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This article gives some essential scopes to study the characterizations of the antineutrosophic subgroup and antineutrosophic
normal subgroup. Again, several theories and properties have been mentioned which are essential for analyzing their
mathematical framework. Moreover, their homomorphic properties have been discussed.

1. Introduction

Fuzzy set (FS) [1] theory was introduced to handle uncertain
situations more precisely than crisp sets. But there may exist
some complex uncertain situations for which even FS theory
is insufficient. As a result, intuitionistic fuzzy set (IFS) [2] and
neutrosophic set (NS) [3] theories evolved, where the latter is
more capable of dealing with uncertainties. Apart from these,
there exist several byproducts of these set theories, like
interval-valued versions [4–6]; type-I, type-II, and type-III ver-
sions; and soft [7–9] and hard versions. Presently, these theories
have been adopted by several researchers in different applied
fields. Also, in several pure mathematical fields, these notions
are being utilized. In abstract algebra, Rosenfeld [10] was the
pioneer to do so. He defined and studied the characteristics of
a fuzzy subgroup (FSG). Thereafter, Das [11] presented the con-
cept of the level subgroup of a FSG and showed several beautiful
relationships between them. Afterward, Anthony and Sher-
wood [12, 13] redefined FSG by applying general T-norms
and defined function generated FSG and subgroup generated
FSG. In 1984, Mukherjee and Bhattacharya [14] introduced
normal versions of FSG and cosets. Furthermore, Biswas [15]
established the concept of intuitionistic fuzzy subgroup (IFSG).
Similarly, Çetkin and Aygün [16] developed the neutrosophic
subgroup (NSG) and studied its homomorphic properties. They
have also established some connections between anNSG and its
level subgroup.

The concept of the antifuzzy subgroup (AFSG) [17] is a
kind of dual to FSG. It was defined and characterized by Bis-
was in 1990. He has mentioned some relationships between
FSG and AFSG and studied several other properties. Simi-
larly, there is notion of the intuitionistic antifuzzy subgroup
(IAFSG) [18], which was developed by Li et al. in 2009. They
have also studied its homomorphic properties and estab-
lished some connections with its intuitionistic fuzzy coun-
terpart. Table 1 contains some contributions of various
researchers involving different antialgebraic notions under
uncertainty.

Hence, it is obvious that antiversions of FSG, IFSG, etc.
have been adopted by different researchers for the anticipa-
tion of unique and impactful results. In neutrosophic group
theory, so far, authors have discussed NSGs and some of
their algebraic structures. But still, the antineutrosophic sub-
group (ANSG) is undefined. Also, the relationship between
NSG and ANSG are still unexplored. Hence, this can be a
fruitful area which can generate some scope of future
research. Based on the aforementioned gaps, the objectives
of this paper are as follows:

(i) to introduce ANSG and investigate its algebraic
features

(ii) to define the antineutrosophic normal subgroup
(ANNSG) and explore its algebraic characteristics
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(iii) to figure out the relationships between NSG and
ANSG

(iv) to study several homomorphic attributes of ANSG
and ANNSG

This article has been structured in the following manner.
In Section 2, desk research of FSG, IFSG, and NSG and their
normal versions are given. Also, antiversions of FSG and
IFSG are discussed. In Section 3, the notions of ANSG and
ANNSG are introduced along with some other essential def-
initions and theories are given. Finally, in Section 4, conclu-
sion is given by mentioning some scopes of further research.

2. Preliminaries

Here, some elementary set theories under uncertainties are
discussed which are required for our current study.

Definition 1 (see [1]). A FS λ of a crisp set V is defined as
λ : V ⟶ ½0, 1�.

Definition 2 (see [2]). An IFS γ of a crisp set V is defined as
γ = fðr, tγðrÞ, f γðrÞÞ: r ∈ Vg, where tγ and f γ are, respec-
tively, known as the membership and nonmembership
degrees.

Definition 3 (see [3]). A NS η of a crisp set V is defined as
η = fðr, tηðrÞ, iηðrÞ, f ηðrÞÞ: r ∈ Vg, where tη, iη, and f η are,
respectively, known as the truth, indeterminacy, and falsity
degrees.

Definition 4 (see [1]). Let ψ be a FS of V : Then, the set ψt =
fr ∈ V : ψðrÞ ≥ tg∀t ∈ ½0, 1� is denoted as a level subset of ψ.

Definition 5 (see [17]). Let φ be a FS of V : Then, the set �φt
= fr ∈ V : φðrÞ ≤ tg∀t ∈ ½0, 1� is denoted as a lower level sub-
set of φ.

Next, the notions of FSG, IFSG, NSG, and a few of their
essential properties are addressed.

2.1. Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Subgroup

Definition 6 (see [10]). For a classical group V , a FS ψ is
denoted as a FSG iff ∀m, r ∈ V , the subsequent conditions
are fulfilled:

(i) ψðm ⋅ rÞ ≥min fψðmÞ, ψðrÞg
(ii) ψðr−1Þ ≥ ψðrÞ

Theorem 7 (see [10]). ψ is a FSG of V iff ∀m, r ∈ V
ψðmr−1Þ ≤min fψðmÞ, ψðrÞg.

