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This paper provides a mathematical fractional-order model that accounts for the mindset of patients in the transmission of
COVID-19 disease, the continuous inflow of foreigners into the country, immunization of population subjects, and temporary
loss of immunity by recovered individuals. The analytic solutions, which are given as series solutions, are derived using the
fractional power series method (FPSM) and the residual power series method (RPSM). In comparison, the series solution for
the number of susceptible members, using the FPSM, is proportional to the series solution, using the RPSM for the first two
terms, with a proportional constant of ψΓððnα + 1Þ, where ψ is the natural birth rate of the baby into the susceptible
population, Γ is the gamma function, n is the nth term of the series, and α is the fractional order as the initial number of
susceptible individuals approaches the population size of Ghana. However, the variation in the two series solutions of the
number of members who are susceptible to the COVID-19 disease begins at the third term and continues through the
remaining terms. This is brought on by the nonlinear function present in the equation for the susceptible subgroup. The
similar finding is made in the series solution of the number of exposed individuals. The series solutions for the number of
deviant people, the number of nondeviant people, the number of people quarantined, and the number of people recovered
using the FPSM are unquestionably almost identical to the series solutions for same subgroups using the RPSM, with the
exception that these series solutions have initial conditions of the subgroup of the population size. It is observed that, in this
paper, the series solutions of the nonlinear system of fractional partial differential equations (PDEs) provided by the RPSM are
more in line with the field data than the series solutions provided by the FPSM.

1. Introduction

The development of a mathematical model for under-
standing and unravelling the underlying mechanisms of
the epidemiology of the COVID-19 disease has garnered
interest from public health systems to academia in several
different countries; the majority of these models focus on
epidemics of the disease progression from one person to
another person, as described by [1–3]. However, the
COVID-19 disease originated in Wuhan, China, and geo-
graphically spread to other parts of the world as a pan-
demic disease [4]. In this sense, COVID-19 epidemiology

is more appropriately classified as a pandemic disease than
an epidemic disease. The primary factor in the global
transmission of the COVID-19 disease is the movement
of exposed or infected individuals, who may or may not
have the aim of coming into contact with the vulnerable
individuals in the host country. The spatial spread of the
disease in the various countries was accounted for in the
mathematical models developed by [5, 6] by taking into
consideration the diffusing susceptible individuals, exposed
individuals, and infected individuals. Despite this, these
models do not account for the vaccinations that the indi-
viduals of the population received.
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There are currently treatments available that are given to
people all around the world regardless of their health condi-
tions, such as the Johnson and Johnson vaccine and the
AstraZeneca vaccine. Although the usefulness of these vac-
cines has been scientifically demonstrated, these immuniza-
tions do lose some of their efficacy over time. There is no
assurance that a person receiving the COVID-19 vaccination
will be protected from getting the disease upon contact with
a person with the SARS virus. For example, see authors in
[7]. This observation makes it unclear which individuals
are completely unprotected from the disease and which
persons are temporarily protected for a short period of time
following immunization. Only a few researchers have used
vaccinated subjects in their models without the inclusion of
the spatial transmission of the disease. For example, have a
look at the authors in [8–10]. All of these epidemiological
models account for people moving from one subgroup of
the population to another subgroup of the population.
Although they captured vaccinated persons, they did not
incorporate the diffusing individuals who brought the
COVID-19 disease into their respective countries. Also, for
the mathematical models on the control of transmission of
COVID-19 disease, see [11]. The findings of these
researchers, however, are not all inclusive since they
neglected to take into account an important observation of
the progression of patient through the disease. Evidence
from numerous countries has demonstrated that infected
individuals (patients) either plan or do not intend to trans-
mit the COVID-19 virus to susceptible individuals [4]. In
developing a mathematical model to describe the epidemiol-
ogy of the COVID-19 infection, the mindset of the spreaders
was not captured in their models. Additionally, statistics
from different countries have revealed that whether a person
takes medicine to treat COVID-19 or not, they still run the
risk of getting the illness again if they come into contact with
an infected person. Thus, the recovery from the disease is for
a short period of time (see [12]). When creating a mathe-
matical model to describe the epidemiology of COVID-19,
all these issues were not taken into account.

The type of mathematical tools a researcher uses to
arrive at his or her conclusion(s) ultimately determines the
success of any mathematical analysis. Since the beginning
of the COVID-19 outbreak in China till now, researchers
have mainly relied heavily on either the use of the qualitative
method, the quantitative method, or both. These methods
have significantly more drawbacks than advantages. A
numerical scheme is an example of a quantitative method
that always approximates the exact solution of the differen-
tial equation with some level of precision. This quantitative
method yields intolerable inaccuracies; in the worst situa-
tion, its solution diverges from the exact solution of a differ-
ential equation. As usual, even if the solution suggested by
the numerical scheme exists, one must perform a number
of iterations before reaching the desired solution. The qual-
itative method narrows down the information contained in
the solution of the differential equation. The domain ele-
ments of the function that describes the epidemiology of
COVID-19 infection are revealed by this method of investi-
gation on a microscopic level. In light of this, this method

can only produce fixed-point solutions of differential equa-
tions. The vast majority of nonstationary points are uncov-
ered by this method. More crucially, neither a quantitative
nor a qualitative method provides the function that describes
the theoretical foundation for describing the epidemiology
of COVID-19 disease.

Recently, it has been discovered that the integer differen-
tial equations suffer from several shortcomings when com-
pared to the differential equations of fractional order. The
fractional differential equation has memory and heredity
properties because of its nonlocal property for describing
COVID-19 pandemics. Any solution to the system of PDEs,
regardless of order, may be easily obtained using fractional
ordering. The theory of controls, infectious diseases, growth
of tumours, and feedback systems are examples of applied
scientific problems where the differential equations of frac-
tional order have proven to be effective models. For example,
see authors in [13] who applied the fractal fraction Adams-
Bashforth method to search for the solution of fractal-
fractional susceptible-infective-recovered model. Another
numerical approach for solving systems of differential equa-
tions that are both linear and nonlinear is the Pade approx-
imation method. High-order approximations are necessary
when using this method. More crucially, given a nonlinear
system of PDEs, there is no systematic procedure in selecting
the parameters in the Pade approximation method[14].
Since Mittag-Leffler functions or their derivatives make up
the majority of the solutions to the system of fractional dif-
ferential equations, rigorous mathematics is necessary to
solve these equations. One of the methods for solving system
of fractional differential equations is the RPSM which was
first observed by [15] for solving fuzzy differential equation.
With this approach, a power series is assumed to exist for the
system of ODEs, and the coefficients of the power series are
used to create a recurrence equation. When the residual
coefficients, from the power series, are equal to zero, an alge-
braic system of equations results, from which the values of
the series solution of the unknown coefficients can be
deduced. Nevertheless, while solving fractional-order PDE,
say in two variables, this method assumes that one of the
independent variables has a representation in a fractional
power series, and the second independent variable is han-
dled as a coefficient variable, which is roughly derived from
the variation in the given fractional-order PDE based on the
initial or boundary condition. For example, see authors in
[16–19]. The same method was used by [20] to solve nonlin-
ear fractional-order PDEs. In [21], the authors used the
Atangana-Baleanu fractional derivative to obtain asymptotic
interval approximation solutions to the fractional differential
equation under various conditions. A nonlinear system of
stiff fractional-order PDEs and the nonlinear system of frac-
tional PDEs have not been solved using the RPSM. The kind
of nonlinearity in a fractional PDE largely depends on the
functional space which contains the solution of fractional
differential PDE. The FPSM is another intriguing method
which was first observed by [22]. The authors in [23, 24]
applied this method to obtain the solutions of fractional
PDEs. It is challenging to find analytic solutions to a nonlin-
ear system of fractional-order partial differential equations.
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Additionally, researchers from all over the world have not
observed a comparison of the series solutions utilizing both
the RPSM and the FPSM. More importantly, no information
regarding comparing the series solutions obtained by these
methods with field data is provided in the literature. The
series solution (analytic) method of the nonlinear system
of fractional-order partial differential equations has a solu-
tion, is the most dependable and efficient method as com-
pared to both the qualitative and the quantitative methods.

