇⊥θ x + y N
y
ε

dy

≤
1

2 − β
θ x + y L∞

y ≤2ε
y− 2−β dy

+ ∇⊥θ x + y
L∞

1
2 − β y ≤2ε

y − 2−β N
y
ε

dy

≤
1

β 2 − β
θ0 L∞ε

β + ∇⊥θ
L∞

1
β 2 − β

εβ

≤ C
1

β 2 − β
εβ + 1

β 2 − β
∇⊥θ

L∞
εβ

36

For the second term, we have

I2 ≤
y ≥ε

θ x + y

y 3−β dy =
ε≤ y <k

θ x + y

y 3−β dy

+
k≤ y

θ x + y

y 3−β dy

≤ θ L∞
ε≤ y <k

1
y 3−β dy +

k≤ y

θ x + y

kβ+1
dy

≤ C1 θ L∞
1

β − 1 ε
β−1 + C2 θ L2

≤
C1
β − 1 θ0 L∞k

β−1 + C2 θ0 L2

37

Therefore, we have

u x ≤
1

β 2 − β
εβ + 1

β 2 − β
∇⊥θ

L∞
εβ

+ C1
β − 1 θ0 L∞k

β−1 + C2

38

Take ε = ∇⊥θ
−1/β
L∞ , and then, u is bounded by ∇⊥θ −1

L∞ ,
assuming that ∇⊥θ −1

L∞ ≥M, where M is a constant. There-
fore

G1 ρ, t ≤ y const 39

From the definition of ρ, we know that y2 ~ ρ when we
approach the origin along the bisector B with ρ > 0. There-
fore, G1 is at most ρ1/2 when ρ⟶ 0. This implies that

lim
ρ⟶0

G1 ρ, t · σ2 − σ1 = 0 40

For the second term, firstly, we define

Γ = y1, y2 : ρ = const 41

By the change of variables, we have the following expres-
sion for ∂yi/∂σ,

∂yi
∂σ

= ∂yi
∂x1

∂x1
∂σ

+ ∂yi
∂x2

∂x2
∂σ

= −
∂yi
∂x1

∂ρ
∂x2

+ ∂yi
∂x2

∂ρ
∂x1

= −
∂yi
∂x1

∂ρ
∂y1

∂y1
∂x2

+ ∂ρ
∂y2

∂y2
∂x2

+ ∂yi
∂x2

∂ρ
∂y1

∂y1
∂x1

+ ∂ρ
∂y2

∂y2
∂x1

,

42

and then by the above identify, (42) we have

∂y1
∂σ

= −D
∂ρ
∂y2

, ∂y2
∂σ

=D
∂ρ
∂y1

,

∂y1
∂σ

dσ
dy1

= 1, ∂y2
∂σ

dσ
dy2

= 1, onΓ
43

Then, we utilize (31), (32), and (42) to estimate the last
term σ2

σ1
∂ρ/∂t dσ in (28); it is similar to the surface quasi-

geostrophic equation in [7], and we omit it here.
If we take q = 0, 0 in Lemma 9, we obtain

S2 = ψ p − ψ q = dβ
dt

y1

0

y1
D p y1, t

dy1 + A x1, x2, t ,

44

where D = det ∂Fi/∂xj , and A x1, x2, t is a bounded func-
tion for all t.

If we denote

M p =
y1

0

y1
D p y1, t

dy1,

M q =
y1

0

y1
D q y1, t

dy1,
45

then, (44) becomes S2 = dβ/dt M p − A x1, x2, t ; there-
fore, (27) in Lemma 9 becomes

S1 =
dβ
dt

M p + dα
dt

M q +O γ

= dα
dt

+ dβ
dt

M p + dα
dt

M q −M p +O γ
46

By α , β ≤ C, we have γ ≃ α + β, thus dγ/dt ≃ dα/dt
+ dβ/dt . By the expression M p and M q , there exists
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constants c and C such that 0 < c ≤M p ≤ C, 0 < c ≤M q
≤ C, and M p −M q =O γ , and then, we have S1 = dγ/
dt M p +O γ . By Lemma 8, we have

dγ
dt

≤ Cγ, 47

γ is less than a small constant, and the constant C is dif-
ferent from line to line. The proofs of Theorems 3 and 5 fol-
low directly from integrating (47).