Proposition 8 (see [10]). Homomorphic image and preimage
of a FSG is a FSG.

Theorem 9 (see [11]). Let V be a classical group and ψ ∈
FSGðVÞ, then ∀t ∈ ½0, 1� with ψðeÞ ≥ t, ψt are classical sub-
groups of V .

Theorem 10 (see [11]). Let V be a classical group and ∀t ∈
½0, 1� with ψðeÞ ≥ t, ψt are classical subgroups of V , then ψ
∈ FSGðVÞ.

Definition 11 (see [11]). Let ψ be a FSG of a classical group V .
Then, ∀t ∈ ½0, 1� and ψðeÞ ≥ t the subgroups ψt are termed as
level subgroups of ψ.

Definition 12 (see [15]). For a classical group V , an IFS γ

= fðr, tγðrÞ, f γðrÞÞ: r ∈ Vg is denoted an IFSG iff ∀m, r ∈ V ,

(i) tγðm ⋅ rÞ ≥min ftγðmÞ, tγðrÞg
(ii) tγðr−1Þ ≥ tγðrÞ
(iii) f γðm ⋅ rÞ ≤max f f γðmÞ, f γðrÞg
(iv) f γðr−1Þ ≤ f γðrÞ

Table 1: Desk research of different antialgebraic notions.

Author & references Year Contributions in various fields

Kim et al. [19] 2005
Introduced the concept of antifuzzy ideals of near-rings and investigated some

of its properties.

Feng & Yao [20] 2012 Introduced (λ, μ)-antifuzzy subgroups and studied its properties.

Kausar [21] 2019
Introduced intuitionistic fuzzy normal subrings and intuitionistic anti fuzzy normal

subrings over a nonassociative ring and studied their properties.

Ejegwa et al. [22] 2021 Studied antifuzzy multigroup and its characteristics.

Hoskova-Mayerova & Al Tahan [23] 2021
Introduced different operations on fuzzy multi-ideals of near-rings and defined

antifuzzy multisubnear-rings of near-rings and study their properties.

Ahmad et al. [24] 2021 Defined kernel subgroup of a FSG and AFSG and presented several results involving them.

Kalaiarasi et al. [25] 2022
Studied the properties of γ-antifuzzy normal subgroup and γ-fuzzy normal subgroup

and presented their application in gene mutation.

Hemabala & Kumar [26] 2022
Introduced and analyzed anti neutrosophic multifuzzy ideals of γ near-ring and

studied their product.
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Proposition 13 (see [15]). For a classical group V , an IFS γ

= fðm, tγðmÞ, f γðmÞÞ: m ∈ Vg is an IFSG iff ∀m, r ∈ V

(i) tγðmr−1Þ ≥min ftγðmÞ, tγðrÞg
(ii) f γðmr−1Þ ≤max f f γðmÞ, f γðrÞg

Theorem 14 (see [27]). Let V and R be two classical groups
and l : V ⟶ R be a homomorphism. Also, let γ ∈ IFSGðVÞ
and γ′ ∈ IFSGðRÞ. Then,

(i) If γ has the supremum property, then lðγÞ ∈ IFSGðRÞ
(ii) l−1ðγ′Þ ∈ IFSGðVÞ

Definition 15 (see [27]). Let γ be an IFS of V and let s1, s2
∈ ½0, 1� with s1 + s2 ≤ 1. Then, the set γðs1,s2Þ = fm ∈ V : tγð
mÞ ≥ s1&f γðmÞ ≤ s2g is known as ðs1, s2Þ-level set of γ.

Theorem 16 (see [27]). Let V be a classical group and γ ∈
IFSGðVÞ. Then, ∀s1, s2 ∈ ½0, 1� with tγðeÞ ≥ s1 and f γðeÞ ≤ s2,
γðs1 ,s2Þ are classical subgroups of V .

Theorem 17 (see [27]). Let V be a classical group and ∀s1,
s2 ∈ ½0, 1� with tγðeÞ ≥ s1 and f γðeÞ ≤ s2, γðs1 ,s2Þ are classical
subgroups of V . Then, γ ∈ IFSGðVÞ.

Definition 18 (see [16]). For a classical group V , a NS δ is
defined as an NSG of V iff the subsequent terms are fulfilled:

(i) δðm ⋅ rÞ ≥min fδðmÞ, δðrÞg, i.e., tδðm ⋅ rÞ ≥min f
tδðmÞ, tδðrÞg, iδðm ⋅ rÞ ≥min fiδðmÞ, iδðrÞg and f δ
ðm ⋅ rÞ ≤max f f δðmÞ, f δðrÞg

(ii) δðm−1Þ ≥ δðmÞ, i.e., tδðm−1Þ ≥ tδðrÞ, iδðm−1Þ ≥ iδðrÞ,
and f δðm−1Þ ≤ f δðrÞ

A set of all the NSGs will be signified as NSGðVÞ. Here, note
that tδ and iδ are following Definition 6, i.e., they are FSGs of
V whereas, f δ is following Definition 24, i.e., it is an AFS of V.