In this paper, the infected group of the SEIQR model is
further divided into two subgroups: the deviant infected sub-
group and nondeviant subgroup of the population in the
classical susceptible-exposed-infected-quarantined-recov-
ered model with diffusion terms. Thus, the susceptible-
exposed-deviant infected-nondeviant infected-quarantined-
recovered (SEII∗QR) model with diffusion terms, and vacci-
nated susceptible term is developed. In addition, the frac-
tional form of this model is provided herein. Moreover,
both the FPSM and the RPSM are used to obtain the series
solution (analytic) of the nonlinear system of fractional
PDEs. The solutions that are yielded by these two methods
are compared with field data accounting for the robustness
of the methods.

2. Fundamental Concept in Fractional Calculus

Definition 1. A real function uðx, tÞ, x ∈ I, t > 0 is said to be
in the space CαðI ×ℝ+Þ, μ ∈ℝ, if there exist a real number
p > α such that uðx, tÞ = tp f ðx, tÞ, where f ðx, tÞ ∈ CðI ×ℝ+Þ,
and it is said to be in the space Cn

α, if ∂
n/∂tn ∈ Cα, n ∈ℕ

(see [25]).

Definition 2. For n − 1 < β < n, n ∈ℕ. The Caputo fractional
derivative operator of the order β is define by (see [26])

Dα
auð Þ tð Þ = 1

Γ n − αð Þ
ðt
a
u nð Þ ξð Þ t − ξð Þn−α−1dξ, t > 0: ð1Þ

Theorem 3. The fractional power series (FPS)∑∞
m=0amðt − t0Þmα:

(i) converges only for t = t0, that is, the radius of conver-
gence equal to zero

(ii) converges for all t ≥ t0, that is; the radius of conver-
gence equal to ∞

(iii) converges for t ∈ ½t0, t0 + R�, for some positive real
numbers R, and diverges for t > t0 + R. Here, R is
the radius of convergence for the FPS [27].

3. Main Results

In this section, for modelling the COVID-19 epidemiology
in Ghana, a mathematical model that takes into account
the mindset of the patients in spreading the COVID-19 dis-
ease, temporary loss of immunity by recoveries, and the con-
tinuous influx of foreigners entering the country with or
without the disease is needed. Therein, the FPSM- and

RPSM-based analytical solutions of the nonlinear system of
fractional PDEs are presented as series solutions.

3.1. Model Description. Despite the fact that the COVID-19
vaccination is given to country residents by the Ministry of
Health (MOH), neither the Johnson and Johnson nor the
AstraZeneca vaccine is anticipated to provide COVID-19
patients with a lifetime of immunity against the illness.

In Figure 1, the population size of Ghana is split into six
distinct subgroups namely: the susceptible subgroup, Sðx, tÞ;
exposed subgroup, Eðx, tÞ; deviant infected subgroup, Iðx, tÞ;
nondeviant infected subgroup, I∗ðx, tÞ; quarantined sub-
group, QðtÞ; and the recovered subgroup, RðtÞ. A susceptible
person is any member of the population who is capable of
catching the SARS virus from an infected COVID-19
patient. An exposed person is someone who has caught the
SARS virus, but for a brief while, he or she is unable to pass
it on to a susceptible person. The waiting period is therefore
in effect for this person. The deviant infected person is a
patient who has chosen to purposefully spread the SARS
virus to susceptible family members on the grounds that
since they already have the illness, they must also experience
the COVID-19 disease-related consequences. The nondevi-
ant individual, on the other hand, is an infected person
who does not willingly spread the SARS virus to susceptible
family members or friends because they do not want them to
get the COVID-19 illness. The person under quarantine is a
COVID-19 patient who was deviant infected person or non-
deviant infected person, or an exposed person, whose move-
ments are restricted in a specific place for an extended length
of time. The recovered person is the person who either
recovers naturally or receives treatment at the hospital for
a period of time. After being exposed to the COVID-19
infection, this person is still at a significant risk of reacquir-
ing the SARS virus. As a consequence of this, the immune
system is unable to recuperate and is therefore vulnerable
to losing its immunity. To take into account the continuous
inflow of foreigners into the country, the subgroups of sus-
ceptible, exposed, deviant infected person, and nondeviant
infected person depend on the distance, x, as well as the pas-
sage of time.

Additionally, ψ stands for the natural birth rate, β for
transmission rate, and μ for natural death rate, ν is the rate
for quarantining exposed individuals, and α1 is the rate at
which an exposed person intends to transmit the SARS virus
to susceptible members. The rate at which an exposed per-
son has no intention to infect a susceptible member with
the SARS virus is α2. The rates at which the exposed person,
the deviant infected person, and the nondeviant infected
person are quarantined, respectively, are ν, ω1, and ω2. The
disease-induced death rates from the subgroups of deviants,
nondeviants, and confined individuals are δ1, δ2, and δ3,
respectively. The ϕ, γ1, and γ2 are the rates of recoveries
from COVID-19 disease by the quarantined, the deviant,
and the nondeviant individuals, respectively. The η is the
rate at which susceptible moves to the recovered compart-
ment after receiving a vaccine, and κ is the rate at which
recovered person loses their immunity and becomes suscep-
tible again. The natural death rate from each subgroup of the
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population is denoted by μ. Due to the fact that the model
takes into account diffusion of the foreigners into the sus-
ceptible, exposed, deviant, and nondeviant subgroups, the
rates of diffusion into the corresponding compartments are
specified as follows: D1 represents the rate of diffusion into
the susceptible compartment, D2 represents the rate of diffu-
sion into the exposed compartment, D3 represents the rate of
diffusion into the deviant subgroup, and D4 represents the
rate of diffusion into the nondeviant subgroup.

