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In this paper, the localized properties of lump and interaction solutions to a new extended Jimbo-Miwa (EJM) equation are
studied. Based on the Hirota bilinear method and the test function method, the exact solutions of the EJM equation are
discussed; the lump soliton solution, lump-kink soliton solution, and periodic lump solution are obtained. Furthermore, the
dynamic properties of the obtained solutions are also discussed by graphical simulation. As far as we know, the obtained
results have not been reported.

1. Introduction

The research of exact solutions plays an important role in
nonlinear evolution equations (NLEEs). There are many
kinds of exact solutions, such as soliton, multisoliton, ratio-
nal, periodic, breather line, breather kinky, and lump and
rogue wave solutions. A lot of work has been done by
scholars [1–5]. Particularly, studying the lump solutions of
nonlinear evolution equations becomes a hot topic in the
mathematical physics field [6, 7]. It is well known that lump
solutions are also a kind of rational solutions and have some
good characters. The lump-like solutions, such as lump-kink
solutions, rogue wave solutions, and periodic lump solu-
tions, possess many physical phenomena, which have been
studied by many researchers [8–11]. Kaur and Wazwaz
analyzed a new form of (3 + 1) dimensional generalized
KP-Boussinesq equation for exploring lump solutions apply-
ing Hirota’s bilinear form [12]. Tang et al. studied the inter-
action of a lump with a stripe of (2 + 1)-dimensional Ito
equation and showed that the lump is drowned or swallowed
by a stripe soliton [13]. In [14], the higher-order rogue wave
solutions of a new integrable (2 + 1)-dimensional Boussinesq
equation were derived utilizing a generalized polynomial test
function. Using an extended homoclinic approach, new
exact solutions including kinky periodic solitary wave solu-
tions and line breathers periodic of the (3 + 1)-dimensional

generalized BKP equation were also obtained [15]. In math-
ematical physics, the interaction of rogue wave with other
solitons or periodic waves is a remarkable task in nonlinear
sciences. Recently, kinky-lump, kinky-rogue, periodic-lump
wave, periodic-rogue wave, and kinky-periodic rogue wave
for the NLEEs and their nonlinear dynamics become a sub-
ject of interest [16–18].

The well-known (3 + 1)-dimensional Jimbo-Miwa (JM)
equation

uxxxy + 3uxuxy + 3uyuxx + 2uyt − 3uxz = 0 ð1Þ

can be applied to demonstrate some interesting phenomena
in nonlinear physics whose exact solutions are discussed by
many authors [14, 19–22].

In [23], Wazwaz proposed the following two extended
(3 + 1)-dimensional Jimbo-Miwa equation (EJM):

uxxxy + 3uxuxy + 3uyuxx + 2uyt − 3 uxz + uyz + uzz
� �

= 0, ð2Þ

uxxxy + 3uxuxy + 3uyuxx + 2 uxt + uyt + uzt
� �

− 3uxz = 0:
ð3Þ

These two forms are the generalization of equation (1).
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Lump solutions and the dynamics of these two extended
Jimbo-Miwa equations via bilinear forms and the lump-kink
solution are also obtained [24]. The dynamics of the
obtained lump solutions, including the amplitude and the
locations of the lump, are also analyzed. Recently, many
researchers pay more attention to the Jimbo-Miwa equation.
In [25], Kaur and Wazwaz construct bilinear forms of equa-
tions (2) and (3) using truncated Painlev expansions along
with the Bell polynomial approach. In [26], kink soliton,
breather, and lump and line rogue wave solutions of
extended (3 + 1)-dimensional Jimbo-Miwa equation are
obtained by the Hirota bilinear method, whose mixed cases
are discussed. The authors of [26] also analyze their dynamic
behavior and vividly demonstrate their evolution process. In
[27], applying the Hirota bilinear method and KP hierarchy
reduction, the rational solution of the (3 + 1)-dimensional
generalized shallow water wave equation is presented in
the Grammian form. The lump soliton solutions are derived
from the corresponding rational solutions. In [28], an
extended (3 + 1)-dimensional Jimbo-Miwa equation with
time-dependent coefficients is investigated. One, two, and
three soliton solutions are obtained via the Hirota method.
The periodic wave solutions are constructed via the Rie-
mann theta function. The authors of [28] show that the
interaction between the solitons is elastic, and the time-
dependent coefficients can affect the soliton velocities, while
the soliton amplitudes remain unchanged. Yin et al.
substituted test functions into the bilinear equations to
obtain the lump solutions, lump-kink solutions, and interac-
tion solutions in [29].

