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This paper uses Müntz orthogonal functions to numerically solve the fractional Bagley–Torvik equation with initial and boundary
conditions. Müntz orthogonal functions are defined on the interval 0;½ 1� and have simple and distinct real roots on this interval. For
the function f 2 L2 0;ð 1Þ, we obtain the best unique approximation using Müntz orthogonal functions. We obtain the
Riemann–Liouville fractional integral operator for Müntz orthogonal functions so that we can reduce the complexity of calculations
and increase the speed of solving the problem, which can be seen in the process of running theMaple program. To solve the fractional
Bagley–Torvik equation with initial and boundary conditions, we use Müntz orthogonal functions and consider simple and distinct
real roots of Müntz orthogonal functions as collocation points. By using the Riemann–Liouville fractional integral operator that we
define for the Müntz orthogonal functions, the process of numerically solving the fractional Bagley–Torvik equation that is solved
using Müntz orthogonal functions is reduced, and finally, we reach a system of algebraic equations. By solving algebraic equations
and obtaining the vector of unknowns, the fractional Bagley–Torvik equation is solved using Müntz orthogonal functions, and the
error value of the method can be calculated. The low error value of this numerical solution method shows the high accuracy of this
method. With the help of the Müntz functions, we obtain the error bound for the approximation of the function. We have obtained
the error bounds for the numerical method using which we solved the fractional Bagley–Torvik equation with initial and boundary
conditions. Finally, we have given a numerical example to show the accuracy of the solution of the method presented in this paper.
The results of solving this example using Müntz orthogonal functions and comparing the results with other methods that have been
used the solve this example show the higher accuracy of the method proposed in this paper.

1. Introduction

To approximate the fractional Bagley–Torvik equation via
Müntz orthogonal functions, we have the following [1]:

AD2f tð Þ þ BD
3
2f tð Þ þ Cf tð Þ ¼ g tð Þ; ð1Þ

with the initial condition

f 0ð Þ ¼ f0; f 0 0ð Þ ¼ f 00; ð2Þ

or the boundary condition

f 0ð Þ ¼ f0; f 1ð Þ ¼ f1: ð3Þ

To solve the fractional Bagley–Torvik equation, several
numerical solutions and analytical solutions have been used.
Hybrid functions approximation [1] fractional-order Legendre
collocationmethod [2],Haar wavelet [3], Laplacetransform [4],
Laguerre polynomials [5], shifted Chebyshev operational
matrix [6], Legendre artificial neural network method [7], Che-
byshev collocation method [8], the fractional Taylor method
[9], exponential integrators [10], Gegenbauer wavelet method
[11], Müntz–Legendre polynomials [12], discrete spline meth-
ods [13], Hermit solution [14], local discontinuous Galerkin
approximations [15], numerical inverse Laplace transform
[16], generalized Fibonacci operational tau algorithm [17],
Jacobi collocation methods [18], polynomial least squares
method [19], and fast multiscale Galerkin algorithm [20] are
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methods by which Bagley–Torvik equation solved numerically.
In the study of Alshammari et al. [21], residual power series
are used to obtain the numerical solution of a class of
Bagley–Torvik problems in Newtonian fluid, and in the study
of Karaaslan et al. [22], using the discontinuous Galerkin
method that can be combined in the equation of motion of a
plate immersed in a Newtonian fluid, the numerical solution of
Bagley–Torvik equation has been discussed. Analytical solu-
tions of the generalized Bagley–Torvik equation [23], Sumudu
transformation method [24], generalized differential transform
[25], Sine–Gordon expansion method, and Bernoulli equation
method [26] are analytical solutions for solving the Bagley–
Torvik equation in this work.

Several numerical techniques have been proposed for solv-
ing fractional integrodifferential equations, such as Legendre
wavelet [27], Euler function [28], Chebyshev series [29], and
also methods such as stable least residue [30], discrete Galerkin
[31], homotopy perturbation [32], variational interaction [33],
Runge–Kutta convolution quadrature [34], and Hermite spec-
tral collocation [35].

Fractional derivatives can be used to solve classical pro-
blems in viscous fluid motion [36]. A fluid half-space is
considered, and the plate at the boundary is allowed to initi-
ate a general transverse motion. It will be shown that the
shear pressure at any point of the fluid can be expressed in
terms of the time derivative of the fractional order for the
fluid velocity characteristic. The equation of motion [36]

ρ
∂ν
∂t

¼ μ
∂2ν
∂z2

; ð4Þ

is a diffusion equation where ρ is the fluid concentration, μ is
the viscosity, ν is the transverse velocity of the fluid, t is the
time and z is the distance from the wet plate. By taking the
Laplace transform, the following ordinary differential equa-
tion is obtained

ρ sν s; zð Þ − ν 0; xð Þ½ � ¼ μ
d2ν s; zð Þ

dz2
; ð5Þ

where in

ν s; zð Þ ¼
Z 1

0
e−stν t; zð Þdt ¼ L ν t; zð Þ½ �; ð6Þ

and ν 0;ð zÞ is the characteristic of the initial velocity of the
fluid. If the initial velocity in the fluid is assumed to be zero
and the boundary conditions are applied, then the fluid
velocity at the wetted surface must match the plane velocity,
and the fluid velocity in the half-space must be bounded.
νp sð Þ is the speed conversion of the plate, and

ν s; zð Þ ¼ νp sð Þe ρs
μð Þ12z: ð7Þ

After obtaining the transformation of the fluid velocity
characteristic, σ s;ð zÞ, by writing the transformation of the

shear pressure relation of for a Newtonian fluid

σ t; zð Þ ¼ μ
∂ν t; zð Þ

∂z
; ð8Þ

and

σ s; zð Þ ¼ μ
∂ν s; zð Þ

∂z
; ð9Þ

the result for the pressure conversion in the speed conversion
condition of Equation (7) as

σ s; zð Þ ¼ ffiffiffiffiffi
μρ

p ffiffi
s

p
ν s; zð Þ; ð10Þ

it is expressed. This relation can be written again as a time
relation. So

σ s; zð Þ ¼ ffiffiffiffiffi
μρ

p 1ffiffi
s

p sν s; zð Þ; ð11Þ

and

σ s; zð Þ ¼ ffiffiffiffiffi
μρ

p
L

1

Γ 1
2

À Á
t
1
2

" #
L

∂ν
∂t

� �
: ð12Þ

Therefore, the pressure is equal to the convolution of two
functions of time, that is

