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In this paper, a Stieltjes integral approximation method for uncertain variational inequality problem (UVIP) is studied. Firstly,
uncertain variables are introduced on the basis of variational inequality. Since the uncertain variables are based on nonadditive
measures, there is usually no density function. Secondly, the expected value model of UVIP is established after the expected
value is discretized by the Stieltjes integral. Furthermore, a gap function is constructed to transform UVIP into an uncertain
constraint optimization problem, and the optimal value of the constraint problem is proved to be the solution of UVIP.
Finally, the convergence of solutions of the Stieltjes integral discretization approximation problem is proved.

1. Introduction

VIP is a significant branch of inequality and a classical
problem in mathematics, which has attracted many scholars.
Through the unremitting efforts of many mathematicians,
VIP has developed into an important subject with rich
content and broad prospects in mathematical program-
ming. These achievements involve rich mathematical theo-
ries, optimization theory, economics and engineering (see
[1–7]), and so on. For the classical VIP, ∀v ∈ S, there is
a point u ∈ S ∈ Rn such that

u − vð ÞT f uð Þ ≥ 0, ð1Þ

where S ≠∅ is closed convex and f : S⟶ Rn is a vector-
valued function. Chen and Fukushima [8] presented the
regularized gap function as follows:

R uð Þ≔max
v∈S

u − vð ÞT f uð Þ − γ

2 u − vk k2G
n o

, ð2Þ

where matrix G is symmetric and positive definite square
and parameter γ > 0. k·kG indicates the G-norm, which is
given by kukG =

ffiffiffiffiffiffiffiffiffiffiffi
uTGu

p
, u ∈ Rn. It means RðuÞ ≥ 0, ∀u ∈

S, and RðuÞ = 0 iff u is a solution of VIP ð f , SÞ. On the
basis of these theories, we convert the VIP (1) into an
optimization problem as follows:

min
u∈S

R uð Þ: ð3Þ

Generally, the minimization problem (3) does not
involve uncertainties. However, it is just an ideal situation.
All of these characteristics may lead to the uncertainty.
Therefore, many researchers have systematically studied
variational inequalities with random variables. That is,

u − u†
À ÁT

f u†, ω
À Á

≥ 0, ∀u ∈ S, ω ∈Ω, ð4Þ

where Ω is a stochastic sample space and the mapping f :
Rn ×Ω⟶ Rn. Due to the randomness of the function f ,
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there is generally no solution to problem (4). By calculat-
ing expected value E½ f ðu†, ωÞ� over ω, problem (4) is
transformed into as follows:

u − u†
À ÁT

E f u†, ω
À ÁÂ Ã

≥ 0: ð5Þ

This problem is widely used in economics, management,
and operations research. It was investigated in references
such as [9–11]. Based on probability theory, the SVIP in liter-
ature [8] is studied. It is well known that probability is based
on repeated tests, so it must have a large number of historical
sample data to estimate probability. But in most conditions, it
is hard to model a probability distribution due to the nonre-
peatability of events, such as unprecedented sudden natural
disasters, crisis management and emergency of acute infec-
tious diseases, and so on. Liu [12] created uncertainty theory,
which is based on nonadditive measure, to deal with these
uncertain phenomena.

In the past few years, uncertainty theory has become a
very fruitful subject. At the same time, many successful
applications have been made at home and abroad (see
[12–22]). Chen and Zhu [23] introduced the uncertain vari-
able into the VIP and established the uncertain variational
inequality problem (UVIP). They constructed the expected
value model to solve the UVIP as follows:

u − u†
À ÁT

E f u†, ζ
À ÁÂ Ã

≥ 0, ∀u ∈ S, ζ ∈ Ξ, ð6Þ

where Ξ is the set of uncertain variables and the mapping
f : Rn × Ξ⟶ Rn.

Based on uncertainty theory, an approximation problem
on UVIP is studied in this paper. It is clear that SVIP and
UVIP are both natural generalizations of deterministic vari-
ational inequalities. Other contents of this paper are as
follows. The second section reviews the basic concepts and
properties of some uncertainty theories, including uncertain
variables and uncertain expectations. In Section 3, research
on the convergence of the approximation problem generated
by the Stieltjes integral discrete approximation method
(SDA for short) will be finished. Finally, a conclusion sum-
marizes and prospects the future research work.

2. Preliminaries

In this section, we will give some definitions and lemmas.
Firstly, we collect the concepts and properties in uncertainty
space. Supposed that Γ is a nonempty set and L is a σ-
algebra over Γ. Then, ðΓ,LÞ is called a measurable space;
each elementΛ in Γ is called an event. SoMfΛg ∈ R presents
the belief degree that Λ occurs. So ðΓ,L ,MÞ is an uncer-
tainty space, which is defined by Ξ. To deal with belief
degrees rightly, Liu [12] presented three axioms as follows:

(1) MfΓg = 1
(2) MfΛg +MfΛcg = 1
(3) MfS∞

i=1Λig ≤∑∞
i=1MfΛig, where Λ1,Λ2,⋯ are

sequence of events

Definition 1 (see [12]). Let ζ ∈ Ξ. If the following exists,

E ζ½ � =
ð+∞
0

M ζ ≥ uf gdu−
ð0
−∞

M ζ ≤ uf gdu, ð7Þ

then E½ζ� is the expected value of uncertain variable ζ.