Yan et al. [30] study the dynamics of lump solutions, lump-
kink solutions, and periodic lump solutions in a (3 + 1)-dimen-
sional generalized Jimbo-Miwa equation given by

α uxxxy + 3uyuxx + 3uxyux
� �

+ 2uyt + β uxz + uyz + uzz
� �

= 0:
ð4Þ

In [31], Cheng et al. discuss a new extended Jimbo-Miwa
equation in the development process of nonlinear physical
phenomena,

uxxxy + χ uxuy
� �

x
+ ρ1uxy + ρ2uxz + ρ3uyt + ρ4uyy = 0, ð5Þ

where χ is a nonzero constant and ρi, 1 ≤ i ≤ 4, are real con-
stants, and ρ2ρ3 ≠ 0. When χ = 3, ρ2 = −3, ρ3 = 2, ρ1, and ρ4
are zero, equation (5) is reduced to the Jimbo-Miwa equation
(1). Taking χ = −3:ρ2 = −3, ρ3 = −1, ρ1 = ρ4 = 0, equation (5)
becomes the (3 + 1)-dimensional generalized BKP equation
introduced in [19].

uty − uxxxy + 3 uxuy
� �

x
+ 3uxz = 0: ð6Þ

In [31], the two-wave and complexiton solutions of (5) are
developed through symbolic computations with Maple. There
is relatively little research on the exact solution of this equation.
Our purpose is to seek new lump and lump-like solutions of (5).

2. Bilinear Representation

By transformation

u = 6
χ

ln fð Þx, ð7Þ

equation (5) owns a Hirota bilinear formulation

D3
x + ρ1DxDy + ρ2DxDz + ρ3DyDt + ρ4D

2
y

� �
f · f = 0, ð8Þ

where f = f ðx, y, z, tÞ is a real function and Dx,Dy,Dz and Dt

are Hirota’s differential operators [32]. The above bilinear
equation is equivalent to the following form:

ρ1 f xy + ρ2 f xz + ρ3 f yt + ρ4 f yy + f xxxy
� �

f − ρ1 f y f x − ρ2 f x f z

− ρ3 f y f t − ρ4 f
2
y − 3f xxy f x + 3f xx f xy − f xxx f y = 0:

ð9Þ

3. Lump Soliton Solution

In order to seek the lump soliton solutions of equation (5),
we let f be

f = g2 + h2 + a5, ð10Þ

where g and h are, respectively, expressed by

g = a0 + a1x + a2y + a3z + a4t, ð11Þ

h = b0 + b1x + b2y + b3z + b4t, ð12Þ

where ai, ði = 0⋯ 5Þ, bj, ðj = 0⋯ 4Þ are real constants to be
determined. Substituting (10)–(12) into equation (9), by
means of the symbolic computation methods [24, 26–29],
one can obtain several groups of constraint conditions with
respect to ai, bj, ρj, which are listed as follows:

Case 1.

a2 = 0, a3 = −
3b1b2 a21 + b21

� �
a1a5ρ2

,

a4 = −
a21a5 b2ρ1 + b3ρ2ð Þ − 3b21b2 a21 + b21

� �
a1a5b2ρ3

,

b4 = −
3a21b1b2 + a5b1b2ρ1 + a5b1b3ρ2 + a5b

2
2ρ4 + 3b31b2

a5b2ρ3
,

ð13Þ

where a1a5b2ρ2ρ3 ≠ 0; the other parameters are arbitrary
constants.
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Case 2.

a2 = 0, a5 = 0, b1 = 0, a4 = −
a1 b2ρ1 + b3ρ2ð Þ

b2ρ3
, b4 =

a1a3ρ2 − b22ρ4
b2ρ3

,

ð14Þ

where b2ρ3 ≠ 0; the other parameters are arbitrary constants.