Theorem 19 (see [16]). For a classical group Vδ ∈NSGðVÞ
iff ∀m, r ∈ V

δ m ⋅ r−1
À Á

≥min δ mð Þ, δ rð Þf g, ð1Þ

i.e., tδðm ⋅ r−1Þ ≥min ftδðmÞ, tδðrÞg, iδðm ⋅ r−1Þ ≥min fiδðm
Þ, iδðrÞg, and f δðm ⋅ r−1Þ ≤max f f δðmÞ, f δðrÞg.

Theorem 20 (see [16]). δ ∈NSGðVÞ iff the p-level sets ðtδÞp,
ðiδÞp, and p-lower level set ð�f δÞp are classical subgroups of

V∀p ∈ ½0, 1�.

Theorem 21 (see [16]). Homomorphic image and preimage
of any NSG is a NSG.

Definition 22 (see [16]). For a classical group V , a neutro-
sophic δ is called an NNSG of V iff ∀m, r ∈ V

δ m ⋅ r ⋅m−1À Á
≤ δ rð Þ, ð2Þ

i.e., tδðm ⋅ r ⋅m−1Þ ≤ tδðrÞ, iδðm ⋅ r ⋅m−1Þ ≤ iδðrÞ, and f δðm ⋅
r ⋅m−1Þ ≥ f δðrÞ.

The set of all NNSG of V will be signified as NNSGðVÞ.
Also, notice that η ∈NNSGðVÞ implies that tδ and iδ are
fuzzy normal subgroups (FNSG) of V and f δ is the antifuzzy
normal subgroup (AFNSG) of V .

Theorem 23 (see [16]). Homomorphic image and preimage
of any NNSG is a NNSG.

In the next segment, the notions of AFSG and IAFSG are
discussed.

2.2. Antifuzzy Subgroup and Intuitionistic Antifuzzy
Subgroup

Definition 24 (see [17]). For a classical group V , a FS φ is
denoted as an AFSG of V if ∀m, r ∈ V , the subsequent terms
are fulfilled:

(i) φðm ⋅ rÞ ≤max fφðmÞ, φðrÞg
(ii) φðr−1Þ ≤ φðrÞ

Theorem 25 (see [17]). φ is an AFSG of V iff ∀m, r ∈ V
φðmr−1Þ ≤max fφðmÞ, φðrÞg.

Proposition 26 (see [17]). φ is a FSG of the group V iff its
complement φc is an AFSG of V .

Definition 27 (see [17]). Let φ be an AFSG of a group V .
Then, ∀t ∈ ½0, 1� and φðeÞ ≤ t, the subgroups �φt are called
lower-level subgroups of φ.

Proposition 28 (see [17]). Let φ be an AFSG of V . Then, ∀
t ∈ ½0, 1� such that t ≥ μðeÞ,φt are classical subgroups of V .

Proposition 29 (see [17]). Let φ be a FS of a classical group
V such that �φt is a classical subgroup of V∀t ∈ ½0, 1� with t
≥ μðeÞ. Then, μ is an AFSG of V .

Definition 30 (see [28]). For a classical group V , an IFS γ

= fðm, tγðmÞ, f γðmÞÞ: m ∈ Vg is called an IAFSG of V iff ∀
m, r ∈ V

(i) tγðmr−1Þ ≤max ftγðmÞ, tγðrÞg
(ii) f γðmr−1Þ ≥min f f γðmÞ, f γðrÞg

Proposition 31 (see [28]). γ is a IFSG of the group V iff its
complement γc is an IAFSG of V .
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Theorem 32 (see [28]). γ ∈ IFSGðVÞ iff ∀s1, s2 ∈ ½0, 1� with
tγðeÞ ≥ s1 and f γðeÞ ≤ s2, ðs1, s2Þ-level set of γ, i.e., γðs1 ,s2Þ are
classical subgroups of V .

Theorem 33 (see [18]). Homomorphic image and preimage
of any IAFSG is a IAFSG.

In the following section, the notions of ANSG and ANNSG
have been introduced and some of their fundamental prop-
erties are discussed.

3. Antineutrosophic Subgroup

Definition 34. For a classical group V , a neutrosophic set η is
called an ANSG of V iff the following terms are fulfilled:

(i) ηðm ⋅ rÞ ≤max fηðmÞ, ηðrÞg, i.e., tηðm ⋅ rÞ ≤max f
tηðmÞ, tηðrÞg, iηðm ⋅ rÞ ≤max fiηðmÞ, iηðrÞg, and
f ηðm ⋅ rÞ ≥min f f ηðmÞ, f ηðrÞg

(ii) ηðr−1Þ ≤ ηðrÞ, i.e., tηðr−1Þ ≤ tηðrÞ, iηðr−1Þ ≤ iηðrÞ, and
f ηðr−1Þ ≥ f ηðrÞ

The set of all ANSGs will be signified as ANSGðVÞ

Proposition 35. η ∈ ANSGðVÞ iff tη and iη are AFSGs of V
and f η is FSG of V .