σ t; zð Þ ¼
ffiffiffiffiffi
μρ

p
Γ 1

2

À Á Z t

0

∂
∂τ ν τ; zð Þ
t − τð Þ12 dτ: ð13Þ

Since ν 0;ð zÞ reached zero, it can be shown that Equation
(13) is equivalent to [36]

σ t; zð Þ ¼ ffiffiffiffiffi
μρ

p 1

Γ 1
2

À Á ∂
∂t

Z
t

0

ν τ; zð Þ
t − τð Þ12 dτ: ð14Þ

Equation (14) can be written as follows:

σ t; zð Þ ¼ ffiffiffiffiffi
μτ

p
D

1
2
tð Þ ν t; zð Þ½ �: ð15Þ

The index tð Þ indicates the fractional derivative with
respect to time. Equation (15) seems to be an unusual rela-
tionship between pressure and velocity, but using this
method provides significant satisfaction in pressure–velocity
relationships for Newtonian fluid. Equation (8) is a combi-
nation equation for a Newtonian fluid. Equation (15)
describes the relationship between pressure and velocity in
the fluid for any semi-infinite fluid domain and any allowed
velocity at the boundary. The priority of this problem is to
show the behavior of a real physical system using fractional
derivatives [36].
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This article is organized into six sections. In Section 1, the
introduction is presented. Section 2 is devoted to the prelim-
inary and practical definitions. In Section 3, Müntz orthogo-
nal functions and the best unique approximation for the
arbitrary function are introduced also the Riemann–Liouville
fractional integral operator for the Müntz orthogonal func-
tions is defined to shorten the process of solving the frac-
tional Bagley–Torvik. Section 4 is dedicated to the method of
numerical solution of the fractional Bagley–Torvik equation
with initial-boundary conditions using orthogonal functions
as well as the error bound of the presented method. In Sec-
tion 5, a numerical example is given to demonstrate the
efficiency and capability of the proposed method. Finally,
Section 6 is allocated to the general conclusion.

2. Preliminaries and Notations

2.1. Fractional Integral and Derivative

Definition 1. The Riemann–Liouville fractional integral oper-
ator of the order α with the assumption α 2 Rþ and Iα in
a;½ b� is defined as follows [37]:

Iαf tð Þ ¼
1

Γ αð Þ
Z

t

0

f sð Þ
t− sð Þ 1−α ds¼

1
Γ αð Þ t

α−1 × f tð Þ α>0;

f tð Þ α¼ 0;

ð16Þ

where tα−1 × f tð Þ is the convolution product of f tð Þ and tα−1.

Definition 2. The Caputo fractional derivative operator of
order α with the assumption α 2 Rþ and CDα is defined as
follows [37]:

CDαf tð Þ ¼ 1
Γ n − αð Þ

Z
t

0

f nð Þ sð Þ
t − sð Þαþ1−n ds;

n − 1<α ≤ n; n 2 N:
ð17Þ

As it is obvious for α 2 Rþ and n 2 N, the Caputo deriv-
ative and Riemann–Liouville integral satisfy the following
properties [37]:

1: Iα CDαf tð Þð Þ ¼ f tð Þ − ∑
n−1

k¼0
f k 0ð Þ t

k

k!
; ð18Þ

2: CDα f tð Þð Þ ¼ In−α CDnf tð Þ; n − 1<α ≤ n: ð19Þ

where λ1, λ2, and c are real constants.

Definition 3. The two-scale fractal derivatives with dimen-
sions α and β with respect to t and x, respectively, are defined
as follows [38]:

∂f
∂tα

t0;xð Þ¼Γ 1þαð Þ lim
t− t0À!Δt

Δt≠0

f t;xð Þ− f t0;xð Þ
t− t0ð Þα ;

ð20Þ

∂f
∂xβ

t;x0ð Þ¼Γ 1þβð Þ lim
x−x0À!Δx

Δx≠0

f t;xð Þ− f t;x0ð Þ
x−x0ð Þβ :

ð21Þ

Definition 4. The He’s fractional derivative defined as
(0<α ≤ 1) [39]

∂αf
∂tα

¼ 1
Γ n − αð Þ

dn

dtn

Z
t

t0

s − tð Þn−α−1 f0 sð Þ − f sð Þð Þds:

ð22Þ

Definition 5. Suppose that f 2 Hr 0;ð 1Þ with integers r ≥ 0
where [40]

Hr a; bð Þ ¼ v 2 Cr−1 a; b½ �ð Þ : d
dx

vr−1 2 L2 a; bð Þ
� �

;

ð23Þ

is the Sobolev space. Let a function f 2 H1 a;ð bÞ and v 2 0;ð 1Þ.
The Atangana–Baleanu–Caputo fractional derivative of order v
of u with a based point a is defined as follows [41, 42]:

ABC
a Dv

t f tð Þ ¼ B vð Þ
1 − v

Z
t

a
f 0 sð ÞEv −

v
1 − v

t − sð Þv
h i

ds;

ð24Þ

where B vð Þ is defined as

B vð Þ ¼ 1 − v þ v
Γ vð Þ0 ; ð25Þ

one parameter and two-parameter Mittag–Leffler functions
are defined as follows, respectively.