Case 3.

a1 = −
b1b2
a2

, a4 = −
a22ρ4 − b1b2ρ1 − b1b3ρ2

a2ρ3
,

a5 = 0, b4 = −
a2b1ρ1 + a2b2ρ4 + a3b1ρ2

a2ρ3
, ð15Þ

where a2ρ3 ≠ 0; the other parameters are arbitrary constants.

Case 4.

a2 = 0, a5 = 0, b1 = 0,

a4 = −
a1 b2ρ1 + b3ρ2ð Þ

b2ρ3
,

b4 =
a1a3ρ2 − b22ρ4

b2ρ3
, ð16Þ

where b2ρ3 ≠ 0; the other parameters are arbitrary constants.

Case 5.

a1 = −
b1b2
a2

, a3 = −
a2 b1ρ1 + b2ρ4 + b4ρ3ð Þ

b1ρ2
,

a4 = −
a22ρ4 + b22ρ4 + b2b4ρ3

a2ρ3
, ð17Þ

b0 =
a0b2
a2

, b3 = −
b1ρ1 + b2ρ4 + b4ρ3ð Þb2

b1ρ2
, ð18Þ

where a2b1ρ2ρ3 ≠ 0; the other parameters are arbitrary
constants.

Substituting equations (14)–(17) along with equations
(11) and (12) into equation (10), one obtains the corre-
sponding lump soliton solution as follows:

Case 6.

u = 12 a1g + b1hð Þ
χ g2 + h2 + a5
� � , ð19Þ

where

g = −
a21a5b2ρ1 + a21a5b3ρ2 − 3a21b21b2 − 3b41b2
� �

t

a1a5b2ρ3

+ a1x −
3b1b2 a21 + b21

� �
z

a1a5ρ2
+ a0,

h = −
3a21b1b2 + a5b1b2ρ1 + a5b1b3ρ2 + a5b

2
2ρ4 + 3b31b2

� �
t

a5b2ρ3
+ b1x + b2y + b3z + b0:

ð20Þ

Case 7.

u = 12a1gÞ
χ g2 + h2
� � , ð21Þ

where

g = −
a1 b2ρ1 + b3ρ2ð Þt

b2ρ3
+ a1x + a3z + a0,

h = a1a3ρ2 − b22ρ4
� �

t

b2ρ3
+ b2y + b3z + b0:

ð22Þ

Case 8.

u = 12b1 a2h − b2gð Þ
χa2 g2 + h2

� � , ð23Þ

where

g = −
a22ρ4 − b1b2ρ1 − b1b3ρ2
� �

t

a2ρ3
−
b1b2x
a2

+ a2y + a3z + a0,

h = −
a2b1ρ1 + a2b2ρ4 + a3b1ρ2ð Þt

a2ρ3
+ b1x + b2y + b3z + b0:

ð24Þ

Case 9.

u = 12 a1g + b1hð Þ
χ g2 + h2
� � , ð25Þ

where

g = −
a2a1ρ1 + a22ρ4 − b1b3ρ2
� �

t

a2ρ3
+ a1x + a2y −

b2b3z
a2

+ a0,

h = −
a1b3ρ2 + a2b1ρ1 + a2b2ρ4ð Þt

a2ρ3
+ b1x + b2y + b3z +

a0b2
a2

:

ð26Þ
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Case 10.

u = 12 b1h − b2gð Þ
χ g2 + h2 + a5
� � , ð27Þ

where

g = −
a22ρ4 + b22ρ4 + b2b4ρ3
� �

t

a2ρ3
−
b1b2x
a2

+ a2y

−
a2 b1ρ1 + b2ρ4 + b4ρ3ð Þz

b1ρ2
+ a0,

h = b4t + b1x + b2y −
b1ρ1 + b2ρ4 + b4ρ3ð Þb2z

b1ρ2
+ a0b2

a2
:

ð28Þ

Figures 1 and 2 display the lump solution (27) of equa-
tion (5). By choosing suitable parameters, we can obtain
two different shapes of lumps in x-t and x-y plane. Actually,
from Figures 1 and 2, we can find that the lump solution
(27) possesses localization character in both x, t- and x,
y-plane, respectively. When x2 + y2 ⟶∞ is satisfied, the
wave u will tend to zero along any direction.

4. Lump-Kink Soliton Solution

4.1. Type of Exp. In this section, we add an exponential func-
tion to the quadratic function solution (10), letting f be

f = g2 + h2 + eξ + a5, ð29Þ
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Figure 1: Figures on (x, t) of solution (27) with a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, b0 = 1, b1 = 1, b2 = 1, b3 = 1, b4 = 1, χ= 1, ρ1 = 1,
ρ2 = 1, ρ3 = 1, ρ4 = 1, y= 0, z= 0.
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where g and h are, respectively, expressed by

g = a0 + a1x + a2y + a3z + a4t, ð30Þ

h = b0 + b1x + b2y + b3z + b4t, ð31Þ

ξ = c0 + c1x + c2y + c3z + c4t, ð32Þ

where ai, ði = 0⋯ 5Þ, bj, cjðj = 0⋯ 4Þ are real constants to be
determined and a5 > 0. Substituting (47)–(32) into equation
(9), by means of the symbolic computation methods, one
can obtain several groups of constraint conditions with
respect to ai, bj, cj, ρj, which are listed as follows.

Case 11.

a1 = 0, a4 = −
3b22c31 + a22c2ρ4

a2c2ρ3
, a5 =

b22
c22
, b1 =

b2c1
c2

,

b3 = −
b2 3a22c21 + 3b22c21 − a2a3ρ2
� �

a22ρ2
, ð33Þ

b4 = −
−3b22c31 + a22c1ρ1 + a22c2ρ4 + a2a3c1ρ2
� �

b2
a22c2ρ3

,

c3 =
−3b22c21 + a2a3ρ2
� �

c2
a22ρ2

, ð34Þ

c4 = −
a22c

3
1 − 3b22c31 + a22c1ρ1 + a22c2ρ4 + a2a3c1ρ2

a22ρ3
: ð35Þ
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Figure 2: Figures on (x, y) of solution (27) with a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, b0 = 1, b1 = 1, b2 = 1, b3 = 1, b4 = 1, χ= 1, ρ1 = 1,
ρ2 = 1, ρ3 = 1, ρ4 = 1, t= 0, z= 0.
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Case 12.

a1 = −
3b20a3c31ρ2c2
9b20c41c22 + a23ρ

2
2
, a2 = 0,

a4 = −
a3c1ρ2 −3b20c21c22ρ1 − 3b20c21c2c3ρ2 + a23ρ

2
2

� �

9b20c41c22 + a23ρ
2
2

� �
c2ρ3

, ð36Þ

b1 =
a23b0c1ρ

2
2

9b20c41c22 + a23ρ
2
2
,

b4 = −
b0 9b20c41c42ρ4 + 3a23c31c2ρ22 + a23c1c2ρ1ρ

2
2 + a23c1c3ρ

3
2 + a23c

2
2ρ

2
2ρ4

� �

9b20c41c22 + a23ρ
2
2

� �
c2ρ3

,

ð37Þ

c4 = −
c31c2 + c1c2ρ1 + c1c3ρ2 + ρ4c

2
2

c2ρ3
, a5 =

a23b
2
0ρ

2
2

9b20c41c22 + a23ρ
2
2
:

ð38Þ
Case 13.

