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In this paper, we investigate the stability of set differential equations in Fréchet space F. Some comparison principles and stability
criteria are established for set differential equations with the fact that every Fréchet space F is a projective limit of Banach spaces.

1. Introduction

In recent years, set differential equations (SDEs for short)
have attracted extensive attention due to its intrinsic advan-
tages. In 1970, Blasi and Iervolino [1] first began the study of
SDEs in semilinear metric spaces. Nowadays, the theory of
SDEs has been developed into an independent subject area.
There are a few results on the existence, stability, and other
properties of solutions for various equations, such as SDEs
[2–11], set functional differential equations [12–16], set
integrodifferential equations [17–20], SDEs on time scales
[21, 22], SDEs with causal operators [23–27], and others
[15, 28–31], and references are given therein. Systematic
development of set differential equations has been provided
by Lakshmikantham et al. [32] and Martynyuk [33].

However, with the development of SDEs, when we
further try to extend the results to the case of infinite dimen-
sional locally convex spaces, namely, Fréchet spaces which
are not Banach spaces, most of the previous definitions are
no longer available in the new framework. Apart from
this, the increasing problems modeled in the framework
of non-Banach infinite dimensional spaces appear in mod-
ern analysis, differential geometry, and theoretical physics,
also inspiring us to seek alternative methods to investigate
SDEs. Thus, we will study SDEs within the Fréchet frame-
work in this paper. In fact, several basic results have been
obtained in this field. For example, Galanis et al. [34] gen-
eralized the basic notions about SDEs to a Fréchet space
using the fact that it is a projective limit of Banach spaces.
In the new framework, they obtained the properties of the

Hausdorff metric and constructed the continuity, and
Hukuhara differentiability of set-valued mappings, which
lay the foundation for the study of SDEs. In [35], Galanis
et al. investigated the existence of solutions of SDE in
Fréchet space. Wang et al. [36] obtained the criterion of
rapid convergence of solutions for SDEs.

The major purpose of this paper is to establish some
comparison results and further attempt to study the
stability of solutions of SDEs in Fréchet space employing
Lyapunov-like functions and comparison principles. We
recall some necessary background materials on the study
of SDEs in Banach spaces and Fréchet ones in Section 2.
Subsequently, in Section 3, we establish some comparison
results of SDEs in Fréchet space. Finally, some types of
stability properties of solutions of SDEs in Fréchet space
are derived in Section 4.

2. Preliminaries

We first give some concepts related to Banach space
[32, 34, 35] that will be used in the later discussion.

Let KcðEÞ denote the collection of all nonempty, com-
pact, and convex subsets of Banach space E. For any two
nonempty subsets X and Y on E, the Hausdorff metric is
determined by the formula

D X, Y½ � =max sup
x∈X

inf
y∈Y

x − yk k, sup
y∈Y

inf
x∈X

x − yk k
( )

: ð1Þ
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where k·k denotes the norm in E. Then, ðKcðEÞ,DÞ is a com-
plete metric space.

For the space KcðEÞ, if we define the natural algebraic
operations of addition and nonnegative scalar multiplica-
tion, then KcðEÞ is a semilinear metric space (see [32]).

For A, B, �A, �B, C ∈ KcðEÞ and λ ∈ℝ+, the Hausdorff
metric (1) has the following properties:

D A + C, B + C½ � =D A, B½ � andD A, B½ � =D B, A½ �,
D λA, λB½ � = λD A, B½ �,

D A, B½ � ≤D A, C½ � +D C, B½ �,
D A + �A, B + �B
Â Ã

≤D A, B½ � +D �A, �B
Â Ã

:

ð2Þ

For I = ½t0, T�, we call the mapping F : I ⟶ KcðEÞ is
Hukuhara differentiable if there exists DHFðt0Þ ∈ KcðEÞ,
such that

lim
h⟶0+

F t0 + hð Þ − F t0ð Þ
h

= lim
h⟶0+

F t0ð Þ − F t0 − hð Þ
h

=DHF t0ð Þ, for t0 ∈ I,
ð3Þ

where the differences are in the sense of the Hausdorff
difference.