Eα zð Þ ¼ ∑
1

k¼0

zk

Γ αkþ 1ð Þ ; α>0; z 2 C: ð26Þ

Eα;β zð Þ ¼ ∑
1

k¼0

zk

Γ αkþ βð Þ ; α>0; β>0; z 2 C: ð27Þ

3. Müntz Orthogonal Functions and
Their Properties

3.1. Müntz Orthogonal Functions
Definition 6. The family Pn tð Þf g1n¼0 is Müntz orthogonal
functions and is defined as follows [43]:
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Pn tð Þ ¼ Rn tð Þ þ Sn tð Þ ln tð Þ; n ¼ 0; 1; 2;… ; t 2 0; 1½ �:
ð28Þ

Rn tð Þ and Sn tð Þ are algebraic polynomials of degree n=2½ �
and n − 1ð Þ=2½ �, respectively, which are as follows:

Rn tð Þ ¼ ∑
n
2½ �

v¼0
a nð Þ
v tv; Sn tð Þ ¼ ∑

n−1
2½ �

v¼0
b nð Þ
v tv: ð29Þ

If n ¼ 2m is an even number, then for each 0 ≤ v ≤m−

1, we have the following:

a 2mð Þ
v

¼−
mþ v
m

À Á
2 m

v

À Á
2 2mþ1

2vþ1
þ2 m− vð Þ ∑

m−1

j¼0;j≠v

2jþ1
j− vð Þ jþvþ1ð Þ

" #
;

ð30Þ

and

b 2mð Þ
v ¼ − m − vð Þ mþ v

m

À Á
2 m

v

À Á
2: ð31Þ

For v ¼m,

a 2mð Þ
m ¼ 2m

m

À Á
2; b 2mð Þ

m ¼ 0: ð32Þ

If n ¼ 2mþ 1 is an odd number, then for each 0 ≤ v ≤m,
we have the following:

a 2mþ1ð Þ
v

¼ mþ v
m

À Á
2 m

v

À Á
2 2mþ1

2vþ1
þ2 mþvþ1ð Þ ∑

m

j¼0;j≠v

2jþ1
j− vð Þ jþvþ1ð Þ

" #
;

ð33Þ

and

b 2mþ1ð Þ
v ¼ mþ v þ 1ð Þ mþ v

m

À Á
2 m

v

À Á
2: ð34Þ

Some Müntz orthogonal functions are shown as follows:

P0 tð Þ¼ 1;
P1 tð Þ¼ 1þ ln tð Þ;
P2 tð Þ¼−3þ4t− ln tð Þ;
P3 tð Þ¼ 9−8tþ2 1þ6tð Þ ln tð Þ;
P4 tð Þ¼−11−24tþ36t2−2 1þ18tð Þ ln tð Þ;
P5 tð Þ¼ 19þ276t−294t2þ3 1þ48tþ60t2ð Þ ln tð Þ;
P6 tð Þ¼−21−768tþ390t2þ400t3−3 1þ96tþ300t2ð Þ ln tð Þ:

ð35Þ

Table 1 shows the roots of Pn tð Þ for n ¼ 1; 2; 3; 4; 5.

Theorem 1. The Müntz orthogonal function Pn tð Þ for n ¼ 0;
1; 2;…, has exactly n simple and distinct real root in 0;½ 1�
[43].

3.2. Function Approximation Using Orthogonal Müntz Basis.
Let P0 tð Þ;f P1 tð Þ;…; PN tð Þg be a set of orthogonal Müntz
functions and

Y ¼ span P0 tð Þ; P1 tð Þ;…; PN tð Þf g: ð36Þ

If f is an arbitrary element of L2 0;ð 1Þ then f is the best
approximation out of Y such that INf 2 Y , that is

8y 2 Y : f − INfk k ≤ f − yk k; ð37Þ

where INf 2 Y , there exist unique coefficients c0; c1;…; cN
such that

f ≃ INf ¼ ∑
N

n¼0
cnPn tð Þ ¼ CTφ tð Þ; ð38Þ

where

CT ¼ c0; c1;…; cN½ �; ð39Þ

TABLE 1: Roots of Pn tð Þ.
n t1 t2 t3 t4 t5
1 0:3678794412 − − − −

2 0:06442096633 0:6374173264 − − −

3 0:01871588194 0:2651887508 0:7969679223 − −

4 0:007047297639 0:1154772486 0:4569410332 0:8683835323 −

5 0:003221796109 0:05672067679 0:2565492462 0:5974812127 0:9100748739
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and

φT ¼ P0 tð Þ;…; PN tð Þ½ �: ð40Þ

3.3. Fractional Riemann–Liouville Integral Operator for
Müntz Functions. The Riemann–Liouville fractional integral
Iα is defined in Equation (16) for orthogonal Müntz func-
tions as follows:

Iαφ tð Þ ¼ φ t; αð Þ; ð41Þ

where

φ t; αð Þ ¼ IαP0 tð Þ; IαP1 tð Þ;…; IαPN tð Þ½ �: ð42Þ

To obtain IαPn tð Þ by taking the Laplace transform from
Equation (28), we have the following:

L Pn tð Þð Þ¼L ∑
n
2½ �

v¼0
a nð Þ
v tvþ ∑

n−1
2½ �

v¼0
b nð Þ
v tv ln tð Þ

 !

¼ ∑
n
2½ �

v¼0
a nð Þ
v

Γ vþ1ð Þ
svþ1 þ ∑

n−1
2½ �

v¼0
b nð Þ
v

Γ vþ1ð Þ
svþ1 ∑

v

k¼1

1
k
− ln sð Þ

� �
:

ð43Þ

By using Equation (16), we get the following:

L IαPn tð Þð Þ¼ L
1

Γ αð Þ t
α−1×Pn tð Þ

� �

¼ ∑
n
2½ �

v¼0
a nð Þ
v

Γ vþ1ð Þ
sαþvþ1 þ ∑

n−1
2½ �

v¼0
b nð Þ
v

Γ vþ1ð Þ
sαþvþ1 ∑

v

k¼1

1
k
− ln sð Þ

� �
:

ð44Þ

Taking the inverse Laplace transform of Equation (44)
yields IαPn tð Þ

IαPn tð Þ¼ ∑
n
2½ �

v¼0
a nð Þ
v

Γ vþ1ð Þ
Γ vþαþ1ð Þ t

vþα

þ ∑
n−1
2½ �

v¼0
b nð Þ
v

Γ vþ1ð Þ
Γ vþαþ1ð Þ t

vþα ∑
v

k¼1

1
k
− ∑

vþα

l¼1

1
l
þ ln tð Þ

� �
:

ð45Þ

4. Numerical Method and Its Error Estimation

4.1. Müntz Collocation Method. In this section, it is explained
how the fractional Bagley–Torvik equation with initial con-
ditions and boundary conditions is solved using Müntz
orthogonal functions.