a2 = 0, a3 = 0, a4 = −
a1 c2ρ1 + c3ρ2ð Þ

c2ρ3
, b2 = 0, b3 = 0,

b4 = −
b1 c2ρ1 + c3ρ2ð Þ

c2ρ3
, c1 = 0, c4 = −

c2ρ4
ρ3

: ð39Þ

Substituting equations (33)–(39) along with equations
(30), (31), and (32) into equation (47), one obtains the cor-
responding lump-kink soliton solution as follows:

u = 12c1/c2h + 6c1eξ
χ g2 + h2 + eξ + b22/c22

� �� � , ð40Þ

where

g = −
3b22c31 + a22c2ρ4
� �

t

a2c2ρ3
+ a2y + a3z + a0, ð41Þ

h = −
−3b22c31 + a22c1ρ1 + a22c2ρ4 + a2a3c1ρ2
� �

b2t

a22c2ρ3

+ b2c1x
c2

+ b2y −
b2 3a22c21 + 3b22c21 − a2a3ρ2
� �

z

a22ρ2
+ b0,

ð42Þ

ξ = −
t a22c

3
1 − 3b22c31 + a22c1ρ1 + a22c2ρ4 + a2a3c1ρ2

� �
a22ρ3

+ xc1 + yc2 +
z −3b22c21 + a2a3ρ2
� �

c2
a22ρ2

+ c0:

ð43Þ

u = 12 a1g + b1h + c1e
ξ

� �

χ g2 + h2 + eξ + a5
� � , ð44Þ

where a1, b1, c1 satisfy equation (36) and

g = −
a3c1ρ2 −3b20c21c22ρ1 − 3b20c21c2c3ρ2 + a23ρ

2
2

� �
t

9b20c41c22 + a23ρ
2
2

� �
c2ρ3

−
3b20a3c31ρ2c2x
9b20c41c22 + a23ρ

2
2
+ a3z + a0,

h = −
b0 9b20c41c42ρ4 + 3a23c31c2ρ22 + a23c1c2ρ1ρ

2
2 + a23c1c3ρ

3
2 + a23c

2
2ρ

2
2ρ4

� �
t

9b20c41c22 + a23ρ
2
2

� �
c2ρ3

+ a23b0c1ρ
2
2x

9b20c41c22 + a23ρ
2
2
+ b0c2y + b0c3z + b0,

ξ = −
c31c2 + c1c2ρ1 + c1c3ρ2 + ρ4c

2
2

� �
t

c2ρ3
+ xc1 + yc2 + c3z + c0,

u = 12 a1g + b1hð Þ
χ g2 + h2 + eξ + a5
� � , ð45Þ

where

g = −
a1 c2ρ1 + c3ρ2ð Þt

c2ρ3
+ a1x + a0, h = −

b1 c2ρ1 + c3ρ2ð Þt
c2ρ3

+ b1x + b0,

ξ = −
tc2ρ4
ρ3

+ yc2 + c3z + c0:

ð46Þ

Choosing a proper suitable value, Figure 3 presents the
nonlinear dynamic propagation behaviors of the lump-kink
wave solution (44). We can show that the interaction phe-
nomena between a lump wave and a kink wave exist.
Figures 3(a)–3(c) display the lump wave locating different
places in the wave plane. When y is increased, then the lump
soliton propagates from left to right in the (x, y)-plane.
In fact, the lump will be swallowed by the kink wave at
some time.

4.2. Type of Cosh. In this section, we add an exponential
function to the quadratic function solution (10), letting f be

f = g2 + h2 + cosh ξð Þ + a5, ð47Þ

where g, h, and ξ are defined by (30), (31), and (32), ai, ði
= 0⋯ 5Þ, bj, cjðj = 0⋯ 4Þ are real constants to be deter-
mined. By the same procedure, one can obtain several
groups of constraint conditions with respect to ai, bj, cj, ρj,
which are listed as follows.