Based on above facts, the following nonlinear system of
fractional PDEs is obtained for describing the epidemiology
of COVID-19 in Ghana.

∂αS
∂tα

= ψN + κR −
βS I + I∗ +Qð Þ

N
− μ + ηð ÞS +D1

∂2αS
∂x2α

, ð2Þ

∂αE
∂tα

= βS I + I∗ +Qð Þ
N

− α1 + α2 + μ + vð ÞE +D2
∂2αE
∂x2α

, ð3Þ

∂αI
∂tα

= α1E − γ1 + μ + δ1 + ω1ð ÞI +D3
∂2αI
∂x2α

, ð4Þ

∂αI∗

∂tα
= α2E − γ2 + μ + δ2 + ω2ð ÞI∗ +D4

∂2αI∗

∂x2α
, ð5Þ

dαQ
dtα

= vE + ω1I + ω2I
∗ − μ + ϕ + δ3ð ÞE, ð6Þ

∂αR
∂tα

= ϕQ + γ1I + γ2I
∗ + ηS − μ + κð ÞR, ð7Þ

together with the initial conditions

S x, 0ð Þ = S0 xð Þ,
E x, 0ð Þ = E0 xð Þ,
I x, 0ð Þ = I0 xð Þ,
I∗ x, 0ð Þ = I∗0 xð Þ,

Q 0ð Þ = 0,
R 0ð Þ = 0:

ð8Þ

3.2. Analytic Solutions of the System of Fractional Partial
Differential Equations Using the Fractional Power Series
Method. In this section, series solutions of the system of

equations (2)–(7) together with the initial conditions in
equation (8) are obtained in Hilbert space using the FPSM.
In obtaining each solution of the system of equations
(2)–(7) together with initial conditions, it is assumed that
the unknown function defining the equation is in series form
which converges to a known function. In addition, the proof
of the existence of these series solution as well as its unique-
ness is provided here.

Setting

S x, tð Þ = 〠
∞

k=0
Sk xð Þtkα, ð9Þ

E x, tð Þ = 〠
∞

k=0
Ek xð Þtkα, ð10Þ

I x, tð Þ = 〠
∞

k=0
Ik xð Þtkα, ð11Þ

I∗ x, tð Þ = 〠
∞

k=0
I∗k xð Þtkα, ð12Þ

Q x, tð Þ = 〠
∞

k=0
Qk xð Þtkα, ð13Þ

R x, tð Þ = 〠
∞

k=0
Rk xð Þtkα, ð14Þ

we can see that

Dα
t S x, tð Þð Þ = 〠

∞

k=1

Γ kα + 1ð Þ
Γ k − 1ð Þα + 1ð Þ Sk xð Þt k−1ð Þα,

∂2αS
∂x2α

= 〠
∞

k=0

∂2α

∂x2α
Sk xð Þtkα:

ð15Þ

Substituting equations (8), (9), (10), (11), (12), (13), and
(14) into equation (2) yields

〠
∞

k=1
Sk xð Þ Γ kα + 1ð Þ

Γ k − 1ð Þα + 1ð Þ t
k−1ð Þα

= ψN + κ〠
∞

k=0
Rk xð Þtkα − β

N
〠
∞

k=0
Sk xð Þtkα

Á 〠
∞

k=0
Ik xð Þtkα + 〠

∞

k=0
I∗k xð Þtkα + 〠

∞

k=0
Qk xð Þtkα

 !

− μ + ηð Þ〠
∞

k=0
Sk xð Þtkα +D1

∂2α

∂x2α
〠
∞

k=0
Sk xð Þtkα:

ð16Þ

Figure 1: shows the various subgroups of the population size for
describing the epidemiology of COVID-19.
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Comparing the powers of t0, we have

S1 xð Þ = 1
Γ α + 1ð Þ

(
ψN + κR0 xð Þ − β

N
S0 xð Þ I0 xð Þð

+ I∗0 xð Þ +Q0 xð ÞÞ − μ + ηð ÞS0 xð Þ +D1
∂2α

∂x2α
S0 xð Þ

)
:

ð17Þ

Similarly, we observe the following results. For S2ðxÞ, S3
ðxÞ,⋯, SnðxÞ, we have

S2 xð Þ = Γ α + 1ð Þ
Γ 2α + 1ð Þ

(
ψN + κR1 xð Þ − β

N

À
S0 xð ÞI1 xð Þ

+ S0 xð ÞI∗1 xð Þ + S0 xð ÞQ1 xð Þ + S1 xð ÞI0 xð Þ
+ S1 xð ÞI∗0 xð Þ + S1 xð ÞQ0 xð ÞÁ − μ + ηð ÞS1

+D1
∂2α

∂x2α
S1

)
,

S3 xð Þ = Γ 2α + 1ð Þ
Γ 3α + 1ð Þ

(
ψN + κR2 xð Þ − β

N

À
S0 xð ÞI2 xð Þ

+ S0 xð ÞI∗2 xð Þ + S0 xð ÞQ2 xð Þ + S1 xð ÞI1 xð Þ
+ S1 xð ÞI∗1 xð Þ + S1 xð ÞQ1 xð Þ + S2 xð ÞI0 xð Þ
+ S2 xð ÞI∗0 xð Þ + S2 xð ÞQ0 xð ÞÁ − μ + ηð ÞS2

+D1
∂2αS2
∂x2α

)
,

⋮

Sn xð Þ = Γ n − 1ð Þαð Þ + 1
Γ nα + 1ð Þ

(
ψN + κRn−1 xð Þ

−
β

N

 
〠
n−1

i=0

À
Si xð ÞIn−1−i xð Þ + Si xð ÞI∗n−1−i xð Þ

+ Si xð ÞQn−1−i xð ÞÁ
!
− μ + ηð ÞSn−1 xð Þ

+D1
∂2αSn−1 xð Þ

∂x2α

)
:

ð18Þ

Following the similar procedure above, the following
results are obtained for E1ðxÞ, E2ðxÞ, E3ðxÞ,⋯, EnðxÞ:

E1 xð Þ = 1
Γ α + 1ð Þ

(
β

N
S0 xð Þ I0 xð Þ + I∗0 xð Þ +Q0 xð Þð Þ

− α1 + α2 + μ + νð ÞE0 +D2
∂2αE0 xð Þ
∂x2α

)
,

E2 xð Þ = Γ α + 1ð Þ
Γ 2α + 1ð Þ

(
β

N

À
S0 xð ÞI1 xð Þ + S0 xð ÞI∗1 xð Þ

+ S0 xð ÞQ1 xð Þ + I0 xð ÞS1 xð Þ + S1 xð ÞI∗0 xð Þ + S1 xð ÞQ0 xð ÞÁ
− α1 + α2 + μ + νð ÞE1 +D2