Theorem 2 (see [12]). Let ζ ∈ Ξ and Φ be the uncertainty
distribution of ζ. If E½ζ� exists, then

E ζ½ � =
ð+∞
−∞

tdΦ: ð8Þ

Theorem 3 (see [12]). Let ζ ∈ Ξ and Φ be the uncertainty
distribution of ζ. If E½ζ� exists,

E F ζð Þ½ � =
ð
F tð ÞdΦ tð Þ: ð9Þ

3. SDA Method and Its Convergence

In this section, we will provide the convergence of SDA
method and regularized gap functions Rðu, ζÞ on the set
S on the basis of uncertainty theory. It turns out that for
γ > 0, there is an optimal solution for problem (1). There-
fore, we can find a fixed point u† ∈ S ⊂ Rn such that

u − u†
À ÁT

E f u†, ζ
À ÁÂ Ã

≥ 0, ∀u ∈ S, ζ ∈ Ξ, ð10Þ

where f : Rn × Ξ⟶ Rn and Ξ is an uncertain space. Fur-
thermore, we present the regularized gap function

R u, ζð Þ≔max
v∈S

u − vð ÞTE f u, ζð Þ½ � − γ

2 u − vk k2G
n o

, ð11Þ

where parameter γ > 0 and matrix G is positive definite
and symmetric. Now, we can convert (10) into an optimi-
zation problem as follows:

min
u∈S

R u, ζð Þ: ð12Þ

In this section, in order to solve problem (12), we will
propose a Stieltjes integral discrete approximation method
(abbreviated as SDA), and the convergence of the method
is studied. In most cases, there is no density function in the
uncertain distribution. Then, it is difficult to calculate the
uncertain expectation directly, so we use the Stieltjes integral
to calculate. The distribution function is discretized before
that, and we introduced the following definitions.

Definition 4 (division of interval by the Stieltjes integral
[24]). Let f ðxÞ be a bounded function on the interval ½a, b�
and κðxÞ be a bounded variation function on ½a, b�, and
make a division of interval T : a = x0 < x1 <⋯ < xn = b and
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a group of “intermediate points,” xi−1 ≤ ξ ≤ xiði = 1, 2,⋯,nÞ,
and make a sum:

〠
n

i=1
f ξið Þ κ xið Þ − κ xi−1ð Þ½ �: ð13Þ

Set δðTÞ =max
0≤i≤n

jxi − xi−1j. When δðTÞ⟶ 0, the sum

tends to a certain finite limit; then, f ðxÞ is said to be R − S
integrable about κðxÞ on the interval ½a, b�. This limit is
recorded as

Ð b
a f ðxÞdx.

From the division of interval by the Stieltjes integral (10),
we have ∀ΔΦi =Φi −Φi−1, ∃ζi, s:t:ΦðζiÞ ∈ ΔΦi, i = 1, 2,⋯;
the expectation of f ðu, ζÞ is

E f u, ζð Þ½ � =
ð
f u, tð ÞdΦ tð Þ

= 〠
∞

i=1
f u, ζið ÞΔΦi ζið Þ, u ∈ S, ζ ∈ Ξ:

ð14Þ

According to the arbitrariness of ΔΦ, let ΔΦi =ΦiðtiÞ −
Φi−1ðti−1Þ = 1/N and ζi ∈ ðti−1, tiÞ; then,

E f u, ζð Þ½ � =
ð
f u, tð ÞdΦ tð Þ = 〠

∞

i=1
f u, ζið ÞΔΦi ζið Þ

= lim
N⟶∞

1
N
〠
N

i=1
f u, ζið Þ = lim

N⟶∞
E f N u, ζð Þ½ �:

ð15Þ

Therefore, we have the discrete approximation of (12) as
follows:

min RN u, ζð Þ

=max
v∈S

u − vð ÞT 1
N
〠
N

i=1
f u, ζið Þ

" #
−
γ

2 u − vk k2G
( )

 s:t: u ∈ S:

ð16Þ
Definition 5 (see [1]). Let G ∈ Rn×n be a symmetric positive
definitive matrix and S be a convex subset of Rn. ΘS,GðuÞ is
a solution set of the following optimization model:

min
y

u − vk k2G =min
y

u − vð ÞTG u − vð Þ, s:t: v ∈ S, ð17Þ

where the operator ΘS,G : Rn ⟶ S is a skewed projection
mapping for fixed u ∈ Rn.

Definition 6. In addition, we made the following assump-
tions in this section:

(1) S is a nonempty and compact set of Rn

(2) There exists a function φðζÞ which is integrable and

sup
u∈S

f u, ζð Þk k ≤ ϕ ζð Þ, ζ ∈ Ξ: ð18Þ

Suppose that (1) and (2) hold, we call f ðu, ζÞ as ϕ-
bounded function.

The following theorem will provide the uniform conver-
gence of the approximate problem (12).

Theorem 7. Suppose that f ðu, ζÞ is ϕ-bounded function on S,
∀ζ ∈ Ξ, it is continuous with respect to u. Then, we have

(a) E½ f ðu, ζÞ� is finite and continuous

(b) E½ f Nðu, ζÞ� uniformly converges to E½ f ðu, ζÞ� and

lim
N⟶∞

max
u∈S

E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k = 0: ð19Þ

(c) fRNðu, ζÞg uniformly converges to Rðu, ζÞ and

lim
N⟶∞

max
u∈S

RN u, ζð Þ −R u, ζð Þk k = 0: ð20Þ

Proof.

(a) Since f ðu, ζÞ is continuous on S, ∀ε > 0, and ∃δ > 0,
when ju − u0j < δ, it holds

f u, ζð Þ − f u0, ζð Þj j < ε: ð21Þ

Then, we have

E f u, ζð Þ½ � − E f u0, ζð Þ½ �j j =
ð
f u, tð ÞdΦ tð Þ−

ð
f u0, tð ÞdΦ tð Þ

����
����

=
ð
f u, tð Þ − f u0, tð Þj jdΦ tð Þ

< ε
ð
1dΦ tð Þ:

ð22Þ

ϕðζÞ is an integrable function, so it is monotonous, and the
range of the function is between zero and one. Therefore,
it is bounded; it means that E½ f ðu, ζÞ� is continuous. From
Definition 6, f ðu, ζÞ is ϕ-bounded function; we have

E f u, ζð Þ½ � =
ð
f u, tð ÞdΦ tð Þ ≤

ð
ϕ tð ÞdΦ tð Þ: ð23Þ

Since ϕðζÞ is integrable, we have
Ð
ϕðtÞdΦðtÞ which is

finite. Therefore, (a) is hold.