Moreover, if there exists a mapping Ψ : I ⟶ KcðEÞ,
such that

F tð Þ = X0 +
ðt
t0

Ψ sð Þds, X0 ∈ Kc Eð Þ, ð4Þ

where the integrable is in the sense of Bochner, then
DHFðtÞ =ΦðtÞ a.e. on I.

We denote the integral as follows

Að Þ
ð
I0

F sð Þds

=
ð
I0

f sð Þds : f is a Bochner integrable selector of F
" #

:

ð5Þ

However, because the topology of F is derived from a set
of seminorms rather than a single norm, the application of
the classical definition of Hausdorff distance in KcðFÞ is
impossible. Therefore, the above methodology is no longer
available if the space we dealt with is not Banach space E,
but Fréchet space F. In order to overcome the above short-
comings, Galanis et al. [34, 35] proposed a set of structures
suitable for generalized locally convex topological vector
spaces on Fréchet spaces. The main difference is that the
classical Hausdorff metric D is replaced by a group of semi-
metrics in a Fréchet space.

Let F be a Fréchet space defined by a sequence fpigi∈ℕ
of seminorms, and the sequence fpigi∈ℕ be increasing.

Then, F ≜ lim
⟵

fEi ; ijigi,j∈ℕ can be seen as a projective limit

of Banach spaces E, where Ei denotes the completion of

the quotient F/Ker pi, i ∈ℕ, and ϱji are the connecting
morphisms

ϱji : Ej ⟶ Ei : x + Ker pj
h i

j
↦ x + Ker pi½ �i, j ≥ i, ð6Þ

the bracket ½·�i stands for the corresponding equivalence
class, and ϱji is a continuous mapping (see [37, 38]).

In this case, the space KcðFÞ can be viewed as a projective
limit space with a corresponding structure to Eis:

Kc Fð Þ ≡ lim
⟵

Kc EiÀ Á
; ϱji

È É
i,j∈ℕ, ð7Þ

where the mapping ϱji : KcðEjÞ⟶ KcðEiÞ: A↦ ϱjiðAÞ.
Each ρji is continuous concerning the topologies induced
by the Hausdorff metrics DE j ,DEi

on KcðEjÞ and KcðEiÞ.
Therefore, every element A of KcðFÞ can be realized as

A ≡ ϱi Að ÞÀ Á
i∈ℕ ≡ lim

⟵
ϱi Að Þ, ð8Þ

where ϱi : F⟶ Ei are the canonical projections of F to Ei.
With the above definition, we can revise the notion of

the Hausdorff metric in Fréchet space as follows:

Definition 1 (see [34]). Let F be a Fréchet space which is
defined by a group of seminorms. For X, Y ∈ KcðFÞ, we call
i-Hausdorff metric between X and Y .

Di X, Y½ � =max diD X, Yð Þ, diD Y , Xð Þ
n o

: ð9Þ

From the perspective of classical conceptions of Banach
factors, the connection below exists: if Xi, Yi ∈ KcðEiÞ, X =
lim
⟵

Xi, Y = lim
⟵

Yi, then

Di X, Y½ � =DEi
Xi, YiÂ Ã

, ð10Þ

where the revised i-Hausdorff metric also satisfies the corre-
sponding properties (2).

Let the set-valued mapping F : I ⟶ KcðFÞ can be seen
as a projective limit of the corresponding mappings in the
Banach factors Ei; that is, F = lim

⟵
Fi, in which Fi : I ⟶

KcðEiÞ, denotes the canonical projections of the limit KcðFÞ
≡ lim

⟵
KcðEiÞ.