Proof. Let η ∈ANSGðVÞ then from Definition 34, it is evi-
dent that tη and iη are following Definition 24, i.e., they are
AFSGs of V : Whereas f η is following Definition 6, i.e., it is
a FSG of V . Again, if tη and iη are AFSGs of V and f η is a
FSG of V then η ∈ANSGðVÞ.

Example 36. Let V = f1, i,−1,−ig be a classical group of order
4 and η be a neutrosophic set of V , where the memberships
of truth (tη), indeterminacy (iη), and falsity (f η) of elements
in η are given in Figure 1.
Notice that tη and iη are following Definition 24, i.e., are
AFSGs of V . Again, f η is following Definition 6, i.e., is a
FSG of V . Hence, η is an ANSG of V .

Example 37. Let V = fa, eg be a classical group of order 2
and η be a NS of V , where considering θ ∈ ½π/4, π/2�, let η
= fða, sin θ/2, sin θ/4, ðsin θ + cos θÞ/2Þ, ðe, cos θ/2, cos θ/4,
ðsin θ + cos θÞ/2Þg. In Figures 2 and 3, memberships of a
and e have been described graphically.

Here, η is following Definition 34 and hence it is an
ANSG.

Theorem 38. Let η ∈ ANSG ðVÞ where V is a classical group.
Then, ∀r ∈ V

(i) ηðr−1Þ = ηðrÞ
(ii) ηðeÞ ≤ ηðrÞ, where e is the neutral element of V

Proof.

(i) Here, f η is a FSG and both tη and iη are AFSGs of V ,

by Definition 6. So, f ηðrÞ = f ηððr−1Þ−1Þ ≥ f ηðr−1Þ and
hence f ηðr−1Þ = f ηðrÞ. Again, from Definition 24, tη
ðr−1Þ ≤ tηðrÞ. So, tηðrÞ = tηððr−1Þ−1Þ ≤ tηðr−1Þ and
hence tηðr−1Þ = tηðrÞ: Similarly, using Definition 24,
we can prove iηðr−1Þ = iηðrÞ. So, ηðr−1Þ = ηðrÞ

(ii) Using Definition 6, we have f ηðeÞ = f ηðr ⋅ r−1Þ ≥min
f f ηðrÞ, f ηðr−1Þg = f ηðrÞ. Again, using Definition 24,

tη eð Þ = tη r ⋅ r−1
À Á

≤max tη rð Þ, tη r−1
À ÁÈ É

= tη rð Þ:

Similarly, using Definition 24, we have

iη eð Þ = iη r ⋅ r−1
À Á

≤max iη rð Þ, iη r−1
À ÁÈ É

= iη rð Þ:

Hence, ηðeÞ ≤ ηðrÞ

Theorem 39. η ∈ ANSGðVÞ iff ∀m, r ∈ V
ηðm ⋅ r−1Þ ≤max fηðmÞ, ηðrÞg.

Proof. Let η ∈ANSGðVÞ. Then, by Definition 34, we have η
ðm ⋅ r−1Þ ≤max fηðmÞ, ηðr−1Þg. Again, by Definition 34,
ηðr−1Þ = ηðrÞ and hence

η m ⋅ r−1
À Á

≤max η mð Þ, η r−1
À ÁÈ É

=max η mð Þ, η rð Þf g: ð3Þ

Conversely, let ηðm ⋅ r−1Þ ≤max fηðmÞ, ηðrÞg. So,

tη m ⋅ r−1
À Á

≤max tη mð Þ, tη rð ÞÈ É
,

iη m ⋅ r−1
À Á

≤max iη mð Þ, iη rð ÞÈ É
,

f η m ⋅ r−1
À Á

≥min f η mð Þ, f η rð Þ
n o

:

ð4Þ

Notice that,

tη r−1
À Á

= tη e ⋅ r−1
À Á

≤max tη eð Þ, tη rð ÞÈ É
=max tη r ⋅ r−1

À Á
, tη rð ÞÈ É

≤max tη rð Þ, tη rð Þ, tη rð ÞÈ É
= tη rð Þ:

ð5Þ

Similarly, iηðr−1Þ ≤ iηðrÞ and f ηðr−1Þ ≥ f ηðrÞ.
Again,

tη m ⋅ rð Þ = tη m ⋅ r−1
À Á−1� �

≤max iη mð Þ, iη r−1
À ÁÈ É

≤max iη mð Þ, iη rð ÞÈ É
:

ð6Þ

Similarly, iηðm ⋅ rÞ ≤max fiηðmÞ, iηðrÞg and f ηðm ⋅ rÞ ≥
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min f f ηðmÞ, f ηðrÞg can be proved. Hence, η satisfies Defini-
tion 34, i.e., η ∈ANSGðVÞ.