Case 14.

a2 = −
b1b2
a1

, a3 =
b1b2 a21ρ1 + a1a4ρ3 − b1b2ρ4

� �
a31ρ2

,

b3 = −
b2 a21ρ1 + a1a4ρ3 − b1b2ρ4
� �

ρ2a
2
1

, ð48Þ

b4 =
−a21b2ρ4 + a1a4b1ρ3 − b21b2ρ4

ρ3a
2
1

, c2 = 0, c3 = 0,

c4 =
c1 −a21c

2
1 + a1a4ρ3 − b1b2ρ4

� �
a21ρ3

: ð49Þ
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Figure 3: Figures on (x, y) of solution (44) with a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, b0 = 1, b1 = 1, b2 = 1, b3 = 1, b4 = 1, χ= 1, ρ1 = 1,
ρ2 = 1, ρ3 = 1, ρ4 = 1, z=−5.
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Case 15.

a2 = −
b1b2
a1

, a3 = −
b1b2c3
a1c2

, a4 =
−a21c2ρ1 − a21c3ρ2 + b1b2c2ρ4

c2ρ3a1
, b3 =

b2c3
c2

,

ð50Þ

b4 = −
b1c2ρ1 + b1c3ρ2 + b2c2ρ4

c2ρ3
, c1 = 0, c4 = −

c2ρ4
ρ3

: ð51Þ

Substituting equations (48) and (50) along with equa-
tions (30), (31), and (32) into equation (47), one obtains
the respective lump-kink soliton solution as follows:

u = 6 2a1g + 2b1h − c1 sinh ξð Þð Þ
χ g2 + h2 + cosh ξð Þ + a5
� � , ð52Þ

where

g = a4t + a1x −
b1b2y
a1

+ b1b2 a21ρ1 + a1a4ρ3 − b1b2ρ4
� �

z

a31ρ2
+ a0,

h = −a21b2ρ4 + a1a4b1ρ3 − b21b2ρ4
� �

t

ρ3a
2
1

+ b1x + b2y −
b2 a21ρ1 + a1a4ρ3 − b1b2ρ4
� �

z

ρ2a
2
1

+ b0,

ξ = tc1 −a21c
2
1 + a1a4ρ3 − b1b2ρ4

� �
a21ρ3

+ c1x + c0,

u = 12 a1g + b1hð Þ
χ g2 + h2 + cosh ξð Þ + a5
� � , ð53Þ

where

g = −a21c2ρ1 − a21c3ρ2 + b1b2c2ρ4
� �

t

c2ρ3a1

+ a1x −
b1b2y
a1

−
b1b2c3z
a1c2

+ a0,

h = −a21c2ρ1 − a21c3ρ2 + b1b2c2ρ4
� �

t

c2ρ3a1

+ a1x −
b1b2y
a1

−
b1b2c3z
a1c2

+ a0,

ξ = c2ρ4t
ρ3

+ c2y + c3z + c0: ð54Þ

Figure 4 illustrates the interaction phenomena between
lump and kink. We obtain the wave consisting of two parts
including the lump wave and the kink wave. With the
increase of t, the lump first appears in the form of one kink,
then it begins to move towards the other kink and finally, the
lump disappears.

5. Periodic Lump Solution

In order to get the periodic lump wave solutions of equation
(9), we take

f = cosh a1x + a2y + a3z + a4tð Þ + cos b1x + b2y + b3z + b4tð Þ
+ cosh c1x + c2y + c3z + c4tð Þ:

ð55Þ

Substituting (55) into (9), we collect all the coefficients of
hyperbolic functions and trigonometric functions. Comput-
ing these coefficients, one can obtain several groups of con-
straint conditions with respect to ai, bj, cj, ρj, which are
listed as follows.

Case 16.

a1 = 0, a2 = 0, a3 = 0, a4 = 0, b2 = 0, b3 = 0, b4

= b1 b21c2 − c2ρ1 − c3ρ2
� �

c2ρ3
, c1 = 0, c4 = −

c2ρ4
ρ3

,
ð56Þ

where c2ρ3 ≠ 0; the other parameters are arbitrary constants.