∂2αE1 xð Þ
∂x2α

)
,

E3 xð Þ = Γ 2α + 1ð Þ
Γ 3α + 1ð Þ

(
β

N

À
S0 xð ÞI2 xð Þ + S0 xð ÞI∗2 xð Þ

+ S0 xð ÞQ2 xð Þ + S1 xð ÞI1 xð Þ + S1 xð ÞI∗1 xð Þ
+ S1 xð ÞQ1 xð Þ + S2 xð ÞI0 xð Þ + S2 xð ÞI∗0 xð Þ

+ S2 xð ÞQ0 xð ÞÁ − α1 + α2 + μ + νð ÞE2 +D2
∂2αE2 xð Þ
∂x2α

)
,

⋮

En xð Þ = Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

(
β

N

"
〠
n−1

k=0

À
Sk xð ÞIn−1−k xð Þ

+ Sk xð ÞI∗n−1−k xð Þ + Sk xð ÞIn−1−k xð ÞÁ
#

− α1 + α2 + μ + νð ÞEn−1 xð Þ +D2
∂2αEn−1 xð Þ xð Þ

∂x2α

)
:

ð19Þ

Similarly, the series solutions for the number of the devi-
ant infected people, the number of nondeviant infected peo-
ple, the quarantined, and the number of recoveries are as
follows:

I1 xð Þ = 1
Γ α + 1ð Þ

(
α1E0 xð Þ − Àγ1 + μ + δ1

+ ω1ÞI0 xð Þ +D3
∂2αI0 xð Þ
∂x2α

)
,

I2 xð Þ = Γ α + 1ð Þ
Γ 2α + 1ð Þ

(
α1E1 xð Þ − Àγ1 + μ + δ1

+ ω1ÞI1 xð Þ +D3
∂2αI1 xð Þ
∂x2α

)
,

I3 xð Þ = Γ 2α + 1ð Þ
Γ 3α + 1ð Þ

(
α1E2 xð Þ − Àγ1 + μ

+ δ1 + ω1ÞI2 xð Þ +D3
∂2αI2 xð Þ
∂x2α

)
,

⋮

In xð Þ = Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

(
α1En−1 xð Þ − Àγ1 + μ

+ δ1 + ω1
Á
In−1 xð Þ +D3

∂2αIn−1 xð Þ
∂x2α

)
,

ð20Þ
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I∗1 xð Þ = 1
Γ α + 1ð Þ

(
α2E0 xð Þ − Àγ2 + μ + δ2

+ ω2ÞI∗0 xð Þ +D4
∂2αI∗0 xð Þ
∂x2α

)
,

I∗2 xð Þ = Γ α + 1ð Þ
Γ 2α + 1ð Þ

(
α2E1 xð Þ − Àγ2 + μ + δ2

+ ω2ÞI∗1 xð Þ +D4
∂2αI∗1 xð Þ
∂x2α

)
,

I∗3 xð Þ = Γ 2α + 1ð Þ
Γ 3α + 1ð Þ

(
α2E2 xð Þ − Àγ2 + μ + δ2

+ ω2ÞI∗2 xð Þ +D4
∂2αI∗2 xð Þ
∂x2α

)
,

⋮

I∗n xð Þ = Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

(
α2En−1 xð Þ − Àγ2

+ μ + δ2 + ω2ÞI∗n−1 xð Þ +D4
∂2αI∗n−1 xð Þ

∂x2α

)
,

ð21Þ

Q1 xð Þ = 1
Γ α + 1ð Þ

È
vE0 xð Þ + ω1I0 xð Þ

+ ω2I
∗
0 xð Þ − μ + ϕ + δ3ð ÞQ0 xð ÞÉ,

Q2 xð Þ = Γ α + 1ð Þ
Γ 2α + 1ð Þ

È
vE1 xð Þ + ω1I1 xð Þ

+ ω2I
∗
1 xð Þ − μ + ϕ + δ3ð ÞQ1 xð ÞÉ,

Q3 xð Þ = Γ 2α + 1ð Þ
Γ 3α + 1ð Þ

È
vE2 xð Þ + ω1I2 xð Þ

+ ω2I
∗
2 xð Þ − μ + ϕ + δ3ð ÞQ2 xð ÞÉ,

⋮

Qn xð Þ = Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

È
vEn−1 + ω1In−1 xð Þ

+ ω2I
∗
n−1 xð Þ − μ + ψ + δ3ð ÞQn−1 xð ÞÉ,

ð22Þ

R1 xð Þ = 1
Γ α + 1ð Þ ϕQ0 + γ1I0 + γ2I

∗
0 + ηS0 − μ + κð ÞR0f g,

R2 xð Þ = Γ α + 1ð Þ
Γ 2α + 1ð Þ ϕQ1 + γ1I1 + γ2I

∗
1 + ηS1 − μ + κð ÞR1f g,

R3 xð Þ = Γ 2α + 1ð Þ
Γ 3α + 1ð Þ ϕQ2 + γ1I2 + γ2I

∗
2 + ηS2 − μ + κð ÞR2f g,

⋮

Rn xð Þ = Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

È
ϕQn−1 xð Þ + γ1In−1 xð Þ

+ γ2I
∗
n−1 xð Þ + ηSn−1 xð Þ − μ + κð ÞRn−1 xð ÞÉ:

ð23Þ

The series solutions of the nonlinear system of fractional
PDEs order of nth term are given by

Sn x, tð Þ = 〠
∞

n=1

Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

� �(
ψN + 〠

∞

n=1
κRn−1 xð Þ

−
β

N

 
〠
n−1

k=0

À
Sk xð ÞIn−1−k xð Þ + Sk xð ÞI∗n−1−k xð Þ

+ Sk xð ÞQn−1−k xð ÞÁ
!
− μ + ηð ÞSn−1 xð Þ

+D1
∂2αSn−1 xð Þ

∂x2α

)
tkα,

ð24Þ

En x, tð Þ = 〠
∞

n=1

Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

� �(
β

N

"
〠
n−1

k=0

À
Sk xð ÞIn−1−k xð Þ

+ Sk xð ÞI∗n−1−k xð Þ + Sk xð ÞIn−1−k xð ÞÁ
#

− α1 + α2 + μ + νð ÞEn−1 xð Þ +D2
∂2αE2 xð Þ
∂x2α

)
tkα,

ð25Þ

In x, tð Þ = 〠
∞

n=1

Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

(
α1En−1 xð Þ

− γ1 + μ + δ1 + ω1ð ÞIn−1 xð Þ +D3
∂2αIn−1 xð Þ

∂x2α

)
tkα,

ð26Þ

I∗n x, tð Þ = 〠
∞

n=1

Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

(
α2En−1 xð Þ

− γ2 + μ + δ2 + ω2ð ÞI∗n−1 xð Þ +D4
∂2αI∗n−1 xð Þ

∂x2α

)
tkα,

ð27Þ

Qn x, tð Þ = 〠
∞

n=1

Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

È
νEn−1 xð Þ + ω1In−1 xð Þ

+ ω2I
∗
n−1 xð Þ − μ + ψ + δ3ð ÞQn−1 xð ÞÉtkα,

ð28Þ

Rn x, tð Þ = 〠
∞

n=1

Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

È
ϕQn−1 xð Þ + γ1In−1 xð Þ

+ γ2I
∗
n−1 xð Þ + ηSn−1 xð Þ − μ + κð ÞRn−1 xð ÞÉtkα:

ð29Þ
3.2.1. Existence and Uniqueness of the Series Solution of the
Nonsystem of Fractional PDEs. The proofs of the existence
and uniqueness of the series solutions in equations
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(24)–(29) of the nonlinear system of fractional PDEs are
provided therein.