(b) From equation (15), it can be seen that

E f u, ζð Þ½ � =
ð
f u, tð ÞdΦ tð Þ = 〠

∞

i=1
f u, ζið ÞΔΦi tð Þ

= lim
N⟶∞

1
N
〠
N

i=1
f u, ζið Þ = lim

N⟶∞
E f N u, ζð Þ½ �,

ð24Þ
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and it means that ∀ε > 0, ∃N0 > 0, when N >N0; it
holds

E f N u, ζð Þ½ � − E f u, ζð Þ½ �j j < ε: ð25Þ

From the fact that u is arbitrary, so

max
u∈S

E f N u, ζð Þ½ � − E f u, ζð Þ½ �j j < ε: ð26Þ

From the fact that ε is arbitrary, E½ f Nðu, ζÞ� uniformly
converges to E½ f ðu, ζÞ�, that is,

lim
N⟶∞

max
u∈S

E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k = 0: ð27Þ

(c) It follows from Li et al. [25] that the problem max
v∈S

fðu − vÞTE½ f ðu, ζÞ� − ðγ/2Þku − vk2Gg is essentially equal
to the problem min

v∈S
kv − ðu − γ−1G−1E½ f ðu, ζÞ�Þk2G. So

it is easy to have that ∀u ∈ Rn, ∀ζ ∈ Ξ, and

R u, ζð Þ = u −P u, ζð Þð ÞTE f u, ζð Þ½ �
−
γ

2 u −P u, ζð Þk k2G,

RN u, ζð Þ = u −P N u, ζð Þð ÞTE f N u, ζð Þ½ �
−
γ

2 u −P N u, ζð Þk k2G,

ð28Þ

where

P u, ζð Þ =ΘS,G u − γ−1G−1E f u, ζð Þ½ �À Á
, ð29Þ

P N u, ζð Þ =ΘS,G u − γ−1G−1E f N u, ζð Þ½ �À Á
, ð30Þ

E f N u, ζð Þ½ � = 1
N
ΣN
i=1 f u, ζið Þ: ð31Þ

Let Rðu, ζÞ: Rn × Ξ⟶ Rn > 0 be a function defined by
(11). ∀u ∈ S, ζ ∈ Ξ, andRðu, ζÞ = 0 iff u is a solution of FVIP
ð f , SÞ. Therefore, u is a solution of (16) iff it solves (10), so

R u, ζð Þ −RN u, ζð Þj j
= u −P u, ζð Þð ÞTE f u, ζð Þ½ � − γ

2 u −P u, ζð Þk k2G
���
− u −P N u, ζð Þð ÞTE f N u, ζð Þ½ � − γ

2 u −P N u, ζð Þk k2G
n o���

= u −P u, ζð Þð ÞTE f u, ζð Þ½ � − γ

2 u −P u, ζð Þk k2G
���
− u −P N u, ζð Þð ÞTE f N u, ζð Þ½ � + γ

2 u −P N u, ζð Þk k2G
���

≤ u −P u, ζð Þð ÞTE f u, ζð Þ½ � − u −P N u, ζð Þð ÞTE f N u, ζð Þ½ �
��� ���
+ γ

2 u −P N u, ζð Þk k2G −
γ

2 u −P u, ζð Þk k2G
��� ���

= u −P u, ζð Þð ÞT E f u, ζð Þ½ � − E f N u, ζð Þ½ �ð Þ
���
+ P N u, ζð Þ −P u, ζð Þð ÞTE f N u, ζð Þ½ �

���
+ γ

2 u −P N u, ζð Þk k2G −
γ

2 u −P u, ζð Þk k2G
��� ���

≤ u −P u, ζðk k · E f u, ζð Þ½ � − E f N u, ζð Þ½ �k k
+ P N u, ζð Þ −P u, ζð Þk k · E f N u, ζð Þ½ �k k
+ γ

2 u −P N u, ζð Þk k2G −
γ

2 u −P u, ζð Þk k2G
��� ���:

ð32Þ

Since Rðu, ζÞ ≥ 0, we have
u −P u, ζð Þð ÞTE f u, ζð Þ½ �
−
γ

2 u −P u, ζð Þk k2G ≥ 0,

γ

2 u −P u, ζð Þk k2G ≤ u −P u, ζð Þð ÞTE f u, ζð Þ½ �
≤ u −P u, ζðk k · E f u, ζð Þ½ �k k:

ð33Þ

Denote the smallest eigenvalue of G by λmin. Note thatffiffiffiffiffiffiffiffiffi
λmin

p
uk k ≤ uk kG,

u −P u, ζð Þk k · E f u, ζð Þ½ �k k ≤ 1ffiffiffiffiffiffiffiffiffi
λmin

p u −P u, ζð Þk kG
· E f u, ζð Þ½ �k k:

ð34Þ

Further, we can conclude that

u −P u, ζð Þk k ≤ u −P u, ζð Þk kGffiffiffiffiffiffiffiffiffi
λmin

p ≤
2 E f u, ζð Þ½ �k k

γ
ffiffiffiffiffiffiffiffiffi
λmin

p : ð35Þ

On account that S is nonempty and compact, so ∃K > 0,
it holds

E f u, ζð Þ½ �k k < K ,

E f N u, ζð Þ½ �k k < K:
ð36Þ

Furthermore, we can conclude

u −P u, ζð Þk k < 2K
γ

ffiffiffiffiffiffiffiffiffi
λmin

p ,

u −P N u, ζð Þk k < 2K
γ

ffiffiffiffiffiffiffiffiffi
λmin

p :

ð37Þ

Moreover, from the nonexpansive property of the pro-
jection operator, it holds

P N u, ζð Þ −P u, ζð Þk k = ΘS,G u − γ−1G−1E f N u, ζð Þ½ �À Á
−ΘS,G u − γ−1G−1E f u, ζð Þ½ �À Á