Theorem 40. η ∈ ANSGðVÞ iff ηc ∈NSGðVÞ.

Proof. If we take the complement of η, i.e., ηc then corre-
sponding degree of truth and degree of falsity will inter-
change their positions in ηc. Also, the degree of
indeterminacy will have its complement, i.e., icη = 1 − iη. In

other words, if

η = r, tη rð Þ, iη rð Þ, f η rð Þ
� �

: r ∈ V
n o

then ηc

= r, f η rð Þ, icη rð Þ, tη rð Þ
� �

: r ∈ V
n o

:
ð7Þ

Let η ∈ANSGðVÞ then by Proposition 35 tη and iη are
AFSGs of V and f η is FSG of V . So, in case of ηc, f η and icη

1 –1 i –i
0

0.2

0.4

0.6

0.8

1

Truth
Indeterminancy
Falsity

Figure 1: Memberships of elements in η.
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Figure 2: Memberships of elements in a.
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will become FSGs and tη will become AFS of V . Hence, they
will follow Definition 18, i.e., ηc ∈NSGðVÞ. Similarly, the
converse part can also be proved.

Example 41. Let ðℤ4, +Þ be the group of integers modulo 4
with usual addition and η = fðr, tηðrÞ, iηðrÞ, f ηðrÞÞ: r ∈ℤ4g
is a NS of ℤ4, where tη, iη and f η are mentioned in Table 2.

According to Definition 34, η is an ANSG of ℤ4.
Now ηc = fðr, tηcðrÞ, iηcðrÞ, f ηcðrÞÞ: r ∈ℤ4g, where tηc , iηc

, and f ηc are mentioned in Table 3.
Here, according to Definition 18, ηc is a NSG of ℤ4.

Theorem 42. η ∈ ANSGðVÞ iff the p-lower level sets ð�tηÞp,
ð�iηÞp, and p-level set ð f ηÞp are classical subgroups of V

∀p ∈ ½0, 1�.

Proof. Let η ∈ANSGðVÞ, p ∈ ½0, 1� and m, r ∈ ð�tηÞp. Then,
tηðmÞ ≤ p and tηðrÞ ≤ p. Since η ∈ANSGðVÞ, we have tηð
m ⋅ r−1Þ ≤max ftηðmÞ, tηðrÞg ≤ p and hence m ⋅ r−1 ∈ ð�tηÞp.
Similarly, it can be shown that m ⋅ r−1 ∈ ð�iηÞp and m ⋅ r−1

∈ ð f ηÞp. So, ð�tηÞp, ð�iηÞp, and ð f ηÞp are classical subgroups

of V .
Conversely, let ∀p ∈ ½0, 1�ð�tηÞp is a classical subgroup of

V . Let m, r ∈ V such that tηðmÞ = p1 and tηðrÞ = p2 for some
p1, p2 ∈ ½0, 1�. Then, m ∈ ð�tηÞp1 and r ∈ ð�tηÞp2 .

Let p1 ≤ p2. Then, m, r ∈ ð�tηÞp2 and hence mu−1 ∈ ð�tηÞp2 :
So, tηðmr−1Þ ≤ p2 ≤max ftηðmÞ, tηðrÞg, i.e., tη is an AFSG
of V . Similarly, it can be proved that iη is an AFSG and f η
is a FSG of V : So, η ∈ANSGðVÞ.

Theorem 43. Intersection of any two ANSG of any group is
an ANSG.

45 50 55 60 65 70 75 80

𝜃

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Memberships of elements in e.

Table 2: Membership values of elements belonging to η.

η tη iη f η
�0 0.66 0.31 0.78
�1 0.85 0.35 0.59
�2 0.72 0.32 0.67
�3 0.85 0.35 0.59

Table 3: Membership values of elements belonging to ηc.

ηc tηc iηc f ηc

�0 0.78 0.69 0.66
�1 0.59 0.65 0.85
�2 0.67 0.68 0.72
�3 0.59 0.65 0.85
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Proof. Let η1, η2 ∈ANSGðVÞ. To prove this, using Theorem
39, we can show that

η1 ∩ η2ð Þ m ⋅ r−1
À Á

≤max η1 ∩ η2ð Þ mð Þ, η1 ∩ η2ð Þ rð Þf g, i:e:,

t η1∩η2ð Þ m ⋅ r−1
À Á

≤max t η1∩η2ð Þ mð Þ, t η1∩η2ð Þ rð Þ
n o

,

i η1∩η2ð Þ m ⋅ r−1
À Á

≤max i η1∩η2ð Þ mð Þ, i η1∩η2ð Þ rð Þ
n o

,

f η1∩η2ð Þ m ⋅ r−1
À Á

≥min f η1∩η2ð Þ mð Þ, f η1∩η2ð Þ rð Þ
n o

:

ð8Þ

Here,

t η1∩η2ð Þ m ⋅ r−1
À Á

=max tη1 m ⋅ r−1
À Á

, tη2 m ⋅ r−1
À Án o

≤max max tη1 mð Þ, tη1 rð Þ
n o

, max tη2 mð Þ, tη2 rð Þ
n on o

=max max tη1 mð Þ, tη2 mð Þ
n o

, max tη1 rð Þ, tη2 rð Þ
n on o

=max t η1∩η2ð Þ mð Þ, t η1∩η2ð Þ rð Þ
n o

:

ð9Þ

Similarly, we can show that

i η1∩η2ð Þ m ⋅ r−1
À Á

≤max i η1∩η2ð Þ mð Þ, i η1∩η2ð Þ rð Þ
n o

: ð10Þ

Again,

f η1∩η2ð Þ m ⋅ r−1
À Á

=min f η1 m ⋅ r−1
À Á

, f η2 m ⋅ r−1
À Án o

≥min min f η1 mð Þ, f η1 rð Þ
n o

, min f η2 mð Þ, f η2 rð Þ
n on o

=min min f η1 mð Þ, f η2 mð Þ
n o

, min f η1 rð Þ, f η2 rð Þ
n on o

=min f η1∩η2ð Þ mð Þ, f η1∩η2ð Þ rð Þ
n o

:

ð11Þ

Hence, η1 ∩ η2 ∈ANSGðVÞ.

Theorem 44. Homomorphic image of any ANSG is an
ANSG.

Proof. Let U1 and U2be two classical groups and s : U1
⟶U2 be a homomorphism. Let η ∈ANSGðU1Þ. Then, ∀
m1,m2 ∈U1, we have

tη m1 ⋅m2
−1À Á

≤max tη m1ð Þ, tη m2ð ÞÈ É
,

iη m1 ⋅m2
−1À Á

≤max iη m1ð Þ, iη m2ð ÞÈ É
,

f η m1 ⋅m2
−1À Á

≥min f η m1ð Þ, f η m2ð Þ
n o

:

ð12Þ

Here, we have to show that sðηÞ is an ANSG of U2.

Let ∃n1, n2 ∈U2 such that n1 = sðm1Þ and n2 = sðm2Þ.
Now, as s is a group homomorphism, we have

s tη
À Á

n1 ⋅ n
−1
2

À Á
= min

m∈s−1 n1 ⋅n−12ð Þ
tη mð Þ ≤ tη m1 ⋅m

−1
2

À Á

≤max tη m1ð Þ, tη m2ð ÞÈ É
:

ð13Þ

Again, sðtηÞðn1Þ = min
m∈s−1ðn1Þ

tηðmÞ ≤ tηðm1Þ. Where-from

max sðtηÞðn1Þ = tηðm1Þ and hence,

s tη
À Á

n1 ⋅ n
−1
2

À Á
≤max tη m1ð Þ, tη m2ð ÞÈ É

=max max s tη
À Á

n1ð Þ, max s tη
À Á

n2ð ÞÈ É

=max s tη
À Á

n1ð Þ, s tη
À Á

n2ð ÞÈ É
:

ð14Þ

Similarly, it can be shown that sðiηÞðn1 ⋅ n−12 Þ ≤max fsð
iηÞðn1Þ, sðiηÞðn2Þg.

Also,

s f η
� �

n1 ⋅ n
−1
2

À Á
= max

m∈s−1 n1 ⋅n−12ð Þ
f η mð Þ ≥ f η m1 ⋅m

−1
2

À Á

≥min f η m1ð Þ, f η m2ð Þ
n o

:

ð15Þ

Again sð f ηÞðn1Þ = max
m∈s−1ðn1Þ

f ηðmÞ ≥ tηðm1Þ. Where-from

min sð f ηÞðn1Þ = f ηðm1Þ and hence

s f η
� �

n1 ⋅ n
−1
2

À Á
≥min f η m1ð Þ, f η m2ð Þ

n o

=min min s f η
� �

n1ð Þ, min s f η
� �

n2ð Þ
n o

=min s f η
� �

n1ð Þ, s f η
� �

n2ð Þ
n o

:

ð16Þ

So, sðηÞ is an ANSG of U2.

Theorem 45. Homomorphic preimage of any ANSG is an
ANSG.