Case 17.

a1 = 0, a4 = −
a2ρ4
ρ3

, b1 = 0, b3 =
a3b2
a2

, b4 = −
b2ρ4
ρ3

, c2

= 0, c3 = 0, c4 = −
c1 a2c

2
1 + a2ρ1 + a3ρ2

� �
a2ρ3

,
ð57Þ

where a2ρ3 ≠ 0; the other parameters are arbitrary constants.

Case 18.

a1 = 0, a2 = a2, a3 = a3, a4 = −
a2ρ4
ρ3

, b1 = b1, b2 = 0, b3

= 0, b4 =
b1 a2b

2
1 − a2ρ1 − a3ρ2

� �
a2ρ3

,
ð58Þ

c1 = c1, c2 = 0, c3 = 0, c4 = −
c1 a2c

2
1 + a2ρ1 + a3ρ2

� �
a2ρ3

, ð59Þ

where a2ρ3 ≠ 0; other parameters are arbitrary constants.

Substituting equations (56)–(58) along with equations
(30), (31), and (32) into equation (55), one obtains the cor-
responding periodic lump solution as follows:

u = −6k2b1 sin hð Þ
χ k1 + k2 cos hð Þ + k3 cosh ξð Þð Þ , ð60Þ
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Figure 4: The figures on (x, z) of solution (52) with a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, b0 = 1, b1 = 1, b2 = 1, b3 = 1, b4 = 1, χ= 1,
ρ1 = 1, ρ2 = 1, ρ3 = 1, ρ4 = 1, y= 0.
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where

h = b1 b21c2 − c2ρ1 − c3ρ2
� �

t

c2ρ3
+ b1x, ξ = −

c2ρ4t
ρ3

+ c2y + c3z,

u = −6k3c1 sinh ξð Þ
χ k1 cosh gð Þ + k2 cos hð Þ + k3 cosh ξð Þð Þ ,

ð61Þ

where

g = −
a2ρ4t
ρ3

+ a2y + a3z, h = −
b2ρ4t
ρ3

+ b2y +
a3b2z
a2

,

ξ = −
c1 a2c

2
1 + a2ρ1 + a3ρ2

� �
t

a2ρ3
+ c1x,

u = −6 k2b1 sin hð Þ + k3c1 sinh ξð Þð
χ k1 cosh gð Þ + k2 cos hð Þ + k3 cosh ξð Þð Þ ,

ð62Þ

where

g = a2ρ4t
ρ3

+ a2y + a3z, h =
b1 a2b

2
1 − a2ρ1 − a3ρ2

� �
t

a2ρ3
+ b1x,

ξ = −
c1 a2c

2
1 + a2ρ1 + a3ρ2

� �
t

a2ρ3
+ c1x:

ð63Þ

6. Conclusion

In this paper, a new extended Jimbo-Miwa (EJM) equation is
studied, which is an extension of the Jimbo-Miwa equation
and (3 + 1)-dimensional generalized BKP equation. It can
be used to describe the propagation of three-dimensional
nonlinear waves with weak dispersion. The exact solutions
of the Jimbo-Miwa equation (1) and the extended Jimbo-
Miwa equations (2) and (3) have been studied by many
scholars; however, there are not many researches on the
new Jimbo-Miwa equation (5). In our paper, the bilinear
representation of (5) is shown. First, the exact solutions of
the equation are studied, including lump soliton solution,
lump-kink soliton solution, and periodic lump solution.
The bright-dark lump wave solutions are directly obtained
by taking the solution F in the bilinear equation as a qua-
dratic function. Second, the lump-kink between one lump
wave and one stripe wave are also presented by taking F as
a combination of quadratic function and exponential func-
tion. Furthermore, the periodic lump solutions are also
derived by taking F as a combination of the hyperbolic
cosine function and cosine function. The properties of the
solutions are also discussed by graphical simulation. The
solutions obtained in our paper are different from that in
[31]. As far as we know, our results have not been reported
in other studies. It is hoped that our results can enrich the
dynamic behaviors of the studied equation.
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