G

≤ γ−1G−1E f N u, ζð Þ½ � − γ−1G−1E f u, ζð Þ½ � 
G

≤ γ−1 G−1  · E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k:
ð38Þ
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Then, we can get

u −P N u, ζð Þk k2G − u −P u, ζð Þk k2G
��� ���

= u −P N u, ζð Þð ÞTG u −P N u, ζð Þð Þ
���
− u −P u, ζð Þð ÞTG u −P u, ζð Þð Þ

���
= P N u, ζð Þ −P u, ζð Þð ÞTG P N u, ζð Þ −P u, ζð Þð Þ
��� ���

≤ P N u, ζð Þ −P u, ζð Þð Þk k · Gk k · P N u, ζð Þ −P u, ζð Þð Þk k
= P N u, ζð Þ −P u, ζð Þð Þk k2 · Gk k
≤ γ−2 · G−1  · E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k2:

ð39Þ

From (a) and (b), E½ f Nðu, ζÞ� uniformly converges to
E½ f ðu, ζÞ�. So ∀δ > 0, when N >N0, ∃N0 such that

max
u∈S

E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k ≤ δ

2γ−1K 2/
ffiffiffiffiffiffiffiffiffi
λmin

p� �
+ G−1 � � ,

max
u∈S

E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k2 ≤ δ

γ−1 G−1  :
ð40Þ

From ku −P ðu, ζÞk < ð2/γ ffiffiffiffiffiffiffiffiffi
λmin

p ÞK and ku −P Nðu, ζÞk
< ð2/γ ffiffiffiffiffiffiffiffiffi

λmin
p ÞK , kP Nðu, ζÞ −P ðu, ζÞk ≤ γ−2 · kG−1k · kE½ f N

ðu, ζÞ� − E½ f ðu, ζÞ�k2, jku −P Nðu, ζÞk2G − ku −P ðu, ζÞk2Gj
≤ γ−2 · kG−1k · kE½ f Nðu, ζÞ� − E½ f ðu, ζÞ�k2, and max

u∈S
kE½ f N

ðu, ζÞ� − E½ f ðu, ζÞ�k2 ≤ ðδ/ðγ−1kG−1kÞÞ, we can get

max
u∈S

R u, ζð Þ −RN u, ζð Þj j
≤max

u∈S
u −P u, ζð Þk k · max

u∈S
E f N u, ζð Þ½ � − E f u, ζð Þ½ �ð Þk k

+max
u∈S

P N u, ζð Þ −P u, ζð Þk k · max
u∈S

E f N u, ζð Þ½ �k k

+ γ

2 max
u∈S

u −P N u, ζð Þk k2G − u −P u, ζð Þk k2G
��� ���

≤
2

γ
ffiffiffiffiffiffiffiffiffi
λmin

p K · max
u∈S

E f N u, ζð Þ½ � − E f u, ζð Þ½ �ð Þk k

+ γ−1 G−1  · max
u∈S

E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k · K

+ γ

2 · γ−2 · G−1  · max
u∈S

E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k2

= max
u∈S

E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k

· 2
γ

ffiffiffiffiffiffiffiffiffi
λmin

p K + γ−1 G−1  · K
( )

+ 1
2γ · G−1  max

u∈S
E f N u, ζð Þ½ � − E f u, ζð Þ½ �k k2

≤
δ

2γ−1K 2/
ffiffiffiffiffiffiffiffiffi
λmin

p� �
+ G−1 � �

· 2
γ

ffiffiffiffiffiffiffiffiffi
λmin

p K + γ−1 G−1  · K
( )

+ 1
2γ · G−1  · δ

γ−1 G−1  = δ:

ð41Þ

Then,

lim
N⟶∞

max
u∈S

RN u, ζð Þ −R u, ζð Þk k = 0: ð42Þ

That is, RNðu, ζÞ uniformly converges to Rðu, ζÞ.

Since the condition of uniform convergence is strong,
there will be inevitable mistakes in the calculation process.
Here, we weaken the condition of the function and then
prove it.

Definition 8 (see [26]). Let f f ng∞n=1 be a sequence and the
function f be lower semicontinuous. f f ng epiconverges to f :

(i) ∀fung s:t: limn⟶∞
un = u, there holds liminf

n⟶∞
f nðunÞ ≥

f ðuÞ, ∀u
(ii) ∃fvng s:t: limn⟶∞

vn = v, there holds limsup
n⟶∞

f nðvnÞ ≤
f ðvÞ,∀v

Lemma 9. Assume that f ðu, ζÞ is ϕ-bounded function and
function of the sequence E½ f NðuN , ζÞ� epiconverges to the
function E½ f ðu, ζÞ�. Then, P NðuN , ζÞ approaches to P ðu, ζÞ.

Proof. To prove P NðuN , ζÞ approaches to P ðu, ζÞ, we will
prove the following:

(a) ∀fuNg s:t: lim
N⟶∞

uN = u, ∀δ > 0, ∃N∗ > 0,N >N∗,

then

P N uN , ζð Þ −P u, ζð Þ ≥ −δ: ð43Þ

(b) ∃fvNg s:t: lim
N⟶∞

vN = v, ∀δ > 0, ∃N∗ > 0,N >N∗,

then

P N uN , ζð Þ −P u, ζð Þ ≤ δ: ð44Þ

Firstly, we prove (a). Recall that

RN uN , ζð Þ = uN − vð ÞTE f N uN , ζð Þ½ � − γ

2 uN − vk k2G,

R u, ζð Þ = u − vð ÞTE f u, ζð Þ½ � − γ

2 u − vk k2G:
ð45Þ
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By [27] and (29), we can get that P NðuN , ζÞ is the
unique optimal solution of min