Proof. Let U1 and U2 be two classical groups and s : U1
⟶U2 be a homomorphism. Let δ ∈ANSGðU2Þ. Then, ∀
n1, n2 ∈U2, we have

tδ n1 ⋅ n2
−1À Á

≤max tδ n1ð Þ, tδ n2ð Þf g,
iδ n1 ⋅ n2

−1À Á
≤max iδ n1ð Þ, iδ n2ð Þf g,

f δ n1 ⋅ n2
−1À Á

≥min f δ n1ð Þ, f δ n2ð Þf g:
ð17Þ

Here, we have to show that s−1ðδÞ is an ANSG of U1.
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Let m1,m2 ∈U1. Since s is a group homomorphism,

s−1 tδð Þ m1 ⋅m
−1
2

À Á
= tδ s m1 ⋅m

−1
2

À ÁÀ Á
= tδ s m1ð Þ ⋅ s m−1

2
À ÁÀ Á

= tδ s m1ð Þ ⋅ s m2ð Þ−1À Á
≤max tδ s m1ð Þð Þ, tδ s m2ð Þð Þf g

=max s−1 tδ m1ð Þð Þ, s−1 tδ m2ð Þð ÞÈ É
:

ð18Þ

Similarly, we can show that

s−1 iδð Þ m1 ⋅m
−1
2

À Á
≤max s−1 iδ m1ð Þð Þ, s−1 iδ m2ð Þð ÞÈ É

,

s−1 f δð Þ m1 ⋅m
−1
2

À Á
≥min s−1 f δ m1ð Þð Þ, s−1 f δ m2ð Þð ÞÈ É

:

ð19Þ

Hence, s−1ðδÞ is an ANSG of U1.

Theorem 46. Let η ∈ ANSGðVÞ and l be a homomorphism
on V . Let η−1 : V ⟶ ½0, 1� × ½0, 1� × ½0, 1� is defined as η−1

ðrÞ = ηðr−1Þ for any r ∈ V then η−1 ∈ ANSGðVÞ and
ðlðηÞÞ−1 = lðη−1Þ.

Proof. Here,

η−1 m ⋅ r−1
À Á

= η m ⋅ r−1
À Á−1 = η r−1

À Á−1 ⋅m−1
� �

= η r ⋅m−1À Á
≤max η rð Þ, η m−1À ÁÈ É

=max η r−1
À Á

, η m−1À ÁÈ É
as η is anANSG½ �

=max η−1 mð Þ, η−1 rð ÞÈ É
:

ð20Þ

Hence, by Theorem 39, η−1 ∈ANSGðVÞ.
Again, notice that,

l tη
À Á−1 qð Þ = l tη

À Á
q−1
À Á

= l tη
À Á

qð Þ as l tη
À Á

is anANSG
Â Ã

= min
m∈l−1 qð Þ

tη mð Þ = min
m∈l−1 qð Þ

tη m−1À Á
= min

m∈l−1 qð Þ
tη−1 mð Þ

= l tη−1
À Á

qð Þ:
ð21Þ

Similarly, it can be shown that lðiηÞ−1 = lðiη−1Þ and

lð f ηÞ−1 = lð f η−1Þ.
Hence, ðlðηÞÞ−1 = lðη−1Þ

Theorem 47. Let η ∈ ANSGðVÞ and l be an isomorphism on
V , then l−1ðlðηÞÞ = η.

Proof. Here

l−1 l tη
À ÁÀ Á

pð Þ = l tη
À Á

l pð Þð Þ = min
m∈l−1 l pð Þð Þ

tη mð Þ = tη pð Þ: ð22Þ

Similarly, it can be shown that l−1ðlðiηÞÞ = iη and l−1

ðlð f ηÞÞ = f η.

Hence, l−1ðlðηÞÞ = η.

In the next segment, ANNSG has been introduced. Also,
its homomorphic characteristics are mentioned.

3.1. Antineutrosophic Normal Subgroup

Definition 48. For a classical group V , a neutrosophic set η is
called an ANNSG of V iff ∀m, r ∈ Vηðm ⋅ r ⋅m−1Þ ≤ ηðrÞ, i.e.,
tηðm ⋅ r ⋅m−1Þ ≤ tηðrÞ, iηðm ⋅ r ⋅m−1Þ ≤ iηðrÞ, and f ηðm ⋅ r ⋅
m−1Þ ≥ f ηðrÞ.

The set of all ANNSGs of V will be signified as
ANNSGðVÞ.

Example 49. Let V = fe,m, r,mrg be the Klien’s 4-group and
η = fðr, tηðrÞ, iηðrÞ, f ηðrÞÞ: r ∈ Vg is a NS of V , where tη, iη,
and f η are mentioned in Table 4.
Here, η follows Definition 48, i.e., it is an ANNSG.

Proposition 50. η ∈ ANNSGðVÞ iff tη and iη are AFNSs of V
and f η is FNS of V .

Proof. Using Definition 48, this can be observed.

Theorem 51. Intersection of any two ANNSG of any group is
an ANNSG.

Proof. Using Theorem 43, this can be proved.

