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Neutrosophic logic is frequently applied to the engineering technology, scientific administration, and financial matters, among
other fields. In addition, neutrosophic linear systems can be used to illustrate various practical problems. Due to the complexity
of neutrosophic operators, however, solving linear neutrosophic systems is challenging. This work proposes a new straightfor-
ward method for solving the neutrosophic system of linear equations based on the neutrosophic structured element (NSE). Here
unknown and right-hand side vectors are considered as triangular neutrosophic numbers. Based on the NSE, analytical
expressions of the solution to this equation and its degrees are also provided. Finally, several examples of the methodology
are provided.

1. Introduction

In modeling various physical phenomena, we are confronted
with two types of uncertainty and indeterminacy: the first
category is due to the inability of human knowledge and
tools to comprehend the intricacies of an event. For instance,
to determine the temperature of a city, thermometers are
placed at various locations and the average is then calculated.
Obviously, the calculated temperature differs from the actual
temperature of that city, for two reasons: first, just a few
points of that city were used in the calculations and second,
the inaccuracy of the measuring person and the devices gen-
erates uncertainty in the reported temperature. The second
category relates to a lack of clarity and transparency regard-
ing a certain phenomenon or characteristic. A phenomenon
may be fundamentally ambiguous and subjectively deter-
mined. For instance, there is no universal definition of
what constitutes hot weather, so that one person may regard
30° to be hot while another believes 40° to be hot. Therefore,
to obtain a realistic model, we must consider certainty and
uncertainty in the model.

It is commonly recognized that in recent years, when less,
incomplete, ambiguous, or imprecise information about
variables or parameters has been available, fuzzy set (FS)
and its extensions are particularly valuable modeling tools
for these types of data [1–5]. Consequently, many physical or
real-world issues involving uncertainty and indeterminacy
frequently include the systems of linear equations in their
solution methods. Numerous industries, including advertis-
ing, logistics, finance, optimization, and more, can benefit
from this type of systems.

A number of scholars have also put forth models for
linear systems in a fuzzy setting. Fuzzy linear systems
(FLSs) did not develop until at least 1980 [6]. However,
Friedman et al. [7] introduced an embedding approach to
solve a FLS with a definite matrix coefficient and an arbi-
trarily fuzzy number vector on the right-hand side. This
model was later modified by further researchers. Allahviran-
loo [8, 9] studied iterative algorithms for FLS with conver-
gence theorems, including Jacobi, Gauss Seidel, and SOR
approaches. Dehghan et al. [10] provided certain ways to
solve FLS that are equivalent to well-known methods as
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Gaussian elimination, Cramer’s rule, Doolittle algorithm,
and its simplification.

Muzzioli and Reynaerts [11] examined a dual type of FLS
and highlighted the connection between interval linear sys-
tems (ILS) and FLS. Wang and Zheng [12] explored an
inconsistent FLS and derived the fuzzy and weak fuzzy least
squares solutions by applying the generalized inverses of the
coefficient matrix. Tian et al. [13] investigated the perturba-
tion analysis of FLS and determined the relative error limita-
tions for FLS solutions. Otadi et al. [14] presented a hybrid
method based on fuzzy neural network for approximate
solution of FLS. Behera and Chakraverty [15] examined
the solution technique for both real and complicated fuzzy
systems. Saberi Najafi and Edalatpanah [16] analyzed various
existing iterative methods employing the embedding method
for finding the solution FLS and devised a numerical method
for enhancing these algorithms. They demonstrated that
their technique outperforms all previously mentioned
numerical iterative algorithms. Lodwick and Dubois [17]
argued that ILS is an essential process in the solution of
FLS and emphasized four unique definitions of systems of
linear equations in which coefficients are substituted by
intervals.