Proposition 2 (see [35]). The mapping Fð= lim
⟵

FiÞ is

Hukuhara differentiable at t0 if and only if every Fi is
Hukuhara differentiable at t0 and

DHF t0ð Þ = lim
⟵

DHF
i t0ð Þ: ð11Þ
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3. Comparison Results of SDEs in Fréchet Space

In this section, we consider the IVP for SDEs in the Fréchet
space with the framework of KcðFÞ

DHX tð Þ = F t, X tð Þð Þ, X t0ð Þ = X0, t0 ∈ I, ð12Þ

where F ∈ C½I × KcðFÞ, KcðFÞ�, X0 ∈ KcðFÞ.
The mapping X ∈ C1½I, KcðFÞ� is called a solution of

SDEs (12) on I; that is

X tð Þ = X0 +
ðt
t0

DHX sð Þds, t ∈ I: ð13Þ

Then, we associate the IVP (12) with the integral
equations

X tð Þ = X0 +
ðt
t0

F s, X sð Þð Þds, t ∈ I: ð14Þ

In our further discussion, we will use the comparison
differential equation

w′ = g t,wð Þ,w t0ð Þ =w0 ≥ 0, ð15Þ

where g ∈ C½I ×ℝ+,ℝ+�, gðt, 0Þ ≡ 0.

Theorem 3. Suppose that the following conditions are
satisfied:

B1: the projective limit F = lim
⟵

Fi, Fi ∈ C½I × KcðEiÞ,
KcðEiÞ�

B2: Di½Fðt,UÞ, Fðt,WÞ� ≤ gðt,Di½U ,W�Þ, ðt,UÞ, ðt,WÞ
∈ I × KcðFÞ, i ∈ℕ

B3: the scalar differential equation (15) has a maximal
solution rðtÞ ≡ rðt, t0,w0Þ existing on I

Then, Di½UðtÞ,WðtÞ� ≤ rðtÞ, t ≥ t0 provided Di½U0,W0�
≤w0, where UðtÞ ≡Uðt ; t0,U0Þ and WðtÞ ≡Wðt ; t0,W0Þ
are solutions of SDEs (12) on I.

Proof. By the fact of the mapping F as a projective limit,
Equations (12) can be reduced to a system of SDEs on the
Banach spaces Ei:

Di
HX tð Þ = Fi t, Xi tð ÞÀ Á

, Xi t0ð Þ = Xi
0 ∈ Kc EiÀ Á

, t ≥ t0, ð16Þ

where Xi
0 denotes the projection of X0.

From condition B2, (10), and the previously stated Prop-
erty 2.1, we have

DEi
Fi t,UiÀ Á

, Fi t,WiÀ ÁÂ Ã
≤ g t,DEi

Ui,WiÂ Ã� �
, t ≥ t0, i ∈ℕ:

ð17Þ

According to the comparison principle [32] for SDEs in
Banach space with the framework of KcðEÞ, if UiðtÞ and

WiðtÞ are solutions of (16) through ðt0,Ui
0Þ, ðt0,Wi

0Þ on I,
then

DEi
Ui tð Þ,Wi tð ÞÂ Ã

≤ r tð Þ, t ≥ t0, ð18Þ

providing that DEi ½Ui
0, Vi

0� ≤ u0.
In addition, by considering the projective limits of UðtÞ

= lim
⟵

UiðtÞ: I ⟶ KcðFÞ, we can obtain

DHU tð Þ = lim
⟵

Di
HU

i tð ÞÀ Á
= lim

⟵
Fi t,Ui tð ÞÀ Á

= F t,U tð Þð Þ,

U t0ð Þ = Ui t0ð ÞÀ Á
i∈ℕ = Ui

0
À Á

i∈ℕ =U0,
ð19Þ

that means UðtÞ is a solution of (12) through ðt0,U0Þ on I.
In the same way, we can claim that WðtÞ is a solution of
(12) through ðt0,W0Þ. Thus

Di U tð Þ,W tð Þ½ � =DEi
Ui tð Þ,Wi tð ÞÂ Ã

≤ r tð Þ, t ≥ t0, ð20Þ

providing Di½U0,W0� =DEi ½Ui
0,Wi

0� ≤w0.
This proves the claimed estimation of Theorem 3.
Next, we give a comparison result under weaker

assumptions.