u∈S
RNðuN , ζÞ; and P ðu, ζÞ is

the only optimal solution of min
u∈S

Rðu, ζÞ. So we have

RN uN , ζð Þ −R u, ζð Þ
= uN − vð ÞTE f N uN , ζð Þ½ � − γ

2 uN − vk k2G
− u − vð ÞTE f u, ζð Þ½ � − γ

2 u − vk k2G
n o

= uN − vð ÞTE f N uN , ζð Þ½ � − u − vð ÞTE f u, ζð Þ½ �
−
γ

2 uN − vk k2G − u − vk k2G
È É

= uN − vð ÞTE f N uN , ζð Þ½ � − u − vð ÞTE f u, ζð Þ½ �
−
γ

2 uN − vð ÞTG uN − vð Þ − u − vð ÞTG u − vð Þ
n o

= uN − vð ÞTE f N uN , ζð Þ½ � − u − vð ÞTE f u, ζð Þ½ �
−
γ

2 uN − u − v + yð ÞTG uN − u − v + yð Þ
n

= uN − vð ÞTE f N uN , ζð Þ½ � − u − vð ÞTE f u, ζð Þ½ �
−
γ

2 uN − uð ÞTG uN − uð Þ
n o

:

ð46Þ

Because E½ f NðuN , ζÞ� epiconverges to the function
E½ f ðu, ζÞ� if for any u, ∀fuNg s:t: limn⟶∞

uN = u. So for any

ε > 0, ∃N0 > 0,N >N0, s:t:liminf
N⟶∞

E½ f NðuN , ζÞ� ≥ E½ f ðu, ζÞ�,
that is,

E f N uN , ζð Þ½ � ≥ E f u, ζð Þ½ � − ε,

E f N uN , ζð Þ½ �E f u, ζð Þ½ � ≥ −ε:
ð47Þ

Then,

RN uN , ζð Þ −R u, ζð Þ
= uN − vð ÞTE f N uN , ζð Þ½ � − uN − vð ÞTE f u, ζð Þ½ �

+ uN − vð ÞTE f u, ζð Þ½ � − u − vð ÞTE f u, ζð Þ½ �
−
γ

2 uN − uð ÞTG uN − uð Þ
n o

= uN − vð ÞT E f N uN , ζð Þ½ � − E f u, ζð Þ½ �f g
+ uN − u − v + yð ÞTE f u, ζð Þ½ �
−
γ

2 uN − uð ÞTG uN − uð Þ
n o

≥ uN − vð ÞT
��� ��� −εð Þ + uN − uð ÞTE f u, ζð Þ½ �

−
γ

2 uN − uð ÞTG uN − uð Þ
n o

:

ð48Þ

From ∀fuNg s:t: limn⟶∞
uN = u, so for any ε > 0, ∃N1 > 0,

N >N1, we have

uN − u > −ε: ð49Þ

Then, for any ε > 0, ∃N2 ∈max fN0,N1g,N >N2, we have

RN uN , ζð Þ −R u, ζð Þ
≥ uN − vð ÞT
��� ��� −εð Þ + uN − uð ÞTE f u, ζð Þ½ �

−
γ

2 uN − uð ÞTG uN − uð Þ
n o

≥ −ε uN − vð ÞT
��� ��� − ε E f u, ζð Þ½ �j j − ε2

γ

2 Gk k:

ð50Þ

By uN ∈ S, v ∈ S, γ > 0, so ðuN − vÞT , ðγ/2ÞkGj are finite,
and E½ f ðu, ζÞ� is finite; then, RNðuN , ζÞ approaches Rðu, ζÞ.
And P NðuN , ζÞ is the only optimal solution to min

u∈S
RNðuN ,

ζÞ; and P ðu, ζÞ is the only optimal solution to min
u∈S

Rðu, ζÞ.
So P NðuN , ζÞ approaches to P ðu, ζÞ; that is, for any δ > 0,
∃N3 ∈max fN0,N1g,N >N3, we have

P N uN , ζð Þ −P u, ζð Þ ≥ −δ: ð51Þ

Next, we prove (b). Because E½ f NðuN , ζÞ� epiconverges to
the function E½ f ðu, ζÞ� if ∃fvNg s:t: limn⟶∞

vN = v, such that

limsup
N⟶∞

E½ f NðvN , ζÞ� ≤ E½ f ðv, ζÞ�, that is,

E f N vN , ζð Þ½ � ≤ E f v, ζð Þ½ � + ε,

E f N vN , ζð Þ½ � − E f v, ζð Þ½ � ≤ ε:
ð52Þ

That means that there exists a sequence fvNg converging
to v, and it holds

P N vN , ζð Þ −P v, ζð Þk k
= ProjS,G vN − γ−1G−1E f N vN , ζð Þ½ �À Á

− ProjS,G v − γ−1G−1E f v, ζð Þ½ �À Á
G

≤ vN − vð Þ − γ−1G−1E f N vN , ζð Þ½ � − γ−1G−1E f v, ζð Þ½ � 
G

≤ vN − vk k + γ−1 G−1  · E f N vN , ζð Þ½ � − E f v, ζð Þ½ �k k
≤ δ + γ−1 G−1 ε:

ð53Þ

From (a) and (b), we can get that P NðuN , ζÞ approaches
to P ðu, ζÞ, so the proof is completed.

Theorem 10. Assume that f ðu, ζÞ is ϕ-bounded function
and every function of the sequence E½ f NðuN , ζÞ� epiconverges
to the function E½ f ðu, ζÞ�. Then, RNðuN , ζÞ epiconverge to
Rðu, ζÞ.