P1 x, t, s tð Þð Þ = Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

(
ψN + κRn−1 xð Þ

−
β

N

 
〠
n−1

k=0

À
Sk xð ÞIn−1−k xð Þ

+ Sk xð ÞI∗n−1−k xð Þ + Sk xð ÞQn−1−k xð ÞÞ
!

− μ + ηð ÞSn−1 xð Þ +D1
∂2αSn−1 xð Þ

∂x2α

)
tkα,

ð30Þ

P1 x, t, s′ tð Þ
� �

= Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

(
ψN + κRn−1 xð Þ

−
β

N

 
〠
n−1

k=0

�
Sk′ xð ÞIn−1−k xð Þ + Sk′ xð ÞI∗n−1−k xð Þ

+ Sk′ xð ÞQn−1−k xð Þ
�!

− μ + ηð ÞSn−1′ xð Þ

+D1
∂2αSn−1′ xð Þ

∂x2α

)
tkα,

P1 x, t, s tð Þð Þ − P x, t, s′
� � 

= Γ n − 1ð Þα + 1ð Þ
Γ nα + 1ð Þ

����
����
(

−
β

N

����
����
 

〠
n−1

k=0

�
In−1−k xð Þ

Á Sk xð Þ − Sk′ xð Þ  + I∗n−1−k xð Þ Sk xð Þ − Sk′ xð Þ 
+Qn−1−k xð Þ Sk xð Þ − Sk′ xð Þ �!

− μ + ηj j Sn−1 xð Þ − Sn−1′ xð Þ 
+D1

∂2α Sn−1 xð Þ − Sn−1′ xð Þ 
∂x2α

)
tkα
��� ���

≤
Γ n − 1ð Þαð Þ
Γ nα + 1ð Þ

(
β

N

 
〠
n−1

k=0

À
In−1−k xð Þ

+ I∗n−1−k xð Þ +Qn−1−k xð ÞÁ Sk xð Þ − Sk′ xð Þ !

+ μ + ηð Þ +D1
∂2α

∂x2α

 !
Sn−1 xð Þ − Sn−1′ xð Þ )tkα

≤
Γ n − 1ð Þαð Þ
Γ nα + 1ð Þ

(
β

N

"
〠
n−1

k=0
In−1−k xð Þ + I∗n−1−k xð Þ +Qn−1−k xð Þð Þ

+ μ + ηð Þ +D1
∂2α

∂x2α

 !#
Sn−1 xð Þ − Sn−1′ xð Þ )tkα,

P1 x, t, s tð Þð Þ − P1 x, t, s′ tð Þ
� � 

≤
β

N
Γ n − 1ð Þα + 1ð Þ

Γ nα + 1ð Þ l1 + l2 + l3 + μ + η +D
∂2α

∂x2α

 !

Á Sk xð Þ − Sk′ xð Þ ,
P1 x, t, s tð Þð Þ − P1 x, t, s′ tð Þ

� �  ≤ λ1 Sk xð Þ − Sk′ xð Þ ,
ð31Þ

where

λ1 =
β

N
Γ n − 1ð Þα + 1ð Þ

Γ nα + 1ð Þ l1 + l2 + l3 + l4 + l5ð Þ,

l1 = 〠
n−1

k=0
In−1−k xð Þ, l2 = 〠

n−1

k=0
I∗n−1−k xð Þ,

l3 = 〠
n−1

k=0
Qn−1−k xð Þ, l4 = μ + η, l5 =D1

∂2α

∂x2α
,

ð32Þ

with 0 < λ1 ≤ 1.
This implies that the function is Lipschitz continuous on

the domain fðx, t, sðtÞÞjx ∈R+, t ∈ ½0� ∪R+ and sðtÞ ∈R+g.
Following similar procedure above, the following contin-

uous functions are obtained over the domain:

P2 x, t, s tð Þð Þ − P2 x, t, s′ tð Þ
� � 

≤ λ2 Ek xð Þ − Ek′
 ,

P2 x, t, E xð Þð Þ − P2 x, t, E′ xð Þ
� � 

≤
Γ n − 1ð Þα + 1ð Þ

Γ nα + 1ð Þ

(
β

N
〠
n−1

k=0

À
In−1−k xð Þ + I∗n−1−k xð Þ

+Qn−1−k xð ÞÞ + α1 + α2 + μ + νð Þ

+D2
∂2α

∂x2α

)
En xð Þ − En′ xð Þ ,

P x, t, E xð Þð Þ − P2 x, t, E′ xð Þ
� � 

≤ λ2 En xð Þ − En′ xð Þ ,
ð33Þ

where

λ2 =
β

N
Γ n − 1ð Þα + 1ð Þ

Γ nα + 1ð Þ l1 + l2 + l3 + l4 + l5 + l6ð Þ, ð34Þ

where l6 = jα1 + α2 + μ + νj and l1 + l2 + l3 and l5 have usual
meanings.

P x, t, I xð Þð Þ − P3 x, t, I ′ xð Þ
� �  ≤ λ3 In−1 xð Þ − In−1′ ,

ð35Þ
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where

λ3 =
β

N
Γ n − 1ð Þα + 1ð Þ

Γ nα + 1ð Þ l1 + l2 + l3 + l4 + l5 + l6ð Þ, ð36Þ

where, l6 = jα1 + α2 + μ + νj and l1 + l2 + l3 and l5 have usual
meanings.