Theorem 4. Suppose that the conditions B1 and B3 are
satisfied in Theorem 3, and

lim sup
h⟶0+

1
h

Di U + hF t,Uð Þ,W + hF t, Vð Þ½ � −Di U ,W½ �È É
≤ g t,Di U ,W½ �À Á

,
ð21Þ

Then, the conclusion of Theorem 3 holds.

Proof. By condition B1, the inequality (21) can be trans-
formed into the inequality on Banach spaces:

lim sup
h⟶0+

1
h

DEi
Ui + hFi t,UiÀ Á

,Wi + hFi t,WiÀ Áh i
−DEi

Ui,WiÂ Ãn o
≤ g t,DEi

Ui,WiÂ Ã� �
,

ð22Þ

where Ui,Wi ∈ KcðEiÞ, Fi ∈ C½I × KcðEiÞ, KcðEiÞ�.
Using the properties (2) and the inequality (21), we can

obtain the inequality (17) hold. The rest argument is similar
to the proof of Theorem 3. We omit here.

After that, we give a comparison theorem via
Lyapunov-like functions which can be used to the discus-
sion of the stability theory of Lyapunov in Fréchet space.

Theorem 5. Suppose that V ∈ C½I × KcðFÞ,ℝ+�, X, Y ∈ KcðFÞ,
and.

B4: jVðt, XÞ −Vðt, YÞj ≤ LiDi½X, Y �, Li is a positive
constant
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B5: D+Vðt, XÞ = lim sup
h⟶0+

ð1/hÞ½Vðt + h, X + hFðt, XÞÞ −
Vðt, XÞ� ≤ gðt, Vðt, XÞÞ

Then, Vðt, XðtÞÞ ≤ rðtÞ, t ≥ t0 provided Vðt0, X0Þ ≤w0.

Proof. By Theorem 3, equations (12) can be transformed into
the following SDEs on the Banach spaces Ei:

Di
HX tð Þ = Fi t, Xi tð ÞÀ Á

, Xi t0ð Þ = Xi
0 ∈ Kc EiÀ Á

, t ≥ t0: ð23Þ

where Xi ∈ KcðEiÞ and Fi ∈ C½I × KcðEiÞ, KcðEiÞ�. Mean-
while, we have

V t, Xð Þ − V t, Yð Þj j = V t, lim
⟵

Xi
� �

−V t, lim
⟵

Yi
� ���� ���

≤max VEi
t, XiÀ Á

−VEi
t, YiÀ Á��� ���

i∈ℕ

≤ LiDi X, Y½ � = LiDEi Xi, YiÂ Ã
,

ð24Þ

where VEi
∈ C½ℝ+ × KcðEiÞ,ℝ+�.

Similarly, we have

D+V t, Xð Þ
≤max lim sup

h⟶0+

1
h

VEi t + h, Xi + hFi t, XiÀ Á� �
− VEi t, XiÀ Áh i� �

i∈ℕ

≤ g t, V t, lim
⟵

Xi
� �� �

= g t, VEi t, XiÀ Á� �
,

ð25Þ

namely,

VEi
t, XiÀ Á

−VEi
t, YiÀ Á��� ���

i∈ℕ
≤ LiDEi

Xi, YiÂ Ã
,

D+VEi
t, XiÀ Á� �

i∈ℕ
≤ g t, VEi

t, XiÀ Á� �� �
i∈ℕ

:

ð26Þ

If XiðtÞ ≜ Xðt, t0, Xi
0Þ is any solution of SDEs (12) exist-

ing on I and satisfies Viðt0, Xi
0Þ ≤w0, then, we obtain

VEi
t, Xi tð ÞÀ Á� �

i∈ℕ
≤ r tð Þ, t ≥ t0: ð27Þ

Moreover, by considering the projective limits of XðtÞ
= lim

⟵
XiðtÞ, we have

DHX tð Þ = lim
⟵

Di
HX

i tð ÞÀ Á
= lim

⟵
Fi t, Xi tð ÞÀ Á

= F t, X tð Þð Þ,

X t0ð Þ = Xi
0

À Á
i∈ℕ = X0:

ð28Þ

Then, XðtÞ is a solution of (12) on I. Furthermore, we
obtain

V t, Xð Þ =V t, lim
⟵

Xi
� �

= VEi
t, XiÀ Á

≤ r tð Þ, t ≥ t0: ð29Þ

This proves the claimed estimation of Theorem 5.