3.2. Proof of Corollaries 4 and 6. Next, we prove Corollaries 4
and 6 By the fact u x, t = ℝ2∇⊥

y θ x + y, t / y 2−βdy, we have

∇u x, t = −∇x
ℝ2

∇⊥
y θ x + y, t

y 2−β dy

= −
ℝ2

1
y 2−β ∇y∇

⊥
y θ x + y dy,

48

and then, we write the integral as a limit as ε⟶ 0 of inte-
grals on y > ε. Because the two gradients applied to θ com-
mute, we can choose any one of them and integrate by parts.
The limit of the contribution from y = ε vanishes. In this
way, we have

∇u x, t = −P V
ℝ2

2 − β ŷ⊥ ⊗ ∇θ x + y
dy

y 3−β , 49

or

∇u x, t = −P V
ℝ2

2 − β ∇⊥θ x + y ⊗ ŷ
dy

y 3−β , 50

where ŷ = y/ y .
Let ∇⊥θ = Aξ, A = ∇⊥θ , by the fact

D∇⊥θ

Dt
= ∇u · ∇⊥θ,

D ∇⊥θ

Dt
= α ∇⊥θ

51

We have

α x = ∇u x ξ x · ξ x , 52

and then, we deduce the two representations of α. Utilizing
(49), we have

α x = ∇u · ξ x · ξ x

= −P V 2 − β ŷ ⊗ ∇θ x + y
1

y 3−β dy · ξ x · ξ x

= −P V 2 − β ŷ ⊗ ∇θ x + y · ξ x · ξ x
1

y 3−β dy

= −P V 2 − β 2 − β ŷ ⊗
∇θ x + y
∇⊥θ x + y

· ξ x

· ξ x ∇⊥θ x + y
1

y 3−β dy = −P V 2 − β

2 − β ŷ ⊗ ξ⊥ x + y · ξ · ξ ∇⊥θ x + y
1

y 3−β dy

= P V 2 − β ξΤ ŷ · ξΤ x + y
Τ
· ξ A x + y

1
y 3−β dy

= P V 2 − β ŷΤ · ξ ξ⊥ x + y · ξ A x + y
1

y 3−β dy

= P V 2 − β ŷΤ · ξ⊥ ξ x + y · ξ⊥ A x + y
1

y 3−β dy

53

Therefore, we obtain the first representation of α x as
follows:

α x = P V
ℝ2

2 − β ŷ · ξ⊥ x ξ x + y · ξ⊥ x

A x + y
dy

y 3−β ,
54

By (50), we used similar estimates as above, and we have
an alternative expression of α x :

α x = −P V
ℝ2

2 − β ŷ · ξ x ξ x + y · ξ x

A x + y
dy

y 3−β

55

Consider ρ > 0, with χ r a smooth, nonnegative func-
tion of one positive variable χ r = 1 for 0 ≤ r ≤ 1/2, χ r =
0 for r ≥ 1.

α x = P V
ℝ2
χ

y
ρ

2 − β ŷ · ξ⊥ x ξ x + y · ξ⊥ x

A x + y
dy

y 3−β + P V
ℝ2

1 − χ
y
ρ

2 − β ŷ · ξ⊥ x ξ x + y · ξ⊥ x

A x + y
dy

y 3−β = αin + αout

56
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For the second term, it is easy to obtain

αout ≤ Cρ−1
y ≥ 1/2 ρ

θ x + y
dy

y 3−β

≤ Cρ− β+2 θ L2Cρ
− β+2 θ0 L2

57

Let us consider now the situation in which the direction
field ξ is smooth in the ball of centre x and the radius ρ, cor-
responding to the smoothly directed case. We use the repre-
sentation in (54), let denote G = sup