A) To solve Equation (1) with conditions given Equation
(2), the Riemann–Liouville integral is taken from
Equation (1)

I2 A CD2f tð Þ þ B CD
3
2f tð Þ þ Cf tð ÞÀ Á ¼ I2g tð Þ: ð46Þ

Using Equations (18) and (19), we have the following:

A f tð Þ− f 00t− f0ð ÞþB I
1
2 f tð Þ− f 00t− f0ð ÞÀ ÁþCI2f tð Þ¼ I2g tð Þ:

ð47Þ

According to Equation (38), the approximation solution
for f tð Þ is as follows:

f tð Þ ¼ CTφ tð Þ ¼ c0P0 tð Þ þ c1P1 tð Þ þ⋯þ cNPN tð Þ:
ð48Þ

According to Equation (41), we have the following:

I2f tð Þ ¼ CTφ t; 2ð Þ; I12f tð Þ ¼ CTφ t;
1
2

� �
: ð49Þ

By substituting Equations (48) and (49) in Equation (47),
the following equation is obtained

A CTφ tð Þ − f 00t − f0ð Þ þ B CTφ t;
1
2

� ��
−I

1
2 f 00t þ f0ð ÞÁþ CTφ t; 2ð Þ ¼ I2g tð Þ:

ð50Þ

Interpolating Equation (50) in points ti, i ¼ 0; 1;…;N
which are the roots of Müntz orthogonal functions
PNþ1 tð Þ, we have the following:

A CTφ tið Þ − f 00ti − f0ð Þ þ B CTφ ti;
1
2

� ��
−I

1
2 f 00ti þ f0ð ÞÁþ CTφ ti; 2ð Þ ¼ I2g tið Þ:

ð51Þ

These equations lead to getting N þ 1 algebraic equa-
tions, which can be solved for the unknown vector CT . The
results show that the value of f tð Þ in Equation (48) can be
approximated by using Müntz orthogonal functions.

B) To solve Equation (1) with conditions given Equation
(3), we suppose

CD2f tð Þ¼CTφ tð Þ¼ c0P0 tð Þþ c1P1 tð Þþ⋯þ cNPN tð Þ:
ð52Þ

Using Equations (18) and (41), we have the following:

f tð Þ ¼ CTφ t; 2ð Þ þ f 00t þ f0: ð53Þ

Due to Equations (19) and (41), we also have the following:

CD
3
2f tð Þ ¼ CTφ t;

1
2

� �
: ð54Þ
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By substituting Equations (52)–(54) in Equation (1), the
following equation is obtained

ACTφ tð ÞþBCTφ t;
1
2

� �
þC CTφ t;2ð Þþ f 00tþ f0ð Þ¼ g tð Þ:

ð55Þ

Let t ¼ 1 in Equation (53) and with conditions given
Equation (3), we have the following:

f 1ð Þ ¼ CTφ 1; 2ð Þ þ f 00 þ f0 ¼ f1: ð56Þ

Now by interpolating Equation (55) in points ti, i ¼ 0; 1;
…;N which are the roots of Müntz orthogonal functions
PNþ1 tð Þ and considering Equation (56) that leads to gener-
ating N þ 2 equations and N þ 2 unknown coefficients
which can be used to get the unknown vector CT and f 00.

Remark 1. One of the problems of this method is to find the
roots of Müntz orthogonal functions for large n. With the
help of maple software, We calculated the for n ≤ 60 up to 50
meaningful digits and there was numerical stability.

4.2. Error Estimation. First consider the following lemma
that will be used in deriving our main convergence results.

Lemma 1. Let INf ¼∑N
n¼0cnPn tð Þ be the best approximation

of f in Y. Then, if r ≤ N þ 1 we have the following:

f − INfk k L2 0;1ð Þ ≤ c N þ 1ð Þ−r f rð Þ 
L2 0;1ð Þ; ð57Þ

and for 1 ≤ μ ≤ r we have the following:

f − INfk k Hμ 0;1ð Þ ≤ c N þ 1ð Þ2μ−1
2−r f rð Þ 

L2 0;1ð Þ; ð58Þ

where c is a constant depending only on r.

Proof. Suppose that LNf be the truncated Legendre series of
the function f , then according to Equation (5:4:11) in the
study of Canuto et al. [44] for r ≤ N þ 1 we have the follow-
ing:

f − LNfk k 2
L2 0;1ð Þ ≤ c N þ 1ð Þ−2r f rð Þ  2

L2 0;1ð Þ: ð59Þ

AS INf is the best approximation of f in L2 − norm, we
can write

f − INfk k2
L2 0;1ð Þ ¼ f −LNfk k2

L2 0;1ð Þ≤c Nþ1ð Þ−2r f rð Þ 2
L2 0;1ð Þ;

ð60Þ

and Equation (57) is proved. Equation (58) is proved using
Equation (5:5:11) in the study of Canuto et al. [44] in a
similar manner. □

Theorem 2. If f 2 Hr 0;ð 1Þ and r ≥ 0 then the error bound EN
for Equation (1) with the conditions given in Equation (2) is
as following:

ENk kL2 0;1ð Þ≤ c Nþ1ð Þ−r f rð Þ 
L2 0;1ð Þ

� �
Aþ B

Γ 3
2

À Áþ C
Γ 3ð Þ

 !
:

ð61Þ

Proof. According to Equation (47), we have the following:

ENk k L2 0;1½ � ¼ A INf tð Þ − f
0
0 t − f0

À Áþ B I
1
2 INf tð Þ − f

0
0 t − f0

À ÁÀ Áþ CI2INf tð Þ − I2g tð Þ 
L2 0;1ð Þ

¼ Ak INf tð Þ − f
0
0 t − f0

À Áþ B I
1
2 INf tð Þ − f

0
0 t − f0

À ÁÀ Áþ CI2INf tð Þ
− A f tð Þ − f

0
0 t − f0

À Á
− B I

1
2 f tð Þ − f

0
0 t − f0

À ÁÀ Á
− CI2f tð Þ L2 0;1ð Þ

≤ A INf tð Þ − f tð Þk k L2 0;1ð Þ þ B I
1
2INf tð Þ − I

1
2f tð Þ 

L2 0;1ð Þ þ C I2INf tð Þ − I2f tð Þk k L2 0;1ð Þ:

ð62Þ

From Equation (16) and Equation (57), we have the fol-
lowing:

I
1
2f tð Þ− I

1
2INf tð Þ 

L2 0;1ð Þ ¼
1

Γ 1
2

À Á t−1
2× INf tð Þ− f tð Þð Þ


L2 0;1ð Þ

≤
1

Γ 3
2

À Á INf tð Þ− f tð Þk kL2 0;1ð Þ

≤
1

Γ 3
2

À Ác Nþ1ð Þ−r f rð Þ 
L2 0;1ð Þ:

ð63Þ

Similarly

I2f tð Þ− I2INf tð Þk kL2 0;1ð Þ ¼
1

Γ 2ð Þ t× INf tð Þ− f tð Þð Þ


L2 0;1ð Þ

≤
1

Γ 3ð Þ INf tð Þ− f tð Þk kL2 0;1ð Þ

≤
1

Γ 3ð Þc Nþ1ð Þ−r f rð Þ 
L2 0;1ð Þ:

ð64Þ
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Then Equation (61) is obtained based on Equations (57)
and (62)–(64). □

Theorem 3. If f 2 Hr 0;ð 1Þ and r ≥ 0, the error bound EN for
Equation (1) with the conditions in Equation (3) is as follows:

EN

 
L2 0;1ð Þ ≤ c N þ 1ð Þ2μ−1

2−r f rð Þ 
L2 0;1ð Þ

� �
Aþ B

Γ 3
2

À Á
 !

þCc N þ 1ð Þ−r f rð Þ 
L2 0;1ð Þ:

ð65Þ

Proof. According to Equation (1), we have the following:

EN

 
L2 0;1ð Þ ¼ A CD2INf tð Þ þ B CD

3
2INf tð Þ þ CINf tð Þ − g tð Þ 

L2 0;1ð Þ
¼ A CD2INf tð Þ þ B CD

3
2INf tð Þ þ CINf tð Þ − A CD2f tð Þ − B CD

3
2f tð Þ − Cf tð Þ 

L2 0;1ð Þ
¼ A CD2INf tð Þ − CD2f tð Þð Þ þ B CD

3
2INf tð Þ − CD

3
2f tð ÞÀ Áþ C INf tð Þ − f tð Þð Þ 

L2 0;1ð Þ
≤ A CD2INf tð Þ − CD2f tð Þk k L2 0;1ð Þ þ B CD

3
2INf tð Þ − CD

3
2f tð Þ 

L2 0;1ð Þ þ C INf tð Þ − f tð Þk k L2 0;1ð Þ:

ð66Þ

Using Equations (16), (19), and (58), we have the follow-
ing:

CD
3
2INf tð Þ − CD

3
2f tð Þ 

L2 0;1ð Þ
¼ I

1
2 CD2INf tð Þ − I

1
2 CD2f tð Þ 

L2 0;1ð Þ

¼ 1

Γ 1
2

À Á t−1
2 × CD2INf tð Þ − CD2f tð Þð Þ


 L2 0;1ð Þ

≤
1

Γ 3
2

À Á CD2INf tð Þ − CD2f tð Þk k L2 0;1ð Þ

≤
1

Γ 3
2

À Á INf tð Þ − f tð Þk k Hμ 0;1ð Þ

≤
1

Γ 3
2

À Á c N þ 1ð Þ 2μ−1
2−r f rð Þ 

L2 0;1ð Þ:

ð67Þ

Also

CD2INf tð Þ− CD2f tð Þk kL2 0;1ð Þ ≤ INf tð Þ− f tð Þk kHμ 0;1ð Þ
≤ c Nþ1ð Þ 2μ−1

2−r f rð Þ 
L2 0;1ð Þ:

ð68Þ

Then Equation (65) is obtained based on Equations (57)
and (66)–(68). □

5. Numerical Example

In this section, a numerical example for solving the fractional
Bagley–Torvik equation with initial-boundary conditions is
given to show the efficiency and applicability of the numeri-
cal method in this paper.

Example 1. Consider following properties [1, 6]:

g tð Þ ¼ 8 0 ⩽ t<1;

0 t>1:

(
ð69Þ

f tð Þ ¼ 8 yU tð Þ − yU t − 1ð Þð Þ; ð70Þ

if

g tð Þ ¼ 8 U tð Þ − U t − 1ð Þð Þ; ð71Þ

where

yU tð Þ ¼ U tð Þ 1
A

∑
1

r¼0

−1ð Þr
r!

C
A

� �
r
t2 rþ1ð ÞE rð Þ

1
2;
3r
2þ3

−B
A

t
1
2

� �� �
:

ð72Þ

In the two-parameter Mittag-Leffler function with λ;
μ>0 indices, is equal to

E rð Þ
λ;μ yð Þ ≡ dr

dyr
Eλ;μ yð Þ ¼ ∑

1

j¼0

jþ rð Þ!yj
j!Γ λjþ λr þ μð Þ ; r ¼ 0; 1; 2;… :

ð73Þ

f 0ð Þ ¼ f0 ¼ 0; f 0 0ð Þ ¼ f 00 ¼ 0; f 1ð Þ ¼ f1 ¼ 2:952583880:

ð74Þ

By solving this example with the initial conditions and
coefficientsA ¼ 1, B ¼ 1=2, andC ¼ 1=2 are considered, then
the approximate values of the function f tð Þ are obtained.
These approximate values in Table 2 are compared with the
approximate values in the study of Mashayekhi and Razzaghi
[1], which was obtained by using combined functions, and in
the study of Ji et al. [6], which was obtained by using the
shifted Chebyshev operational matrix. In Figure 1, the loga-
rithmic values of the absolute errors for different values of N
are depicted, which shows the exponential convergence.

Table 3 shows the results of the comparison of the
method presented in this paper with the method in the study
of Uddin and Ahmad [4], which is used to solve the frac-
tional Bagley–Torvik equation using the Laplace transform.
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C1, C2, and C3 are three different paths for optimal parame-
ters [4].