Proof. To prove fRNðuN , ζÞg epiconverge to fRðu, ζÞg, we
will prove the following:

(I) If for any u, ∀fuNg s:t: lim
N⟶∞

uN = u, then liminf
N⟶∞

RNðuNÞ ≥RðuÞ
(II) ∃fvNg s:t: lim

N⟶∞
vN = v, then limsup

N⟶∞
RNðvNÞ ≤RðuÞ
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First of all, we prove (I). Because for any u, E½ f NðuN , ζÞ�
epiconverges to the function E½ f ðu, ζÞ�, ∀fuNg s:t: lim

N⟶∞
uN = u, there holds liminf

N⟶∞
E½ f NðuN , ζÞ� ≥ E½ f ðu, ζÞ�, that is,

E f N uN , ζð Þ½ � ≥ E f u, ζð Þ½ � − ε1,

E f N uN , ζð Þ½ � − E f u, ζð Þ½ � ≥ −ε1:
ð54Þ

From

R u, ζð Þ = u −P u, ζð Þð ÞTE f u, ζð Þ½ � − γ

2 u −P u, ζð Þk k2G,

RN uN , ζð Þ = uN −P N uN , ζð Þð ÞTE f N uN , ζð Þ½ �
−
γ

2 uN −P N uN , ζð Þk k2G:
ð55Þ

We then obtain

RN uN , ζð Þ −R u, ζð Þ
= uN −P N uN , ζð Þð ÞTE f N uN , ζð Þ½ �

−
γ

2 uN −P N uN , ζð Þk k2G − u −P u, ζð Þð ÞTE f u, ζð Þ½ �

−
γ

2 u −P u, ζð Þk k2G
= uN −P N uN , ζð Þð ÞT E f N uN , ζð Þ½ � − E f u, ζð Þ½ �f g

+ uN −P N uN , ζð Þ − u +P u, ζð Þð ÞTE f u, ζð Þ½ �
−
γ

2 uN −P N uN , ζð Þk k2G + γ

2 u −P u, ζð Þk k2G
≥ uN −P N uN , ζð Þð ÞT
��� ��� −ε1ð Þ
+ uN −P N uN , ζð Þ − u +P u, ζð Þð ÞTE f u, ζð Þ½ �
−
γ

2 uN −P N uN , ζð Þk k2G + γ

2 u −P u, ζð Þk k2G
= uN −P N uN , ζð Þð ÞT
��� ��� −ε1ð Þ
+ uN − u +P u, ζð Þ −P N uN , ζð Þð ÞTE f u, ζð Þ½ �
−
γ

2 u − uN +P N uN , ζð Þ −P u, ζð Þð ÞTG u − uNð
n

+P N uN , ζð Þ −P u, ζð ÞÞ
o
:

ð56Þ

From fuNg converging to u, so for any ε2 > 0, ∃N1 > 0,
N >N1, we have

uN − u ≥ −ε2: ð57Þ

By (51) in Lemma 9 and (56), that is, for any ε3 > 0,
∃N3 ∈max fN0,N1g,N >N3, we have P NðuN , ζÞ −P ðu, ζÞ
≥ −ε3. We can get

RN uN , ζð Þ −R u, ζð Þ
≥ uN −P N uN , ζð Þð ÞT
��� ��� −ε1ð Þ
+ uN − u +P u, ζð Þ −P N uN , ζð Þð ÞTE f u, ζð Þ½ �
−
γ

2 u − uN +P N uN , ζð Þ −P u, ζð Þð ÞTG u − uNð
n

+P N uN , ζð Þ −P u, ζð ÞÞ
o

≥ uN −P N uN , ζð Þð ÞT
��� ��� −ε1ð Þ − ε2 + ε3ð ÞE f u, ζð Þ½ �

+ γ

2 −ε2 − ε3ð ÞTG −ε2 − ε3ð
n o

:

ð58Þ

Obviously, uN ∈ S, P NðuN , ζÞ is the the unique optimal
solution of problem min

u∈S
RNðuN , ζÞ; and P ðu, ζÞ is the the

unique optimal solution of problem min
u∈S

Rðu, ζÞ, so

juN −P NðuN , ζÞjT is finite. That is, for any ε > 0, ∃N2 > 0,
N >N2 >N1, we have

RN uN , ζð Þ −R u, ζð Þ ≥ −ε: ð59Þ

It means that

liminf
N⟶∞

RN uN , ζð Þ ≥R u, ζð Þ: ð60Þ

Furthermore, we prove (II). From

R u, ζð Þ = u −P u, ζð Þð ÞTE f u, ζð Þ½ � − γ

2 u −P u, ζð Þk k2G,

RN uN , ζð Þ = uN −P N uN , ζð Þð ÞTE f N uN , ζð Þ½ �
−
γ

2 uN −P N uN , ζð Þk k2G:
ð61Þ

Because E½ f NðuN , ζÞ� epiconverges to the function E½ f
ðu, ζÞ�, ∃fvNg s:t: lim

N⟶∞
vN = v, such that limsup

N⟶∞
E½ f NðvN , ζÞ�

≤ E½ f ðv, ζÞ�, that is,

E f N vN , ζð Þ½ � ≤ E f v, ζð Þ½ � + ε1,

E f N vN , ζð Þ½ � − E f v, ζð Þ½ � ≤ ε1:
ð62Þ
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We then obtain that there exists a sequence fvNg con-
verging to v; it holds

RN vN , ζð Þ −R v, ζð Þ
= vN −P N vN , ζð Þð ÞTE f N vN , ζð Þ½ � − γ

2 vN −P N vN , ζð Þk k2G
− v −P v, ζð Þð ÞTE f v, ζð Þ½ � + γ

2 v −P v, ζð Þk k2G
≤ vN −P N vN , ζð Þð ÞTE f N vN , ζð Þ½ �
���
− vN −P vN , ζð Þð ÞTE f v, ζð Þ½ �
+ vN −P vN , ζð Þð ÞTE f v, ζð Þ½ � − γ

2 vN −P N vN , ζð Þk k2G
− v −P v, ζð Þð ÞTE f v, ζð Þ½ � + γ

2 v −P v, ζð Þk k2G
���

= vN −P N vN , ζð Þð ÞT E f N vN , ζð Þ½ � − E f v, ζð Þ½ �ð Þ
���
+ vN −P vN , ζð Þ − v +P v, ζð Þð ÞTE f v, ζð Þ½ �

���
+ γ

2 v −P v, ζð Þk k2G − vN −P N vN , ζð Þk k2G
��� ���

= vN −P N vN , ζð Þð ÞTε1
���
+ vN − v +P v, ζð Þ −P vN , ζð Þð ÞTE f v, ζð Þ½ �

���
+ γ

2 v −P v, ζð Þð ÞTG v −P v, ζð Þð Þ
n���

− vN −P N vN , ζð Þð ÞTG vN −P N vN , ζð Þð Þ
o���

≤ vN −P N vN , ζð Þð Þk kε1
+ vN − v +P v, ζð Þ −P N vN , ζð Þk k E f v, ζð Þ½ �k k
+ γ

2 v − vN +P N vN , ζð Þ −P v, ζð Þð Þk k Gk k
Á v − vN +P N vN , ζð Þ −P v, ζð Þð Þk k

≤ vN −P N vN , ζð Þk kε1 + vN − vk kf
+ P v, ζð Þ −P N vN , ζð ÞÞk kg E f v, ζð Þ½ �k k
+ γ

2 v − vNðk k + P N vN , ζð Þ −P v, ζð ÞÞk kð Þ · Gk kf
· v − vNðk k + P N vN , ζð Þ −P v, ζð ÞÞk kð Þg:

ð63Þ

By fvNg converging to v, so for any ε > 0, ∃N1 > 0,N >
N1, we have

vN − v < ε: ð64Þ

And since Rðv, ζÞ ≥ 0, we have

v −P v, ζð Þð ÞTE f v, ζð Þ½ �
−
γ

2 v −P v, ζð Þk k2G ≥ 0,

γ

2 v −P v, ζð Þk k2G ≤ v −P v, ζð Þð ÞTE f v, ζð Þ½ �
≤ v −P v, ζð Þk k · E f v, ζð Þ½ �k k:

ð65Þ

Note that ffiffiffiffiffiffiffiffiffi
λmin

p
vk k ≤ vk kG,

v −P v, ζð Þk k · E f v, ζð Þ½ �k k ≤ 1ffiffiffiffiffiffiffiffiffi
λmin

p v −P v, ζð Þk kG
· E f v, ζð Þ½ �k k,

ð66Þ

where λmin indicate the smallest eigenvalue of G. Further, we
can conclude that

v −P v, ζð Þk k ≤ 1ffiffiffiffiffiffiffiffiffi
λmin

p v −P v, ζð Þk kG

≤
2

γ
ffiffiffiffiffiffiffiffiffi
λmin

p E f v, ζð Þ½ �k k:
ð67Þ

Because S is a compact and nonempty set on Rn, then
∃M > 0; it holds

E f v, ζð Þ½ �k k <M,

E f N v, ζð Þ½ �k k <M:
ð68Þ

Furthermore, it is not difficult to show that

v −P v, ζð Þk k < 2
γ

ffiffiffiffiffiffiffiffiffi
λmin

p M,

vN −P N vN , ζð Þk k < 2
γ

ffiffiffiffiffiffiffiffiffi
λmin

p M:

ð69Þ

From (63), vN − v ≤ ε2, by (53) in Lemma 9; that is, for
any ε3 > 0, ∃N3 ∈max fN0,N1g,N >N3, we have P NðuN ,
ζÞ −P ðu, ζÞ ≤ ε3. kE½ f ðv, ζÞ�k <M, and kv −P ðv, ζÞk <
ð2/γ ffiffiffiffiffiffiffiffiffi

λmin
p ÞM and kvN −P NðvN , ζÞk < ð2/γ ffiffiffiffiffiffiffiffiffi

λmin
p ÞM; we

have

RN vN , ζð Þ −R v, ζð Þ
≤ vN − vðk k + P v, ζð Þ −P N vN , ζð ÞÞk k E f v, ζð Þ½ �k k

+ ε1 vN −P N vN , ζð Þk k + γ

2 v − vNðk kðf
+ P N vN , ζð Þ −P v, ζð ÞÞk kÞ · Gk k
· v − vNk k + P N vN , ζð Þ −P v, ζð ÞÞk kð Þg

≤ ε2 + ε3 + γ−1 G−1 ε1À Á
M + 2ε1

γ
ffiffiffiffiffiffiffiffiffi
λmin

p M

+ γ

2 ε2 + ε3 + γ−1 G−1 ε1À Á
· Gk k

· ε2 + ε3 + γ−1 G−1 ε1À Á
= ε2 + ε3 + γ−1 G−1 ε1À Á

M + 2ε1
γ

ffiffiffiffiffiffiffiffiffi
λmin

p M

+ γ

2 ε2 + ε3 + γ−1 G−1 ε1À Á2 · Gk k:
ð70Þ
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That is, for any ε > 0, ∃N2 > 0,N >N2 >N1, we have

RN vN , ζð Þ −R v, ζð Þ ≤ ε: ð71Þ

It means that there exists a sequence fvNg that con-
verges to v, so that

limsup
N⟶∞

RN vN , ζð Þ ≤R v, ζð Þ: ð72Þ

From (60) and (72), we can get that fRNðuN , ζÞg
epi-converge to fRðu, ζÞg.

Theorem 11. Suppose that f ðu, ζÞ is ϕ-bounded function,
and E½ f NðuN , ζÞ� epiconverge to E½ f ðu, ζÞ�. Then, we have

lim
N⟶∞

min
u∈S

RN u, ζð Þ =min
u∈S

R u, ζð Þ: ð73Þ

Proof. Note that, by f ðu, ζÞ is ϕ-bounded function, for every
N ,min

u∈S
RNðu, ζÞ andmin

u∈S
Rðu, ζÞ are both finite. So, in order

to prove lim
N⟶∞

min
u∈S

RNðu, ζÞ =min
u∈S

Rðu, ζÞ, we can prove

the following:

(a) limsup
N⟶∞

min
u∈S

RNðu, ζÞ ≤min
u∈S

Rðu, ζÞ

(b) liminf
N⟶∞

min
u∈S

RNðu, ζÞ ≥min
u∈S

Rðu, ζÞ

We first prove (a). Let ∀ε > 0. ∃uε ∈ S s.t.