y ≤ρ
∇ξ x + y , clearly

ξ x + y · ξ⊥ x ≤ G y  for  y ≤ ρ 58

Then, we have

αin ≤ G
y ≤ρ

χ
y
ρ

A x + y
dy

y 3−β 59

By the fact A = ξ · ∇⊥θ , integrating by parts on the right
on (59), we have

y ≤ρ
χ

y
ρ

ξ x + y ∇⊥
y θ x + y

dy

y 3−β

= −
y ≤ρ

θ x + y ∇⊥
y · ξ x + y χ

y
ρ

1
y 3−β dy

= −
y ≤ρ

∇⊥
y ξ x + y θ x + y χ

y
ρ

1
y 3−β dy

−
y ≤ρ

θ x + y ξ x + y · ∇⊥
y χ

y
ρ

1
y 3−β dy

− 3 − β
y ≤ρ

ξ x + y · ŷ⊥ θ x + y

χ
y
ρ

1
y 4−β

y1, y2
y

dy = I1 + I2 + I3

60

We estimate every term in (60), respectively, and then,
we have

I1 ≤ CG θ L∞
y < 1/2 ρ

χ
y
ρ

1
y 3−β dy

≤ CG θ L∞

2π

0

1/2 ρ

0

1
y 3−β ydrdα

≤ C
1

β − 1Gρ
β−1 θ L∞ ,

I2 ≤ C θ L∞ρ
β−1

61

For the third term, we write ξ x + y = ξ x + ξ x + y

− ξ x , and therefore

I3 = ξ x
y ≤ρ

ŷ⊥θ x + y χ
y
ρ

1
y 4−β

y1, y2
y

dy

+
y ≤ρ

ξ x + y − ξ x · ŷ⊥ θ x + y

χ
y
ρ

1
y 4−β

y1, y2
y

dy = I31 + I32

62

Since

P V
ℝ2

y⊥θ x + y

y 4−β dy = −u x , 63

then, we have

I31 ≤ C u x 64

For the second term, we have

I32 = P V
y ≤ρ/2

∇ξ x∗ yŷ⊥θ x + y χ
y
ρ

1
y 4−β

y1, y2
y

dy

+ P V
ρ/2≤ y ≤ρ

ξ x + y − ξ x · ŷ⊥

θ x + y χ
y
ρ

1
y 4−β

y1, y2
y

dy

≤ C G θ L∞

2π

0

ρ/2

0

1
y 3−β ydrdθ′

+GP V
ρ/2≤ y ≤ρ

y⊥θ x + y y − 3−β dy

≤ CG θ L∞ρ
β−1 +G θ L2

ρ/2≤ y ≤ρ
y⊥ 2 y −2 3−β dy

1/2

= CG θ L∞ρ
β−1 + CGρ2 2−β θ L2 ,

65

where we have used the Hölder inequality and x∗ ∈ x, x + y
, and θ′ represents the angle in the polar coordinate through
the transformation. Thus, we have

αin ≤ CG u x + ρβ−1G + ρ−β θ L∞ + ρ2 2−β θ L2

66

Combining (57) and (66) in (56), we have the following.

Lemma 10. Assume that x is such that

G = sup
y ≤ρ

∇ξ x + y , 67
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Then, α x is bounded by

α x ≤ C G u x + Gρβ−1 + ρ2 2−β

G θ L∞ + ρ− β+2 θ L2

68

Under the assumptions of Corollary 4, we know G x is
bounded by a constant x > c. Therefore, we can estimate α
on V =U \ x < C by

α ≤ ∇⊥θ
−1
L∞
C 69

In particular, the function F = ∇⊥θ / ∇ρ is independent
of σ. We write the material derivative of F as follows:

Dt
∇⊥θ

∇ρ
= 1

∇ρ
Dt ∇⊥θ + ∇⊥θ Dt

1
∇ρ

= α + ∇ρ Dt
1
∇ρ

∇⊥θ

∇ρ

70

We estimate ∇ρ Dt 1/ ∇ρ on V by

∇ρ Dt
1
∇ρ

= 1
∇ρ

Dt ∇ρ = 1
∇ρ

∂
∂t

+ u · ∇ ∇ρ

≤ C1
dδ
dt

+ C2
dβ
dt

+ C3 ∇⊥θ
−1
L∞
C

71

The Definition 1 shows that dδ/dt ≤ C. The same esti-
mate dβ/dt ≤ C can be obtained. Combing (69) and (71),
we get

α + ∇ρ Dt1/ ∇ρ ≤ C ∇⊥θ
−1
L∞

+ C 72

on V when ∇⊥θ L∞ > C.
Then, by (70), we have

DtF ≤ C ∇⊥θ
−1
L∞

· F 73

on V when ∇⊥θ L∞ ≥ C. However, because F only depends
on ρ and t and by the proposition, it follows that inequality
(73) only depends on ρ and t.

We try to estimate the material derivative of ∇⊥θ on U .
If x < C, then, we find x ∈ V such that ρ x = ρ x . The
inequality (73) holds for x, and therefore, it holds for x.
Therefore, the inequality (73) holds both on V and U . By
(70), we have the following identity

Dt ∇⊥θ = ∇ρ ·DtF + F ·Dt ∇ρ 74

For the second term in (74), by the fact that the bound-
edness of ∇ρ on V , we have

F ≤ ∇⊥θ
L∞

75

Because F is independent of σ, the inequality (75) holds
on U . We compute the material derivative of ∇ρ and esti-
mate it on U as follows:

Dt ∇ρ = d/dt ∇ρ + u · ∇ ∇ρ
≤ C1 dδ/dt + C2 dβ/dt + u · ∇ ∇ρ

≤ C1 dβ + C2 dβ/dt + C3 ∇⊥θ
−1
L∞

76

Combing (73), (74), and (76), we have

Dt ∇⊥θ ≤ C ∇⊥θ
−1
L∞

∇⊥θ
L∞

77

If x ∈ℝ2 \U , then, ∇ξ ≤ ϕ t . By using the upper
bound of α, we obtain

Dt ∇⊥θ ≤ C ∇⊥θ
−1
L∞

C + ϕ t , 78

on x ∈ℝ2 \U . Therefore

d
dt

∇⊥θ
L∞

≤ C ∇⊥θ
−1
L∞

C + ϕ t 79

Let B = ∇⊥θ L∞ , integrating (79) on time t, we have

B2 − B2 0 ≤ 2
T

0
C C + ϕ t dt,

B2 ≤ 2
T

0
C C + ϕ t dt + B2 0

80

We have

∇⊥θ
L∞

≤ 2
T

0
C C + ϕ t dt + ∇⊥θ 0 2

L∞

1/2
81

At time t = 0, ∇⊥θ L∞ <∞. It shows that B is bounded,
and ∇⊥θ L∞ is bounded, and it proves the non-blow-up for
solution, and this proves the Corollaries 4 and 6.

3.3. Proof of Theorem 11. Let F = F x, t is a solution to (1),
and a level curve of F can be parameterized by

x2 = f ± x, t , x1 ∈ a, b , 82

with

f ± x, t ∈ C1 a, b ∩ 0, T∗ ,
f − x1, t < f + x1, t  ∀x1 ∈ a, b , t ∈ 0, T ,

83

in the sense that

F x, f ± x, t , t = F± t , x1 ∈ a, b 84
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From (82) and (84), we have

∂F
∂x1

+ ∂F
∂x2

∂f ±
∂x1

= 0, 85

∂F
∂t

+ ∂F
∂x2

∂f ±
∂t

= 0 86

Combining (1), (85), and (86) and the relationship ∇⊥

ψ = u, we have

∂f ±
∂t

= −∂F/∂t
∂F/∂x2

= −∂ψ/∂x2, ∂ψ/∂x1 · ∂F/∂x1, ∂F/∂x2
∂F/∂x2

= −
∂ψ
∂x2

, ∂ψ
∂x1

· ∂F/∂x1
∂F/∂x2

, 1

= −
∂ψ
∂x2

, ∂ψ
∂x1

· ∂f ±
∂x1

, 1 ,

ψ x1, f ± x, t , t
∂x1

= ∂ψ
∂x1

+ ∂ψ
∂x2

∂f ±
∂x1

= −
∂ψ
∂x2

, ∂ψ
∂x1

· ∂f ±
∂x1

, 1 ,

87

where , · , denotes the inner product or dot product, i.e.,
a, b · c, d = ac + bd, (a, b, c, d are scalar functions). There-
fore

∂f ±
∂t

= ψ x1, f ± x, t , t
∂x1

88

Utilizing this formula, we can obtain an explicit equation
for the change of time of the area between two fixed points
a, b and two level curves f −, f + ,

d
dt

b

a
f + x1, t − f − x1, t dx1

= ψ b, f + b, t , t − ψ a, f + a, t , t
+ ψ a, f − a, t , t − ψ b, f − b, t , t

89

Suppose that two-level curves f + and f − collapse when t
tends to T∗ uniformly in a ≤ x1 ≤ b, i.e.

M t = f + x, t − f − x, t ~ 1
b − a

b

a
f + x1, t − f − x1, t dx1,

90

That is to say, the distance between two level sets are
comparable for a ≤ x1 ≤ b Denote

δ x1, t = max
x1∈ a,b

f + x1, t − f − x1, t , 91

be the thickness of the front and call the length b − a of the
interval a, b , the length of the front.

One assumption is that

min
x1∈ a,b

f + x1, t − f − x1, t > c1 · δ x1, t , 92

for all a ≤ x1 ≤ b and all t ∈ 0, T∗ By the previous results of
[11], we know that if (92) holds, then, we say F± t form a
semiuniform front.

Proof of Theorem 11. By (89) and (90), we have

d
dt

1
b − a

b

a
f + x1, t − f − x1, t dx1

= 1
b − a

ψ b, f + b, t , t − ψ a, f + a, t , t

+ ψ a, f − a, t , t − ψ b, f − b, t , t

≤
2

b − a
sup

a≤x1≤b
ψ x1, f + x1, t , t − ψ x1, f − x1, t , t

93

By virtue of (20) in Lemma 8 (where p and q are different
point in a, b ), we take p = f + x1, t and q = f − x1, t , and we
have

d
dt

1
b − a

b

a
f + x1, t − f − x1, t dx1

≤
C1
b − a

sup
a≤x1≤b

f + x1, t − f − x1, t
94

That is to say

d
dt

M t ≤
C1
b − a

M t 95

Therefore, by Gronwall’s inequality, (90) and (91), we
have δ t > e− C1t+C2 , and this allows us to rule out the for-
mation of sharp fronts, and this yields (8) and concludes
the proof.
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