If the coefficients A ¼B ¼C ¼ 1 are considered, the
values of logarithmic values of absolute errors are shown in
Figure 2. In Table 4, the absolute errors of the function f tð Þ
for A ¼B ¼C ¼ 1 using the method presented in this paper

are compared with the method in the study of Mashayekhi
and Razzaghi [1].

Table 5 shows the results of the comparison of the
method presented in this paper with the method in the study
of Zolfaghari et al. [45], which is used to solve the fractional
Bagley–Torvik equation using the homotopy perturbation
method.

Moreover, by solving this example with the boundary
conditions and coefficients A ¼ 1, B ¼ 1=2, and C ¼ 1=2 are

TABLE 2: Approximate values of f tð Þ for A ¼ 1, B ¼ 1=2 and C ¼ 1=2 and N ¼ 16.

t
Method [1] Method [6] Present method

Exact
M ¼ð 3;N ¼ 8Þ N ¼ð 16Þ N ¼ð 16Þ

0:1 0:0364875 0:036487532 0:03648747992 0:03648747990
0:2 0:1406398 0:140639669 0:14063962121 0:14063962117
0:3 0:3074848 0:3074844733 0:30748462710 0:30748462713
0:4 0:5332842 0:533283636 0:53328410990 0:53328410988
0:5 0:8147568 0:814758247 0:81475694936 0:81475694938
0:6 1:1488372 1:148848315 1:14883742229 1:14883742227
0:7 1:5325655 1:532537770 1:53256542649 1:53256542650
0:8 1:9630293 1:963013767 1:96302925484 1:96302925484
0:9 2:4373338 2:437896842 2:43733397083 2:43733397084
1:0 2:9525839 − 2:95258387995 2:95258388004

–18

10 20 30
N

40 50

–16

–14

–12Er
ro
r

–10

–8

–6

FIGURE 1: Logarithmic values of absolute errors for A ¼ 1, B ¼ 1=2
and C ¼ 1=2.

TABLE 3: Absolute errors of f tð Þ for A ¼ 1, B ¼ 1=2, and C ¼ 1=2.

N
Method [4] Method [4] Method [4]

Present method
C1ð Þ C2ð Þ C3ð Þ

10 7:7161e− 3 4:9000e− 8 1:0000e− 9 9:6216e− 11
20 1:0552e− 5 1:0000e− 9 1:0000e− 9 2:0024e− 14
23 9:8800e− 7 1:0000e− 9 1:0000e− 9 3:1158e− 14
50 1:0000e− 9 1:0000e− 9 1:0000e− 9 3:2920e− 19
60 1:0000e− 9 1:0000e− 9 2:9000e− 8 2:9127e− 19
90 1:0000e− 9 2:0000e− 9 1:1000e− 1 2:2831e− 24
100 1:0000e− 9 1:3700e− 7 9:5387e− 0 1:3631e− 24

TABLE 4: Absolute errors of f tð Þ for A ¼B ¼C ¼ 1.

t
Method [1] Present method
M ¼ð 4;N ¼ 8Þ N ¼ð 14Þ

0:5 2:4e− 9 1:2e− 10
1 8:4e− 9 1:0e− 9
2 6:3e− 8 2:3e− 9
5 2:8e− 4 1:2e− 6

10 20 30
N

40 50

–16

–14

–12

Er
ro
r –10

–8

–6

–4

FIGURE 2: Logarithmic values of absolute errors for A ¼B ¼C ¼ 1.
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considered, then the approximate values of the function f tð Þ
are obtained. In Table 6, approximate values are compared
with exact values.

If the coefficients A ¼B ¼C ¼ 1 are considered, in
Table 7, the approximate values of function f tð Þ for N ¼ 10,
N ¼ 30, and N ¼ 60, are compared with its exact values. As
we can see, increasing the valueN leads to a low absolute error
and high accuracy of themethod, which proves the stability of
the proposed method.

6. Conclusions

In this paper, we utilize Müntz orthogonal functions to pro-
vide the approximate solution of the fractional Bagley–Torvik
equation subjected to initial-boundary conditions. First, the
functional equations are introduced, which help to solve the
problem effectively. Then the fractional integral operator is
defined as Müntz orthogonal functions that shorten the solu-
tion of the Bagley–Torvik fractional equation in a system of

TABLE 5: Approximate values of f tð Þ for A ¼B ¼C ¼ 1 and N ¼ 10.

t Method [45]
Present method

Exact
N ¼ 10

0 0:0000 0:000000000 0:000000000
0:1 0:0335 0:033507355 0:033507310
0:2 0:1252 0:125221248 0:125221280
0:3 0:2677 0:267609447 0:267609420
0:4 0:4555 0:455435396 0:455435398
0:5 0:6843 0:684334730 0:684334753
0:6 0:9501 0:950392575 0:950392563
0:7 1:2494 1:249959149 1:249959133
0:8 1:5788 1:579557186 1:579557209
0:9 1:9351 1:935832303 1:965832293
1 2:3149 2:315525744 2:315525823

TABLE 6: Approximate values of f tð Þ for A ¼ 1, B ¼ 1=2 and C ¼ 1=2 and different values of N.

t N ¼ 10 N ¼ 30 N ¼ 60 Exact

0:1 0:036487404375 0:036487479864 0:0364874799011 0:0364874799009
0:2 0:140639724816 0:140639621157 0:1406396211738 0:1406396211740
0:3 0:307484496274 0:307484627118 0:3074846271334 0:3074846271337
0:4 0:533284101747 0:533284109806 0:5332841098751 0:5332841098756
0:5 0:814757087316 0:814756949317 0:8147569493835 0:8147569493833
0:6 1:148837366742 1:148837422295 1:1488374222698 1:1488374222703
0:7 1:532565319887 1:532565426547 1:5325654264985 1:5325654264982
0:8 1:963029329581 1:963029254846 1:9630292548366 1:9630292548369
0:9 2:437333969513 2:437333970854 2:4373339708438 2:4373339708440
1:0 2:952583880039 2:952583880039 2:9525838800390 2:9525838800390

TABLE 7: Approximate values of f tð Þ for A ¼B ¼C ¼ 1 and different values of N.