R uε, ζð Þ ≤min
u∈S

R u, ζð Þ + ε: ð74Þ

From Theorem 10, we have RNðuN , ζÞ⟶Rðu, ζÞ; it
means that ∃uN , s.t. lim

N⟶∞
uN = uε; there holds limsup

N⟶∞
RN

ðuN , ζÞ ≤Rðuε, ζÞ. Therefore, we have

limsup
N⟶∞

min
u∈S

RN u, ζð Þ ≤ limsup
N⟶∞

RN uN , ζð Þ,

limsup
N⟶∞

RN uN , ζð Þ ≤R uε, ζð Þ,

R uε, ζð Þ ≤min
u∈S

R u, ζð Þ + ε:

ð75Þ

By the arbitrariness of ε, we have that

limsup
N⟶∞

min
u∈S

RN u, ζð Þ ≤min
u∈S

R u, ζð Þ: ð76Þ

Next, we prove (b). ∀ε > 0,∃fuNg ⊂ S s.t.

0 ≤RN uN , ζð Þ ≤min
u∈S

RN u, ζð Þ + ε: ð77Þ

Then, ∃fuNk
g s.t. lim

N⟶∞
uNk

= uε ∈ S such that

lim
N⟶∞

RNk uNk
, ζ

À Á
= liminf

N⟶∞
RN uN , ζð Þ: ð78Þ

Therefore, we have that

liminf
N⟶∞

min
u∈S

RN u, ζð Þ ≥ liminf
N⟶∞

RNk
uNk

, ζ
À Á

: ð79Þ

Since, by Theorem 10, the sequence fRNðuN , ζÞg epi-
converges to Rðu, ζÞ, that is, for every sequence fuNg
converging to u, we have

liminf
N⟶∞

RN uN , ζð Þ ≥R u, ζð Þ: ð80Þ

Then,

liminf
N⟶∞

RNk
uNk

, ζ
À Á

≥R uε, ζð Þ,

R uε, ζð Þ ≥min
u∈S

R u, ζð Þ,

liminf
N⟶∞

min
u∈S

RN u, ζð Þ ≥ liminf
N⟶∞

RNk
uNk

, ζ
À Á

≥R uε, ζð Þ
≥min

u∈S
R u, ζð Þ:

ð81Þ

Because ε is arbitrary, we have

liminf
N⟶∞

min
u∈S

RN u, ζð Þ ≥min
u∈S

R u, ζð Þ: ð82Þ

The conclusion follows from (76) and (82) immedi-
ately.

Theorem 12. Suppose that E½ f NðuN , ζÞ� epiconverge to
E½ f ðu, ζÞ�. Suppose that function f ðu, ζÞ is uniformly mono-
tone with respect to u, there exists a function ΨðuÞ which is
nonnegative integrable, ∀u, v ∈ Rn, ∀N > 0,

u − vð ÞT f u, ζð Þ − f v, ζð Þ½ � ≥Ψ ζð Þ u − vk k2: ð83Þ

Here, uN is an optimal solution of (16), and E½ΨðζÞ� > 0. Then,
the sequence fuNg converges to the unique solution of (10).

Proof. From

R u, ζð Þ = u −P u, ζð Þð ÞTE f u, ζð Þ½ � − γ

2 u −P u, ζð Þk k2G,

RN uN , ζð Þ = uN −P N uN , ζð Þð ÞTE f N uN , ζð Þ½ �
−
γ

2 uN −P N uN , ζð Þk k2G:
ð84Þ

arginfR and arginfRN are the optimal solution sets
of (11) and (16). Let uNk

∈ arginfRNk
, u ∈ arginfR. By

Theorem 11, we have lim
k⟶∞

uNk
= u ∈ S. And from the

9Advances in Mathematical Physics



assumptions, it shows that E½ f ð·, ζÞ� is uniformly mono-
tone and E½ΨðζÞ� > 0. So we have

u − vð ÞT f u, ζð Þ − f v, ζð Þ½ � ≥Ψ ζð Þ u − vk k2,

E u − vð ÞT f u, ζð Þ − f v, ζð Þ½ �
h i

≥ E Ψ ζð Þ u − vk k2Â Ã
,

u − vð ÞT E f u, ζð Þ½ � − E f v, ζð Þ½ �f g ≥ E Ψ ζð Þ½ � u − vk k2:
ð85Þ

E½ΨðζÞ� > 0, so ðu − vÞTfE½ f ðu, ζÞ� − E½ f ðv, ζÞ�g ≥ 0. By
the arbitrariness of u, v, we have

u − vð ÞT E f u, ζð Þ½ � − E f v, ζð Þ½ �f g ≥ 0: ð86Þ

So, u = v means the uniqueness of the solution to prob-
lem (10), denoted by u†. It is not difficult to show that u† is
also the unique solution of (12). Therefore, u† is a unique
cluster point of the bounded sequence fuNg.

4. Conclusions

In this paper, we studied the SDA method for solving the
UVIP. By constructing the gap function (11), the uncertain
variational inequality problem is transformed into an opti-
mization problem (12). Then, we propose the SDA method
to solve it. Also, we research the convergence of the optimi-
zation problem. Finally, the correctness of the SDA method
is proved; that is, the solution of the approximation problem
(16) obtained by the SDA method converges to the solution
of the original uncertain variational inequality (10).

In this paper, we have done some work on the Stieltjes
integral discrete approximation of uncertain variational
inequalities and obtained the related theoretical results,
which have good theoretical and practical significance.
Future studies are as follows: we can consider the displace-
ment gap function to establish the correlation model; and
we can consider to apply this method to the solution of
uncertain complementary functions.
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