3.3. Analytic Solutions of the System of Fractional Partial
Differential Equations Using the Residual Power Series
Method. This section contains the series solutions of the
nonlinear system of equations (2)–(7), together with the ini-
tial conditions in equation (8). In using the RPSM, it is
assumed that there are discrepancies between the terms on
the right hand sides and the left hand sides of the system
of equations (2)–(7). With this assumption, the approxima-
tions of the dependent variable with respect to only one
independent variable are obtained depending on the given
initial condition or boundary point condition. The other
independent variable is automatically in fractional form
which converges to a point in the Holder’s spaces. In doing
this, we set

Sk x, tð Þ = So xð Þ + 〠
k

n=1

Sn xð Þ
Γ nα + 1ð Þ t

nα, ð37Þ

Ek x, tð Þ = Eo xð Þ + 〠
k

n=1

En xð Þ
Γ nα + 1ð Þ t

nα, ð38Þ

Ik x, tð Þ = Io xð Þ + 〠
k

n=1

In xð Þ
Γ nα + 1ð Þ t

nα, ð39Þ

I∗k x, tð Þ = I∗o xð Þ + 〠
k

n=1

I∗n xð Þ
Γ nα + 1ð Þ t

nα, ð40Þ

Qk x, tð Þ =Qo xð Þ + 〠
k

n=1

Qn xð Þ
Γ nα + 1ð Þ t

nα, ð41Þ

R∗
k x, tð Þ = Ro xð Þ + 〠

k

n=1

Rn xð Þ
Γ nα + 1ð Þ t

nα: ð42Þ

Re sk x, tð Þ = ∂αS
∂tα

− ψN − κR x, tð Þ

+ β

N
S x, tð Þ I x, tð Þ + I∗ x, tð Þ +Q x, tð Þð Þ

+ μ + ηð ÞS x, tð Þ −D1
∂2α

∂x2α
S x, tð Þ:

ð43Þ

Substituting equation (37), (39), (40), (41), and (42) into
equation (43) yields

Re sk x, tð Þ = ∂α

∂tα
So xð Þ + 〠

k

n=1

Sn xð Þ
Γ nα + 1ð Þ t

nα

 !
− ψN

− κ Ro xð Þ + 〠
k

n=1

Ro xð Þ
Γ nα + 1ð Þ t

nα

 !

+ β

N
So xð Þ + 〠

k

n=1

Sn xð Þ
Γ nα + 1ð Þ t

nα

 !

Á
(
Io xð Þ + 〠

k

n=1

In xð Þ
Γ nα + 1ð Þ t

nα + I∗o xð Þ

+ 〠
k

n=1

I∗n xð Þ
Γ nα + 1ð Þ t

nα +Qo xð Þ + 〠
k

n=1

Qn xð Þ
Γ nα + 1ð Þ t

nα

)

+ μ + ηð Þ So xð Þ + 〠
k

n=1

Sn xð Þ
Γ nα + 1ð Þ t

nα

 !

−D1
∂2α

∂x2α
So xð Þ + 〠

k

n=1

Sn xð Þ
Γ nα + 1ð Þ t

nα

 !
:

ð44Þ

To obtain S1ðxÞ, equation (43) is reduced to

Re s1 x, tð Þ = ∂α

∂tα
So xð Þ + S1 xð Þ

Γ α + 1ð Þ t
α

� �
− ψN

− κ Ro xð Þ + R1 xð Þ
Γ α + 1ð Þ t

α

� �

+ β

N
So xð Þ + S1 xð Þ

Γ α + 1ð Þ t
α

� �

Á
�
Io xð Þ + I1 xð Þ

Γ α + 1ð Þ t
α + I∗o xð Þ

+ I∗1 xð Þ
Γ α + 1ð Þ t

α +Qo xð Þ + Q1 xð Þ
Γ α + 1ð Þ t

α

�

+ μ + ηð Þ So xð Þ + S1 xð Þ
Γ α + 1ð Þ t

α

� �

−D1
∂2α

∂x2α
So xð Þ + S1 xð Þ

Γ α + 1ð Þ t
α

� �
:

ð45Þ

Setting Re sðx, 0Þ = 0, it implies that

S1 xð Þ = ψN + κRo xð Þ − β

N
So xð Þ Io xð Þ + I∗o xð Þ +Qo xð Þð Þf g

− μ + ηð ÞSo xð Þ +D1
∂2α

∂x2α
So xð Þ:

ð46Þ
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Similarly, the S2ðxÞ is obtained as

Re s2 x, tð Þ = ∂α

∂tα
S0 xð Þ + S1 xð Þ

Γ α + 1ð Þ t
α + S2 xð Þ

Γ 2α + 1ð Þ t
2α

� �

− ψN − κ R0 xð Þ + R1 xð Þ
Γ α + 1ð Þ t

α + R2 xð Þ
Γ 2α + 1ð Þ t

2α
� �

+ β

N
S0 xð Þ + S1 xð Þ

Γ α + 1ð Þ t
α + S2 xð Þ

Γ 2α + 1ð Þ t
2α

� �

Á
�
I0 xð Þ + I1 xð Þ

Γ α + 1ð Þ t
α + I2 xð Þ

Γ 2α + 1ð Þ t
2α

+ I∗0 xð Þ + I∗1 xð Þ
Γ α + 1ð Þ t

α + I∗2 xð Þ
Γ 2α + 1ð Þ t

2α

+Q0 xð Þ + Q1 xð Þ
Γ α + 1ð Þ t

α + Q2 xð Þ
Γ 2α + 1ð Þ t

2α
�

+ μ + ηð Þ S0 xð Þ + S1 xð Þ
Γ α + 1ð Þ t

α + S2 xð Þ
Γ 2α + 1ð Þ t

2α
� �

−D1
∂2α

∂x2α
S0 xð Þ + S1 xð Þ

Γ α + 1ð Þ t
α + S2 xð Þ

Γ 2α + 1ð Þ t
2α

� �
,

∂α

∂tα
Re s2 x, 0ð Þ = S2 xð Þ − κR1 xð Þ + β

N

È
S1 xð ÞÀI0 xð Þ

+ I∗0 xð Þ +Q0 xð ÞÁ + S0 xð ÞÀI1 xð Þ
+ I∗1 xð Þ +Q1 xð ÞÁÉ + μ + ηð ÞS1 xð Þ

−D1
∂2α

∂x2α
S1 xð Þ = 0,

S2 xð Þ = κR1 xð Þ − β

N

È
S1 xð Þ I0 xð Þ + I∗0 xð Þ +Q0 xð Þð Þ

+ S0 xð Þ I1 xð Þ + I∗1 xð Þ +Q1 xð Þð ÞÉ
− μ + ηð ÞS1 xð Þ +D1

∂2α

∂x2α
S1 xð Þ:

ð47Þ

Similarly, the following results are obtained:

∂α

∂tα
Re s3 x, 0ð Þ = S3 xð Þ − κR2 xð Þ + β

N

È
S2 xð ÞÀI0 xð Þ + I∗0 xð Þ

+Q0 xð ÞÁ + 2S1 xð Þ I1 xð Þ + I∗1 xð Þ +Q1 xð Þð Þ
+ S0 xð Þ I2 xð Þ + I∗2 xð Þ +Q2 xð Þð ÞÉ
+ μ + ηð ÞS2 xð Þ −D1