t N ¼ 10 N ¼ 30 N ¼ 60 Exact

0:1 0:033507162346 0:0335073099353 0:0335073100169 0:0335073100166
0:2 0:125221479995 0:1252212803110 0:1252212803466 0:1252212803471
0:3 0:267609140575 0:2676094195004 0:2676094195331 0:2676094195339
0:4 0:455435400934 0:4554353974487 0:4554353975927 0:4554353975939
0:5 0:684335033706 0:6843347530036 0:6843347531505 0:6843347531500
0:6 0:950392421075 0:9503925632445 0:9503925632016 0:9503925632028
0:7 1:249958912764 1:2499591326644 1:2499591325649 1:2499591325644
0:8 1:579557379566 1:5795572087353 1:5795572087127 1:5795572087133
0:9 1:935832277274 1:9358322930399 1:9358322930172 1:9358322930176
1:0 2:315525822793 2:3155258227926 2:3155258227926 2:3155258227926
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algebraic equations. The roots of Müntz orthogonal functions
on the interval 0;½ 1� are simple and distinct considered collo-
cation points. Furthermore, solving these algebraic equations
help us to approximate the desired function using Müntz
orthogonal functions. In the end, several numerical examples
with initial-boundary conditions are solved with this method.
The results obtained by the present method are computation-
ally more accurate compared with the existing methods for
solving the fractional Bagley–Torvik equation.

Data Availability

No data were used for the research described in the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] S. Mashayekhi and M. Razzaghi, “Numerical solution of the
fractional Bagley–Torvik equation by using hybrid functions
approximation,”MathematicalMethods in the Applied Sciences,
vol. 39, no. 3, pp. 353–365, 2016.

[2] F. Mohammadi and S. T. Mohyud-Din, “A fractional-order
Legendre collocation method for solving the Bagley–Torvik
equations,” Advances in Difference Equations, vol. 2016,
Article ID 269, 2016.

[3] A. B. Deshi and G. A. Gudodagi, “Numerical solution of
Bagley–Torvik, nonlinear and higher order fractional differen-
tial equations using Haar wavelet,” SeMA Journal, vol. 79,
pp. 663–675, 2022.

[4] M. Uddin and S. Ahmad, “On the numerical solution of
Bagley–Torvik equation via the Laplace transform,” Tbilisi
Mathematical Journal, vol. 10, no. 1, pp. 279–284, 2017.

[5] T. Ji and J. Hou, “Numerical solution of the Bagley–Torvik
equation using Laguerre polynomials,” SeMA Journal, vol. 77,
pp. 97–106, 2020.

[6] T. Ji, J. Hou, and C. Yang, “Numerical solution of the
Bagley–Torvik equation using shifted Chebyshev operational
matrix,” Advances in Difference Equations, vol. 2020, Article ID
648, 2020.

[7] A. Verma andM. Kumar, “Numerical solution of Bagley–Torvik
equations using Legendre artificial neural network method,”
Evolutionary Intelligence, vol. 14, pp. 2027–2037, 2021.

[8] V. Saw and S. Kumar, “Numerical solution of fraction
Bagley–Torvik boundary value problem based on chebyshev
collocation method,” International Journal of Applied and
Computational Mathematics, vol. 5, Article ID 68, 2019.

[9] V. S. Krishnasamy and M. Razzaghi, “The numerical solution
of the Bagley–Torvik equation with fractional Taylor method,”
Journal of Computational and Nonlinear Dynamics, vol. 11,
no. 5, Article ID 051010, 2016.

[10] S. Esmaeili, “The numerical solution of the Bagley–Torvik
equation by exponential integrators,” Scientia Iranica, vol. 24,
no. 6, pp. 2941–2951, 2017.

[11] H. M. Srivastava, F. A. Shah, and R. Abass, “An application of
the Gegenbauer wavelet method for the numerical solution of
the fractional Bagley–Torvik equation,” Russian Journal of
Mathematical Physics, vol. 26, pp. 77–93, 2019.

[12] P. Rahimkhani and Y. Ordokhani, “Application of Müntz–
Legendre polynomials for solving the Bagley–Torvik equation
in a large interval,” SeMA Journal, vol. 75, pp. 517–533, 2018.

[13] W. K. Zahra and M. Van Daele, “Discrete spline methods for
solving two point fractional Bagley–Torvik equation,” Applied
Mathematics and Computation, vol. 296, pp. 42–56, 2017.

[14] T. Zubair, M. Sajjad, R. Madni, and A. Shabir, “Hermite solution
of Bagley–Torvik equation of fractional order,” International
Journal of Modern Nonlinear Theory and Application, vol. 6,
no. 3, pp. 104–118, 2017.

[15] M. Izadi and M. R. Negar, “Local discontinuous Galerkin
approximations to fractional Bagley–Torvik equation,”Mathe-
matical Methods in the Applied Sciences, vol. 43, no. 7,
pp. 4798–4813, 2020.

[16] K. Nouri, S. Elahi-Mehr, and L. Torkzadeh, “Investigation of
the behavior of the fractional Bagley–Torvik and Basset
equations via numerical inverse Laplace transform,” Roma-
nian Reports in Physics, vol. 68, no. 2, pp. 503–514, 2016.

[17] A. G. Atta, G. M. Moatimid, and Y. H. Youssri, “Generalized
Fibonacci operational tau algorithm for fractional Bagley–Torvik
equation,” Progress in Fractional Differentiation and Applica-
tions, vol. 6, no. 3, pp. 215–224, 2020.

[18] J. Hou, C. Yang, andX. Lv, “Jacobi collocationmethods for solving
the fractional Bagley–Torvik equation,” IAENG International
Journal of AppliedMathematics, vol. 50, no. 1, pp. 114–120, 2020.

[19] M. S. Pasca, M. Razzaghi, and M. Lapadat, “Approximate
solutions for the Bagley–Torvik fractional equation with
boundary conditions using the polynomial least Squares
method,” in ITM Web of Conferences, vol. 29, Article ID
01011, EDP Sciences, 2019.

[20] J. Chen, “A fast multiscale Galerkin algorithm for solving
boundary value problem of the fractional Bagley–Torvik
equation,” Boundary Value Problems, vol. 2020, Article ID 91,
2020.