4. Stability Criteria

In this section, we give the stability criteria via Lyapunov
functions in Fréchet spaces.

Firstly, we give the following sets for convenience.

S ρð Þ = X ∈ Kc Fð Þ: Di X, θ½ � < ρ, ρ > 0 is a cons tan t
È É

,
K = a ∈ C 0, ρ½ Þ,ℝ+½ �, a tð Þj is strictly increasing and a 0ð Þ = 0f g,;

CK = b ∈ C ℝ+ × 0, ρ½ Þ,ℝ+½ �, b t, ·ð Þj ∈K , for all t ∈ℝ+f g:
ð30Þ

Definition 6. The trivial solution X = θ of (12) is said to be
C1: equistable, if for each ε > 0 and t0 ∈ℝ+, there exists a

δ = δðt0, εÞ > 0, such that

Di X0, θ½ � < δ impliesDi X tð Þ, θ½ � < ε, t ≥ t0, ð31Þ

where XðtÞ is the solution of SDEs (12)
C2: uniformly stable, if the δ in (C1) is independent of t0
C3: equiattractive, if for each ε > 0 and t0 ∈ℝ+, there

exist δ = δðt0Þ > 0 and T = Tðt0, εÞ, such that

Di X0, θ½ � < δ impliesDi X tð Þ, θ½ � < ε, t ≥ t0 + T ð32Þ

C4: uniformly attractive, if the δ and T in C3 are
independent of t0

C5: equiasymptotically stable, if C1 and C3 hold
simultaneously

C6: uniformly asymptotically stable, if C2 and C4 hold
simultaneously

Theorem 7. Suppose the following conditions are satisfied:
S1: V ∈ C½I × SðρÞ,ℝ+� and for ðt, XÞ, ðt, YÞ ∈ I × SðρÞ

such that

V t, Xð Þ − V t, Yð Þj j ≤ LiDi X, Y½ �, Li > 0 is a constant, ð33Þ

D+V t, Xð Þ = lim sup
h⟶0+

1
h
V t + h, X + hF t, Xð Þð Þ − V t, Xð Þ½ � ≤ 0,

ð34Þ
S2: for ðt, XÞ ∈ I × SðρÞ, there exist a ∈K and b ∈CK

satisfying

a Di X, θ½ �À Á
≤V t, Xð Þ ≤ b t,Di X, θ½ �À Á

, t, Xð Þ ∈ℝ+ × S ρð Þ:
ð35Þ

Then, the trivial solution of SDEs (12) is equistable.

4 Advances in Mathematical Physics



Proof. From the previous section, we know that equation
(12) can be reduced to a system of SDEs on the Banach
spaces Ei by considering the mapping F as a projective
limit.

Di
HX tð Þ = Fi t, Xi tð ÞÀ Á

, Xi t0ð Þ = Xi
0 ∈ Kc EiÀ Á

, t ≥ t0: ð36Þ

Using the known conditions, we obtain

V t, Xð Þ −V t, Yð Þj j ≤max VEi
t, XiÀ Á

−VEi
t, YiÀ Á��� ���

i∈ℕ

≤ LiDEi
Xi, YiÂ Ã

,
ð37Þ

where VEi
∈ C½ℝ+ × KcðEiÞ,ℝ+� and Xi, Yi ∈ KcðEiÞ.