Theorem 52. Let η ∈ ANNSGðVÞ. Then, the subsequent con-
ditions are equivalent:

(i) η ∈ ANNSðUÞ
(ii) ηðm ⋅ r ⋅m−1Þ = ηðrÞ, ∀m, r ∈ V
(iii) ηðm ⋅ rÞ = ηðV ⋅mÞ, ∀m, r ∈ V

Proof. Let (i) be true. Then, by Definition 48, we have ηðm
⋅ r ⋅m−1Þ ≤ ηðrÞ, i.e., tηðm ⋅ r ⋅m−1Þ ≤ tηðrÞ, iηðm ⋅ r ⋅m−1Þ ≤
iηðrÞ, and f ηðm ⋅ r ⋅m−1Þ ≥ f ηðrÞ.

To prove (ii), we need to show

tη m ⋅ r ⋅m−1À Á
≥ tη rð Þ,

iη m ⋅ r ⋅m−1À Á
≥ iη rð Þ,

f η m ⋅ r ⋅m−1À Á
≤ f η rð Þ:

ð23Þ

In other words, we need to prove

tη m ⋅ r ⋅m−1À Á
= tη rð Þ,

iη m ⋅ r ⋅m−1À Á
= iη rð Þ,

f η m ⋅ r ⋅m−1À Á
= f η rð Þ:

ð24Þ
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Notice that

tη m−1 ⋅ r ⋅m
À Á

= tη m−1 ⋅ r ⋅ m−1À Á−1� �
≤ tη rð Þ: ð25Þ

Again,

tη rð Þ = tη m−1 ⋅ m ⋅ r ⋅m−1À Á
⋅m

À Á
≤ tη m ⋅ r ⋅m−1À Á

: ð26Þ

Hence, tηðm ⋅ r ⋅m−1Þ = tηðrÞ.
Similarly, it can be shown that iηðm ⋅ r ⋅m−1Þ = iηðrÞ and

f ηðm ⋅ r ⋅m−1Þ = f ηðrÞ. Hence (i)⇒(ii).
Let condition (ii) be true. In (ii), substituting r in place of

r ⋅m−1 (iii) can easily be proved. So, (ii)⇒(iii).
Let condition (iii) be true. Applying ηðm ⋅ rÞ = ηðr ⋅mÞ in

tηðm ⋅ r ⋅m−1Þ, we have

tη m ⋅ r ⋅m−1À Á
= tη r ⋅m−1 ⋅m

À Á
= tη rð Þ ≤ tη rð Þ: ð27Þ

So, ðiiiÞ⇒ ðiÞ.

Theorem 53. η ∈ ANNSGðVÞ iff the p-lower level setsð�tηÞp,
ð�iηÞp, and p-level set ð f ηÞp are classical normal subgroups of

V∀p ∈ ½0, 1�.

Proof. Using Theorem 42, this can be proved.

Theorem 54. Let η ∈ ANNSGðVÞ. The set Uη = fm ∈ V : ηð
mÞ = ηðeÞg is a classical normal subgroup of V , where e is
the identity element of V .

Proof. Since η ∈ANNSGðVÞ, we have η ∈ANSGðVÞ. Let m
, r ∈Uη then by Theorem 39

η m ⋅ r−1
À Á

≤max η mð Þ, η rð Þf g =max η eð Þ, η eð Þf g = η eð Þ:
ð28Þ

Again, by Theorem 38, we have ηðm ⋅ r−1Þ ≥ ηðeÞ and
hence ηðm ⋅ r−1Þ = ηðeÞ, i.e., m ⋅ r−1 ∈Uη. Since η ∈ANNSGð
VÞ, we have

η m ⋅ r ⋅m−1À Á
= η r ⋅m ⋅m−1À Á

= η rð Þ = η eð Þ, ð29Þ

i.e., m ⋅ r ⋅m−1 ∈Uη or Uη is a normal subgroup of V .

Theorem 55. Let η ∈ ANNSGðVÞ and l be a homomorphism
on V . Then, the homomorphic pre-image of η, i.e., l−1ðηÞ ∈
ANNSGðVÞ.

Proof. Using Theorem 44, we have l−1ðηÞ ∈ANSGðVÞ. Then,
by Proposition 50, we can easily prove normality of l−1ðηÞ.
Hence, l−1ðηÞ ∈ANNSGðVÞ.

Theorem 56. Let η ∈ ANNSGðVÞ and l be a surjective homo-
morphism on V : Then the homomorphic image of η, i.e., lðη
Þ ∈ ANNSGðVÞ.

Proof. Using Theorem 44, we have lðηÞ ∈ANSGðVÞ. Again,
by Proposition 50, the normality condition can easily be
proved. So, lðηÞ ∈ANNSGðVÞ.

4. Conclusion

The studies of ANSG and its normal version might open
some new directions of research. Here, homomorphism
has been introduced in ANSG and ANNSG to understand
their algebraic characteristics. Moreover, connections with
their nonantiversions are provided. For these, numerous
examples, theories, and propositions are given. In the future,
these studies can be further extended by introducing various
notions like the antineutrosophic ideal, antineutrosophic
ring, antineutrosophic field, and antineutrosophic topologi-
cal space. Furthermore, their interval-valued versions can
be introduced and studied.
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