[21] S. Alshammari, M. Al-Smadi, I. Hashim, and M. A. Alias,
“Residual power series technique for simulating fractional
Bagley–Torvik problems emerging in applied physics,”
Applied Sciences, vol. 9, no. 23, Article ID 5029, 2019.

[22] M. F. Karaaslan, F. Celiker, and M. Kurulay, “Approximate
solution of the Bagley–Torvik equation by hybridizable
discontinuous Galerkin methods,” Applied Mathematics and
Computation, vol. 285, pp. 51–58, 2016.

[23] D. Pang, W. Jiang, J. Du, and A. U. K. Niazi, “Analytical
solution of the generalized Bagley–Torvik equation,” Advances
in Difference Equations, vol. 2019, Article ID 207, 2019.

[24] R. M. Jena and S. Chakraverty, “Analytical solution of
Bagley–Torvik equations using Sumudu transformation method,”
SN Applied Sciences, vol. 1, Article ID 246, 2019.

[25] M. K. Bansal and R. Jain, “Analytical solution of Bagley Torvik
equation by generalize differential transform,” International
Journal of Pure and Apllied Mathematics, vol. 110, no. 2,
pp. 265–273, 2016.

[26] Z. Pinar, “On the explicit solutions of fractional Bagley–Torvik
equation arises in engineering,” An International Journal of
Optimization and Control: Theories & Applications (IJOCTA),
vol. 9, no. 3, pp. 52–58, 2019.

[27] M. Yi, L. Wang, and J. Huang, “Legendre wavelets method for the
numerical solution of fractional integro-differential equations with
weakly singular kernel,” Applied Mathematical Modelling, vol. 40,
no. 4, pp. 3422–3437, 2016.

[28] Y. Wang, L. Zhu, and Z. Wang, “Fractional-order Euler
functions for solving fractional integro-differential equations

10 Advances in Mathematical Physics



with weakly singular kernel,” Advances in Difference Equations,
vol. 2018, Article ID 254, 2018.

[29] K. K. Ali, M. A. Abd El Salam, E. M. H. Mohamed, B. Samet,
S. Kumar, andM. S. Osman, “Numerical solution for generalized
nonlinear fractional integro-differential equations with linear
functional arguments using Chebyshev series,” Advances in
Difference Equations, vol. 2020, Article ID 494, 2020.

[30] H. Du, Z. Chen, and T. Yang, “A stable least residue method in
reproducing kernel space for solving a nonlinear fractional
integro-differential equation with a weakly singular kernel,”
Applied Numerical Mathematics, vol. 157, pp. 210–222, 2020.

[31] P. Mokhtary, “Discrete galerkin method for fractional integro-
differential equations,” Acta Mathematica Scientia, vol. 36,
no. 2, pp. 560–578, 2016.

[32] S. Abbasbandy,M. S. Hashemi, and I. Hashim, “On convergence
of homotopy analysis method and its application to fractional
integro-differential equations,” Quaestiones Mathematicae,
vol. 36, no. 1, pp. 93–105, 2013.

[33] M. Kurulay and A. Secer, “Variational iteration method for
solving nonlinear fractional integro-differential equations,”
International Journal of Computer Science and Emerging
Technologies, vol. 2, pp. 18–20, 2011.

[34] G. Zhang and R. Zhu, “Runge–Kutta convolution quadrature
methods with convergence and stability analysis for nonlinear
singular fractional integro-differential equations,” Commu-
nications in Nonlinear Science and Numerical Simulation,
vol. 84, Article ID 105132, 2020.

[35] Y. A. Amer, A. M. S. Mahdy, and E. S. M. Youssef, “Solving
fractional integro-differential equations by using sumudu
transform method and Hermite spectral collocation method,”
Computers, Materials& Continua, vol. 54, no. 2, pp. 161–180,
2018.

[36] P. J. Torvik and R. L. Bagley, “On the appearance of the
fractional derivative in the behavior of real materials,” Journal
of Applied Mechanics, vol. 51, no. 2, pp. 294–298, 1984.

[37] A. Saadatmandi and S. Akhlaghi, “Using hybrid of Block-Pulse
functions and Bernoulli polynomials to solve fractional Fredholm-
Volterra integro-differential equations,” SainsMalaysiana, vol. 49,
no. 4, pp. 953–962, 2020.

[38] J.-H. He and Y. O. El-Dib, “A tutorial introduction to the two-
scale fractal calculus and its application to the fractal zhiber–shabat
oscillator,” Fractals, vol. 29, no. 8, Article ID 2150268, 2021.

[39] K.-L. Wang and S.-W. Yao, “Numerical method for fractional
Zakharov–Kuznetsov equations with he’s fractional deriva-
tive,” Thermal Science, vol. 23, no. 4, pp. 2163–2170, 2019.

[40] M. Bahmanpour, M. T. Kajani, and M. Maleki, “Solving
Fredholm integral equations of the first kind using Müntz
wavelets,” Applied Numerical Mathematics, vol. 143, pp. 159–
171, 2019.

[41] M. A. Dokuyucu, “Caputo and Atangana–Baleanu–Caputo
fractional derivative applied to garden equation,” Turkish
Journal of Science, vol. 5, no. 1, pp. 1–7, 2020.

[42] A. A.Kilbas, A. A.Koroleva, and S. V. Rogosin, “Multi-parametric
mittag-leffler functions and their extension,” Fractional Calculus
and Applied Analysis, vol. 16, pp. 378–404, 2013.

[43] G. V. Milovanović, “Müntz orthogonal polynomials and their
numerical evaluation,” in Applications and Computation of
Orthogonal Polynomials, pp. 179–194, Birkhäuser, Basel, 1999.

[44] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,
Spectral methods: fundamentals in single domains, Springer
Science & Business Media, 2007.

[45] M. Zolfaghari, R. Ghaderi, A. SheikholEslami et al., “Applica-
tion of the enhanced homotopy perturbation method to solve
the fractional-order Bagley–Torvik differential equation,”
Physica Scripta, vol. 2009, no. T136, Article ID 014032, 2009.

Advances in Mathematical Physics 11