D+V t, Xð Þ = lim sup
h⟶0+

1
h

V t + h, lim
⟵

Xihlim
⟵

Fi t, XiÀ Á� �
−V t, lim

⟵
Xi

� �h i

≤max lim sup
h⟶0+

1
h

VEi
t + h, Xi + hFi t, XiÀ Á� �

−VEi
t, XiÀ Áh i� �

i∈ℕ

≤ 0:

ð38Þ

Noticing that Di½Xð·Þ, θ� =DEi ½Xið·Þ, θ�, we have

a Di X, θ½ �À Á
= a DEi

Xi, θ
Â Ã

i∈ℕ

� �
= ai DEi

Xi, θ
Â Ã� �� �

i∈ℕ

≤VEi
t, XiÀ Á

≤ b t, DEi
Xi, θ
Â Ã� �

i∈ℕ

� �
= bi t,DEi

Xi, θ
Â Ã� �� �

i∈ℕ
:

ð39Þ

where VEi ∈ C½ℝ+ × KcðEiÞ,ℝ+� and ai ∈K , bi ∈CK .
Furthermore, we obtain

VEi
t, Xi

1
À Á

−VEi
t, Xi

2
À Á��� ���

i∈ℕ
≤ LiDEi

Xi
1, Xi

2
Â Ã

,

D+VEi
t, XiÀ Á� �

i∈ℕ
≤ 0,

ai DEi
Xi, θ
Â Ã� �� �

i∈ℕ
≤VEi

t, XiÀ Á
≤ bi t,DEi

Xi, θ
Â Ã� �� �

i∈ℕ
:

ð40Þ

Similar to the proof of stability criteria in Theorem
3.4.1 [32], we know that the trivial solution of (36) is
equistable. Thus, for i ∈ℕ, ε = εi > 0, there exists a δ =
δii∈ℕ = δiðt0, εiÞi∈ℕ > 0, such that

Di X0, θ½ � = DEi
Xi
0, θ

Â Ã� �
i∈ℕ

< δii∈ℕ = δ impliesDi X tð Þ, θ½ �

= DEi
Xi tð Þ, θÂ Ã� �

i∈ℕ
< εii∈ℕ = ε,

ð41Þ

that is, for each ε > 0, there exists a δ = δðt0, εÞ > 0, such
that Di½XðtÞ, θ� < ε, t ≥ t0 provided Di½X0, θ� < δ. Therefore,
the trivial solution of (33) is equistable.

The proof is complete.

Similar to the proof process of Theorem 7, we can obtain
the following theorems.

Theorem 8. Suppose that the conditions of Theorem 7 hold,
except that inequality (34) can be strengthened to

D+V t, Xð Þ = lim sup
h⟶0+

1
h
V t + h, X + hF t, Xð Þð Þ −V t, Xð Þ½ �

≤ −β V t, Xð Þ½ �, β ∈K :

ð42Þ

Then, the trivial solution of SDEs (12) is equiasymptotic
stable.

Theorem 9. Suppose that the following conditions are satisfied:
S3: for any 0 < η < ρ, ðt, XÞ ∈ I × SðρÞ ∩ ScðηÞ, and V ∈ C

½I × SðρÞ ∩ ScðηÞ,ℝ+�, such that (33) and (34) hold;
S4: there exist a, b ∈K satisfying

a Di X, θ½ �À Á
≤V t, Xð Þ ≤ b Di X, θ½ �À Á

, t, Xð Þ ∈ I × S ρð Þ: ð43Þ

Then, the trivial solution of SDEs (12) is uniformly stable.

Theorem 10. Suppose that the conditions of Theorem 9 are
satisfied except that the condition (S3) of Theorem 9 is
strengthened to

D+V t, Xð Þ = lim sup
h⟶0+

1
h
V t + h, X + hF t, Xð Þð Þ −V t, Xð Þ½ �

≤ −φ Di X, θ½ �À ÁÂ Ã
,

ð44Þ

where φ ∈K . Then, the trivial solution of SDEs (12) is uni-
formly asymptotic stable.

Finally, we shall present the stability of SDEs in Fréchet
space via the comparison principle which will unite the
stability relations between SDEs and the comparison differ-
ential equation (15).