Akram et al. [18] defined some concepts, including a
bipolar fuzzy number in parametric form and propose a
method for the bipolar FLS solution procedure. Fully FLS
with trapezoidal and hexagonal fuzzy numbers have been
studied by Ziqan et al. [19]. Abbasi and Allahviranloo [20]
also investigated and the reported a new concept based on
transmission-average-based operations for solving fully FLS.
Recently, numerous scholars investigated the system of linear
equations for the various types of fuzzy numbers such as
horizontal fuzzy numbers [21], LR-bipolar fuzzy numbers
[22], thick fuzzy number [23], and fuzzy complex numbers
[24]. Although the solution of a system of linear equation
with FS) is intriguing, FS only considers the truth member-
ship function of each element. Atanassov [25] proposed
intuitionistic fuzzy sets (IFSs), which accounted for both
the falsity and truth membership functions, to address this
issue.

However, in real-life decision-making problems, both FS
and IFS are unable to deal with indeterminacy. In actual
decision-making difficulties, both FS and IFS are incapable
of handling indeterminacy that in the context of actual
decision-making it is highly crucial. In terms of independent
truth, falsity, and indeterminacy membership functions,
Smarandache [26] created neutrosophic sets (NS) in 1998.
Subsequently, several new extensions to NSs have emerged,
including NSs [27, 28] defined over a specific interval, bipo-
lar NSs [29] characterized by their dual nature, single-valued
NSs [30] consisting of single values, quadripartitioned single
valued NSs [31] divided into four partitions, n-refined NSs
[32] refined through additional considerations, simplified
NSs [33], and pentapartitioned NS [34] introduced for ease
of comprehension. These contexts are used in a variety of

ways in research and engineering, such as transportation
problem [35], statistical analysis [36], management evalua-
tion [37], bioenergy production technologies [38], centrifu-
gal pump [39], waste management [40], etc.

To the best of our knowledge, there have only been a
limited number of studies on the system of neutrosophic
linear equations [41, 42], despite the fact that there are
numerous methods for addressing various issues under
NSs. These methods [41, 42] used the (α, β, γ)-cut tech-
nique. Some neutrosophic modeling approaches carefully
handle the original neutrosophic data, which can easily
result in information loss and potentially lead to biased
results. These techniques have not strayed too far from
the mainstream decision-making domain. Moreover, the
calculating procedure is occasionally disrupted by parame-
ter ergodicity issues. For example, the (α, β, γ)-cut tech-
nique requires the parameter to be set to [0, 1], which is
unrealistic. The neutrosophic structured element (NSE) is
among the substantial extensions of NS. Edalatpanah [43]
was the founder of the NSE theory, which expresses NS as a
linear structure.

NSs can be analyzed and sorted based on the relationship
between the truth, indeterminacy, and falsity membership
functions, however the formulae are complicated and certain
procedures do not satisfy the rational hypothesis of eco-
nomic phenomenon. However, modeling with NSE can
remove these shortcomings. However, simulation with NSE
can eliminate these deficiencies. NSE is based on the homeo-
morphism between a closed NS and a group of restricted
functions on [−1, 1]. To avoid the ergodicity of the extension
idea, the NSE was utilized to represent NSs and their opera-
tions. In addition, the NSs transmission of the calculation
process and the analytic expression of computed values can
be implemented. Therefore, this work proposes a new
approach for solving neutrosophic linear systems (NLS) of
the form Ax = b, where A is a crisp matrix and b is the
triangular single-valued neutrosophic number (TSVNN)
vector.

The structure of this work is as follows: Section 1 covers
the concepts of TSVNN and NSE; Section 2, various nota-
tions and definitions are provided; Section 3, both the NLS
and the proposed approach have been introduced; Section 4,
numerical examples are then solved; Section 5 concludes
with the conclusions.

2. Preliminaries

Here are provided various notations and definitions perti-
nent to the presented study [43].

Definition 1. Consider Λ ¼ < δ1;ð δ2; δ3Þ; ι1;ð ι2; ι3Þ; ξ1;ð ξ2;
ξ3Þ> as the TSVNN. Then the truth (TΛ xð Þ), indeterminacy
(ΓΛ xð Þ), and falsity (ΨΛ xð Þ) membership functionsare
described as follows:
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TΛ xð Þ ¼

x − δ1ð Þ
δ2 − δ1ð Þ δ1 ≤ x<δ2;

1 x ¼ δ2;

δ3 − xð Þ
δ3 − δ2ð Þ δ2<x ≤ δ3;

0 otherwise:

8>>>>>>><>>>>>>>:
ΓΛ xð Þ ¼

ι2 − xð Þ
ι2 − ι1ð Þ ι1 ≤ x< ι2;

0 x ¼ ι2;

x − ι2ð Þ
ι3 − ι2ð Þ ι2<x ≤ ι3;

1 otherwise:

8>>>>>>><>>>>>>>:
ΨΛ xð Þ ¼

ξ2 − xð Þ
ξ2 − ξ1ð Þ ξ1 ≤ x<ξ2;

0 x ¼ ξ2;

x − ξ2ð Þ
ξ3 − ι2ð Þ ξ2<x ≤ ξ3;

1 otherwise:

8>>>>>>><>>>>>>>:
ð1Þ

where 0 ≤ TΛ xð Þ þ ΓΛ xð Þ þ ΨΛ xð Þ ≤ 3; x 2 Λ.

Definition 2. For TSVNN Λ ¼ < δ1;ð δ2; δ3Þ; ι1;ð ι2; ι3Þ; ξ1;ð
ξ2; ξ3Þ> , there are p; q; r : −½ 1; 1�→ 0;½ 1� such that TΛ xð Þ ¼
pΛ xð Þ;ΓΛ xð Þ ¼ qΛ xð Þ; and ΨΛ xð Þ ¼ rΛ xð Þ, where:

pΛ xð Þ ¼
δ2 − δ1ð Þx þ δ2; −1 ≤ x ≤ 0;

δ3 − δ2ð Þx þ δ2; 0 ≤ x ≤ 1;

0; others;

8><>: ð2Þ

qΛ Eð Þ ¼
ι2 − ι1ð Þx þ ι2; −1 ≤ x ≤ 0;

ι3 − ι2ð Þx þ ι2; 0 ≤ x ≤ 1;

0; others;

8><>: ð3Þ

rΛ xð Þ ¼
ξ2 − ξ1ð Þx þ ξ2; −1 ≤ x ≤ 0;

ξ3 − ξ2ð Þx þ ξ2; 0 ≤ x ≤ 1;

0; others;

8><>: ð4Þ

where Λ ¼ <pΛ xð Þ; qΛ xð Þ; rΛ xð Þ> ; is called NSE num-
ber (NSEN).

Definition 3. For M ¼ <pM xð Þ; qM xð Þ; rM xð Þ> ; and N ¼
<sN xð Þ; tN xð Þ; uN xð Þ> ; we have:

(i) M ⊕N ¼ < pM þ sNð Þ xð Þ; qM þ tNð Þ xð Þ;
rM þ uNð Þ xð Þ> ;

(ii) M−N ¼ < pM xð Þ þ s0N xð Þð Þ; qM xð Þ þ t0N xð Þð Þ;
rM xð Þ þ u0N xð Þð Þ> ;

(iii) λN ¼ λ< s0N xð Þð Þ; t0N xð Þð Þ; u0N xð Þð Þ> ;

where

s0N xð Þ ¼ −sN −xð Þ; t0 N xð Þ ¼ −tN −xð Þ; u0N xð Þ ¼ −uN −xð Þ:
ð5Þ

3. NLS and the Proposed Method

Let us consider a n × n NLS

A½ � eXÈ É ¼ ebn o
: ð6Þ

Here A½ � ¼ akj
À Á

for 1 ≤ k ≤ n and 1 ≤ j ≤ n is a n × n
crisp real matrix, b̃

È É ¼ b̃k
È É

is a column vector of

TSVNN and X̃
È É ¼ x̃ j

È É
is the vector of neutrosophic

unknown.
Equation (6) can be represented by the following expres-

sions:

∑
n

j¼1
akjexj ¼ ebk; for k ¼ 1; …; n: ð7Þ

In [43], Edalatpanah studied the solution of n × n NLS
with embedding method, and gave the necessary and suffi-
cient conditions for a unique neutrosophic solution. In this
section, instead of using two monotonic functions to repre-
sent the neutrosophic numbers in [43], we will use the NSE
methodology to study the problem of NLS. Suppose that the
solution of the NLS of Equation (6) be x̃ and its NSE form be
Ψ̃ xð Þ ¼ <pΨ xð Þ; qΨ xð Þ; rΨ xð Þ> . Also, let the NSE form of
b̃