∂2α

∂x2α
S2 xð Þ = 0,

S3 xð Þ = κR2 xð Þ − β

N

È
S2 xð Þ I0 xð Þ + I∗0 xð Þ +Q0 xð Þð Þ

+ 2S1 xð Þ I1 xð Þ + I∗1 xð Þ +Q1 xð Þð Þ
+ S0 xð Þ I2 xð Þ + I∗2 xð Þ +Q2 xð Þð ÞÉ
− μ + ηð ÞS2 xð Þ +D1

∂2α

∂x2α
S2 xð Þ

⋮

Sn xð Þ = κRn−1 xð Þ − β

N

(
Sn−1 xð Þ I0 xð Þ + I∗0 xð Þ +Q0 xð Þð Þ

+
n − 1

1

 !
Sn−2 xð Þ I1 xð Þ + I∗1 xð Þ +Q1 xð Þð Þ+⋯

+
n − 1

r

 !
Sn−1−r xð Þ Ir xð Þ + I∗r xð Þ +Qr xð Þð Þ+⋯

+S0 xð Þ In−1 xð Þ + I∗n−1 xð Þ +Qn−1 xð Þð Þ
)

− μ + ηð ÞSn−1 xð Þ +D1
∂2α

∂x2α
Sn−1 xð Þ,

Sn xð Þ = κRn−1 xð Þ − β

N
〠
n−1

r=0

n − 1

r

 !
Sn−1−r xð ÞÀIr xð Þ

+ I∗r xð Þ +Qr xð ÞÁ − μ + ηð ÞSn−1 xð Þ +D1
∂2α

∂x2α
Sn−1 xð Þ:

ð48Þ

Similarly, we obtain the following results for EðxÞ as

E1 xð Þ = β

N
S0 xð Þ I0 xð Þ + I∗0 xð Þ +Q0 xð Þð Þf g

− α1 + α2 + μ + νð ÞE0 xð Þ +D2
∂2α

∂x2α
E0 xð Þ,

E2 xð Þ = β

N

È
S1 xð Þ I0 xð Þ + I∗0 xð Þ +Q0 xð Þð Þ

+ S0 xð Þ I1 xð Þ + I∗1 xð Þ +Q1 xð Þð ÞÉ
− α1 + α2 + μ + νð ÞE1 xð Þ +D2

∂2α

∂x2α
E1 xð Þ,

E3 xð Þ = β

N

È
S2 xð Þ I0 xð Þ + I∗0 xð Þ +Q0 xð Þð Þ

+ 2S1 xð Þ I1 xð Þ + I∗1 xð Þ +Q1 xð Þð Þ
+ S0 xð Þ I2 xð Þ + I∗2 xð Þ +Q2 xð Þð ÞÉ
− α1 + α2 + μ + νð ÞE2 xð Þ +D2

∂2α

∂x2α
E2 xð Þ,

⋮

En xð Þ = β

N
〠
n−1

r=0

n − 1

r

 !
Sn−1−r xð Þ Ir xð Þ + I∗r xð Þ +Qr xð Þð Þ

− α1 + α2 + μ + νð ÞEn−1 xð Þ +D2
∂2α

∂x2α
En−1 xð Þ:

ð49Þ

Following similar procedure, the series solutions of the
fractional PDEs for describing the number of deviant infec-
tives, number of non-deviant infectives, number of quaran-
tined persons, and number of recoveries from the COVID-
19 disease are obtained as follows:

I1 xð Þ = α1E0 xð Þ − γ1 + μ + δ1 + ω1ð ÞI0 xð Þ +D3
∂2α

∂x2α
I0 xð Þ,

I2 xð Þ = α1E1 xð Þ − γ1 + μ + δ1 + ω1ð ÞI1 xð Þ +D3
∂2α

∂x2α
I1 xð Þ,
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I3 xð Þ = α1E2 xð Þ − γ1 + μ + δ1 + ω1ð ÞI2 xð Þ +D3
∂2α

∂x2α
I2 xð Þ,

⋮

In xð Þ = α1En−1 xð Þ − γ1 + μ + δ1 + ω1ð ÞIn−1 xð Þ +D3
∂2α

∂x2α
In−1 xð Þ,

I∗1 xð Þ = α2E0 xð Þ − γ2 + μ + δ2 + ω2ð ÞI∗0 xð Þ +D4
∂2α

∂x2α
I∗0 xð Þ,

I∗2 xð Þ = α2E1 xð Þ − γ2 + μ + δ2 + ω2ð ÞI∗1 xð Þ +D4
∂2α

∂x2α
I∗1 xð Þ,

I∗3 xð Þ = α2E2 xð Þ − γ2 + μ + δ2 + ω2ð ÞI∗2 xð Þ +D4
∂2α

∂x2α
I∗2 xð Þ,

⋮

I∗n xð Þ = α2En−1 xð Þ − γ2 + μ + δ2 + ω2ð ÞI∗n−1 xð Þ +D4
∂2α

∂x2α
I∗n−1 xð Þ,

Q1 xð Þ = vE0 xð Þ + ω1I0 xð Þ + ω2I
∗
0 xð Þ − μ + ϕ + δ3ð ÞI0 xð Þ,

Q2 xð Þ = vE1 xð Þ + ω1I1 xð Þ + ω2I
∗
1 xð Þ − μ + ϕ + δ3ð ÞI1 xð Þ,

Q3 xð Þ = vE2 xð Þ + ω1I2 xð Þ + ω2I
∗
2 xð Þ − μ + ϕ + δ3ð ÞI2 xð Þ,

⋮

Qn xð Þ = vEn−1 xð Þ + ω1In−1 xð Þ + ω2I
∗
n−1 xð Þ − μ + ϕ + δ3ð ÞIn−1 xð Þ,

R1 xð Þ = ϕQ0 xð Þ + γ1I0 xð Þ + γ2I
∗
0 xð Þ + ηS0 xð Þ − μ + κð ÞR0 xð Þ,

R2 xð Þ = ϕQ1 xð Þ + γ1I1 xð Þ + γ2I
∗
1 xð Þ + ηS1 xð Þ − μ + κð ÞR1 xð Þ,

R3 xð Þ = ϕQ2 xð Þ + γ1I2 xð Þ + γ2I
∗
2 xð Þ + ηS2 xð Þ − μ + κð ÞR2 xð Þ,

⋮

Rn xð Þ = ϕQn−1 xð Þ + γ1In−1 xð Þ + γ2I
∗
n−1 xð Þ + ηSn−1 xð Þ

− μ + κð ÞRn−1 xð Þ: ð50Þ

In order to obtain the series solution for the number of
susceptible individuals, we substitute the last equation of
the system of equations (48) into equation (37) which
yields

Sk x, tð Þ = S0 xð Þ + 〠
k

n=1

1
Γ nα + 1ð Þ

(
κRn−1 xð Þ

−
β

N
〠
n−1

r=0

n − 1

r

 !
Sn−1−r xð Þ Ir xð Þ + I∗r xð Þð

+Qr xð ÞÞ − μ + ηð ÞSn−1 xð Þ +D1
∂2α

∂x2α
Sn−1 xð Þ

)
tnα:

ð51Þ

Similarly, the following results are obtained for the
number of exposed persons, deviant infectives, nondeviant

infectives, quarantined persons, and recovered persons:

Ek x, tð Þ = E0 xð Þ + 〠
k

n=1

1
Γ nα + 1ð Þ

(
β

N
〠
n−1

r=0

n − 1

r

 !