Theorem 11. Suppose that the conditions B3 in Theorem 3
and S4 in Theorem 9 are satisfied, and

S5: for V ∈ C½I × SðρÞ,ℝ+�, and ðt, XÞ, ðt, YÞ ∈ I × SðρÞ,
such that

V t, Xð Þ − V t, Yð Þj j ≤ LiDi X, Y½ �, L > 0 is a constant,

D+V t, Xð Þ = lim sup
h⟶0+

1
h
V t + h, X + hF t, Xð Þð Þ − V t, Xð Þ½ �

≤ g t, V t, Xð Þð Þ,
ð45Þ

Then, the stable (uniform) stability properties of the
trivial solution of (15) imply the corresponding equistable
(uniform) stability of the trivial solution of SDEs (12).
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Proof.

(i) Firstly, we prove the equistable of SDEs (12). Assume
that the scalar differential equation (15) is stable.
Hence, for the given 0 < ε < ρ and bðεÞ, there exists
a δ1 = δ1ðt0, εÞ > 0, such that

u0j j < δ1provided w t, t0,w0ð Þj j < b εð Þ, t ≥ t0: ð46Þ

Choosing w0 =Vðt0, X0Þ and δ = δðt0, εÞ > 0 satisfying
aðδÞ < δ1.

Letting Di½X0, θ� < δ. Then, for any solution XðtÞ of
SDEs (12), we claim that Di½XðtÞ, θ� < ε, t ≥ t0. If it is not
true, then there exists a solution XðtÞ of (12) with Di½X0, θ�
< δ and a t1 > t0 such that

Di X t1ð Þ, θ½ � = ε andDi X tð Þ, θ½ � ≤ ε < ρ, t0 ≤ t ≤ t1: ð47Þ

By Theorem 5, we obtain

V t, X tð Þð Þ ≤ r tð Þ, t0 ≤ t ≤ t1: ð48Þ

Then,

V t0, X0ð Þ ≤ a Di X0, θ½ �À Á
< a δð Þ < δ1: ð49Þ

From (47) and (48), we get

b εð Þ = b Di X1, θ½ �À Á
≤ V t1, X t1ð Þð Þ ≤ r t1ð Þ < b εð Þ, ð50Þ

which is a contradiction. This proves that the trivial solution
of SDE (12) is equistable.

(ii) Secondly, we prove the equiasymptotic stability of
(12). Suppose that the solution of the scalar differen-
tial equation (15) is asymptotic stable. Then, the
trivial solution of SDEs (12) is equistable. From ðIÞ,
the trivial solution of comparison equation (15) is
equistable. Therefore, we only need to prove that
SDE (12) is equiattractive

Considering the attractivity of the trivial solution of (15),
we take ε = ρ and choose δ = δðt0, ρÞ > 0. By setting 0 < η < ρ,
then for the given bðηÞ, there exist δ2 = δ2ðt0Þ > 0 and T =
Tðt0, ηÞ, such that

u0j j < δ2 implies r tð Þ < b ηð Þ, t ≥ t0 + T: ð51Þ

Choosing w0 = Vðt0, X0Þ and δ3 = δ3ðt0Þ > 0 such that
(47) holds, that is aðδ3Þ < δ2.

Let δ =min fδ2, δ3g, then using the conditions (S4)
in Theorem 9, (51) and the result of Theorem 9, we
obtain

b Di X tð Þ, θ½ �À Á
≤V t, Xð ÞÞ ≤ r tð Þ < b ηð Þ, t ≥ t0 + T , ð52Þ

that is, the trivial solution of (12) is equiattractive. Fur-
thermore, it is equiasymptotic stable.

(iii) Finally, the proof of the uniform stability is analo-
gous to the proof of equistability, and what differ-
ence is only to choose the δ independent of t0.
The proof of the uniformly asymptotic stability is
considered in the same way. Here, we omit the
details.

Remark 12. Another way to prove the above Theorem is that,
firstly, we transform the known conditions in Fréchet space
into Banach space by the realization of the projective limit;
then, we prove the stability results in Banach spaces; then,
by the relation Di½Xð·Þ, θ� =DEi ½Xið·Þ, θ�, where Xð·Þ ∈ KcðFÞ
and Xð·Þ ∈ KcðEiÞ, we can obtain the corresponding results.
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