È É
be b̃ xð Þ ¼ <sb̃ xð Þ; tb̃ xð Þ; ub̃ xð Þ> . Then, in the special

case if for each row akj ≥ 0 we have:

∑
n

j¼1
akjeΨ j xð Þ ¼ ebk xð Þ; for k ¼ 1; …; n; ð8Þ

∑
n

j¼1
akjeΨ j −xð Þ ¼ ebk −xð Þ; for k ¼ 1; …; n; ð9Þ

which are two common NLSs and can be solved easily.
Now to solve Equation (7), define:

Y ¼ eΨ 1 xð Þ; eΨ 2 xð Þ; …; eΨ n xð Þ; eΨ 1 −xð Þ; eΨ 2 −xð Þ; …; eΨ n −xð Þð Þt;
ð10Þ

B ¼ eb1 xð Þ; eb2 xð Þ; …; ebn xð Þ; eb1 −xð Þ; eb2 −xð Þ; …; ebn −xð Þð Þt:
ð11Þ

Then Equation (7) can equivalently be written as follows:

HY ¼ B; ð12Þ

where H ¼ hij
À Á

2n×2n is as follows:

aij ≥ 0→ hij ¼ aij; hiþn; jþn ¼ aij;

aij<0→ hi; jþn ¼ hij; diþn; j ¼ hij

(
: ð13Þ

Furthermore, to specify the truth, indeterminacy, and
falsity parts of solution we define:
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Y ¼ <PY xð Þ; QY xð Þ; RY xð Þ> ; ð14Þ

B ¼ <SB xð Þ; TB xð Þ; UB xð Þ> ; ð15Þ

where

PY xð Þ ¼ p1 xð Þ; p2 xð Þ; …; pn xð Þ; p1 −xð Þ; p2 −xð Þ; …; pn −xð Þð Þt;
ð16Þ

QY xð Þ ¼ q1 xð Þ; q2 xð Þ; …; qn xð Þ; q1 −xð Þ; q2 −xð Þ; …; qn −xð Þð Þt;
ð17Þ

RY xð Þ ¼ r1 xð Þ; r2 xð Þ; …; rn xð Þ; r1 −xð Þ; r2 −xð Þ; …; rn −xð Þð Þt;
ð18Þ

SB xð Þ ¼ s1 xð Þ; s2 xð Þ; …; sn xð Þ; s1 −xð Þ; s2 −xð Þ; …; sn −xð Þð Þt ;
ð19Þ

QB xð Þ ¼ q1 xð Þ; q2 xð Þ; …; qn xð Þ; q1 −xð Þ; q2 −xð Þ; …; qn −xð Þð Þt ;
ð20Þ

UB xð Þ ¼ u1 xð Þ; u2 xð Þ; …; un xð Þ; u1 −xð Þ; u2 −xð Þ; …; un −xð Þð Þt:
ð21Þ

Therefore, the three parts of solution of NLS can be
obtained by computing the following formulas:

PY xð Þ ¼ H−1SB xð Þ; ð22Þ

QY xð Þ ¼ H−1TB xð Þ; ð23Þ

RY xð Þ ¼ H−1UB xð Þ: ð24Þ

In the next section sometests have been solved using the
proposed method and also compared with existing results for
the validation.

4. Numerical Examples

Example 1. Let us consider a 2 × 2 TSVNN system of linear
equations as follows:

4ex1 − ex2 ¼ < 2; 3; 7ð Þ; 3; 5; 6ð Þ; 0; 1; 3ð Þ> ¼ eb1 xð Þ;
ex1 þ 3ex2 ¼ < 4; 5; 6ð Þ; 5; 7; 9ð Þ; 1; 2; 4ð Þ> ¼ eb2 xð Þ:

(
ð25Þ

Next using our approach, we have:

H ¼

4 0 0 −1

1 3 0 0

0 −1 4 0

0 0 1 3

266664
377775; ð26Þ

eb1 xð Þ ¼ x þ 3; −1 ≤ x ≤ 0;

4x þ 3; 0 ≤ x ≤ 1;

(*
;

2x þ 5; −1 ≤ x ≤ 0;

x þ 5; 0 ≤ x ≤ 1;

(
;

x þ 1; −1 ≤ x ≤ 0;

2x þ 1; 0 ≤ x ≤ 1;

( +
; ð27Þ

eb1 −xð Þ ¼ −4x þ 3; −1 ≤ x ≤ 0;

−x þ 3; 0 ≤ x ≤ 1;

(*
;

−x þ 5; −1 ≤ x ≤ 0;

−2x þ 5; 0 ≤ x ≤ 1;

(
;

−2x þ 1; −1 ≤ x ≤ 0;

−x þ 1; 0 ≤ x ≤ 1;

( +
; ð28Þ

eb2 xð Þ ¼ x þ 5; −1 ≤ x ≤ 0;

x þ 5; 0 ≤ x ≤ 1;

(*
;

2x þ 7; −1 ≤ x ≤ 0;

2x þ 7; 0 ≤ x ≤ 1;

(
;

x þ 2; −1 ≤ x ≤ 0;

2x þ 2; 0 ≤ x ≤ 1;

( +
; ð29Þ

eb2 −xð Þ ¼ −x þ 5; −1 ≤ x ≤ 0;

−x þ 5; 0 ≤ x ≤ 1;

(*
;

−2x þ 7; −1 ≤ x ≤ 0;

−2x þ 7; 0 ≤ x ≤ 1;

(
;

−2x þ 2; −1 ≤ x ≤ 0;

−x þ 2; 0 ≤ x ≤ 1;

( +
: ð30Þ
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eb xð Þ ¼ <seb xð Þ; teb xð Þ; ueb xð Þ> : ð31Þ

So, using Equations (22)–(24), for −1 ≤ x ≤ 0:

PY xð Þ ¼

p1 xð Þ
p2 xð Þ
p1 −xð Þ
p2 −xð Þ

266664
377775 ¼ H−1

x þ 3

x þ 5

−4x þ 3

−x þ 5

266664
377775 ¼

35
143

x þ 14
13

36
143

x þ 17
13

−
134
143

x þ 14
13

−
3
143

x þ 17
13

266666666664

377777777775
:

ð32Þ

And for 0 ≤ x ≤ 1:

PY xð Þ ¼

p1 xð Þ
p2 xð Þ
p1 −xð Þ
p2 −xð Þ

266664
377775 ¼ H−1

4x þ 3

x þ 5

−x þ 3

−x þ 5

266664
377775 ¼

134
143

x þ 14
13

3
143

x þ 17
13

−
35
143

x þ 14
13

−
36
143

x þ 17
13

266666666664

377777777775
:

ð33Þ

So by setting x=−1, 0 in Equation (32) and also set x= 1
in Equation (33), we can get the triangular truth part of
solution as follows:

xtrue ¼
<
119
143

;
14
13

;
288
143

>

<
151
143

;
17
13

;
190
143

>

264
375: ð34Þ

In similar way, we can obtain the indeterminacy, and
falsity parts of solution as follows:

xin deter ¼
<
193
143

;
22
13

;
258
143

>

<
174
143

;
23
13

;
343
143

>

264
375;

xfals ¼
<

38
143

;
5
13

;
116
143

>

<
35
143

;
7
13

;
152
143

>

264
375:

ð35Þ

Therefore, the final solution for NLS (25) is as follows:

ex ¼ h 119
143

;
14
13

;
288
143

� �
151
143

;
17
13

;
190
143

� �
26664

37775;
193
143

;
22
13

;
258
143

� �
174
143

;
23
13

;
343
143

� �
26664

37775;
38
143

;
5
13

;
116
143

� �
35
143

;
7
13

;
152
143

� �
26664

37775i:

ð36Þ

5. Conclusions

In this paper, we introduced the NLS with a single-valued
triangular neutrosophic number and developed a model
based on neutrosophic structural elements for its solution.
Using the monotone function on [−1, 1], the n× n NLS is
changed in this manner into 2n× 2n crisp systems. The
results demonstrate that the model is effective, straightfor-
ward, and involves far less work than the alternatives.
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