Á Sn−1−r xð Þ Ir xð Þ + I∗r xð Þ +Qr xð Þð Þ
− α1 + α2 + μ + νð ÞEn−1 xð Þ

+D2
∂2α

∂x2α
En−1 xð Þgtnα,

Ik x, tð Þ = I0 xð Þ + 〠
k

n=1

1
Γ nα + 1ð Þ

(
α1En−1 xð Þ

− γ1 + μ + δ1 + ω1ð ÞIn−1 xð Þ

+D3
∂2α

∂x2α
In−1 xð Þgtnα,

ð52Þ

I∗k x, tð Þ = I∗0 xð Þ + 〠
k

n=1

1
Γ nα + 1ð Þ

(
α2En−1 xð Þ

− γ2 + μ + δ2 + ω2ð ÞI∗n−1 xð Þ

+D4
∂2α

∂x2α
I∗n−1 xð Þ

)
tnα,

ð53Þ

Qk x, tð Þ =Q0 xð Þ + 〠
k

n=1

1
Γ nα + 1ð Þ vEn−1 xð Þf

+ ω1In−1 xð Þ + ω2I
∗
n−1 xð Þ − μ + ϕ + δ3ð Þ

Á In−1 xð Þgtnα,

ð54Þ

Rk x, tð Þ = R0 xð Þ + 〠
k

n=1

1
Γ nα + 1ð Þ ϕQn−1 xð Þ + γ1In−1 xð Þf

+ γ2I
∗
n−1 xð Þ + ηSn−1 xð Þ − μ + κð ÞRn−1 xð Þgtnα:

ð55Þ

3.4. Numerical Results. In this section, the three-
dimensional plots, as well as the two-dimensional plots,
are provided here. The initial condition for each subgroup
was taken from [28].

3.4.1. The Numerical Results for the Series Solutions of the
Nonlinear System of Fractional PDEs Using the FPSM. This
section contains the plots for the series solutions to the
system of equations (22)–(27) for α = 0:2000. Both three-
dimensional and two-dimensional plots for each series
solution of these equations are depicted in Figures 2 and
3, respectively. The initial conditions for each subgroup
of the population were estimated using the available data
in [28]. The number of susceptible decreases rapidly as
they come into contact with the infectives, both locals
and foreigners, as shown in Figure 2(a). In contrast to
the number of nondeviant infective persons (see
Figure 3(a)), the number of deviant infectives unexpect-
edly grows to its peak for a long time before it starts to
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Figure 2: Three-dimensional plots for the number of susceptible individuals, exposed persons, deviant infectives, nondeviant infectives,
quarantined persons, and recovered persons for α = 0:2000, using the FPSM.
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Figure 3: Two-dimensional plots for the number of susceptible individuals, exposed persons, deviant infectives, nondeviant infectives,
quarantined persons, and recovered persons α = 0:2000, using the FPSM.
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decline and eventually becomes asymptotically stable on
the t-axis. This implies that patients with the intention
of transmitting COVID-19 disease to the susceptible
members are the primary disease spreaders in Ghana.

For the number of susceptible, exposed, deviant, nonde-
viant, quarantined, and recovered subgroups, spatial dis-

tance is suppressed and time is varied. The first three series
solutions for the system of equations (51)-(55) were
employed to show trends in the numbers of susceptible indi-
viduals, exposed individuals, deviant infectives, nondeviant
infectives, quarantined individuals, and recovered individ-
uals. The plots were repeated for the first fifteen terms of
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Figure 4: Two-dimensional plots for the various subgroups of the population size of Ghana for α = 0:2000, using the FPSM.
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the series solutions of system of equations (51)-(55), shown
in Figure 4.

To take into account the impact of each series as the
number of terms rises, plots for the first 80 terms of the
series solutions of the system of equations (51)-(55) were
reproduced as displayed in Figure 5. While the curves
for the quarantined and recovered populations climb rap-

idly, the curve for nondeviant infected individuals declines
sharply. This indicates that the majority of nondeviant
carriers of the COVID-19 virus are not infecting suscepti-
ble members who are at risk of becoming infected. On the
other hand, a large number of COVID-19 patients are
being isolated at numerous facilities across the country,
and these people are making progress every day. The fact
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Figure 5: Two-dimensional plots for the various subgroups of the population size of Ghana for α = 0:2000, using the RPSM.

14 Advances in Mathematical Physics



that the deviant subpopulation is still growing suggests
that patients have been spreading the SARS virus for a
considerable amount of time with the intention of infect-
ing a sizable number of vulnerable individuals with the
COVID-19 infection. The plot for the exposed individuals
increases to a peak and then declines and asymptotically
moves toward the t-axis, showing that those who are vul-
nerable to contracting COVID-19 disease are at high risk.
The SARS virus starts spreading to anybody who come
into contact with it after a brief time of incubation. From
day zero, the susceptible curve declines and becomes
asymptotically toward the t-axis, signalling the end of the
disease.

In Figure 6, there is relatively positive nonlinear relation-
ship between the susceptible subgroups. This indicates that
susceptible (foreigners) continuous inflow into the country

irrespective of their home country will not ensue to the epi-
demiology of COVID-19 disease in Ghana. However, there
is a slight positive nonlinear relationship and fairly negative
nonlinear relationship between the nondeviant subpopula-
tion and the distance.

3.4.2. The Numerical Results for the Series Solutions of the
Nonlinear System of Fractional PDEs Using the RPSM.
Figure 7 displays the first three terms of the series solutions,
equations (51)-(55), with α = 0:2000. Every subgroup of the
population size in Ghana corresponds with the epidemiolog-
ical pattern of the COVID-19 disease.

3.5. Comparison of the FPSM and the RPSM. This section
uses quantitative results of the FPSM to compare the
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Figure 6: Two-dimensional plots for the various subgroups of the population size using the FPSM.
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Figure 7: Two-dimensional plots for the various subgroups of the population size using the RPSM.
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quantitative results of the RPSM which are then superim-
posed on the quantitative results from the field data.

Figure 8 displays the series solutions of the first three
terms using both the FPSM and the RPSM. The FPSM
shows that the solution rises from the starting point to
the peak and then falls, showing the loss of the suscepti-
ble members to the exposed subgroup and the exposed
subgroup’s loss of members to both the deviant and non-
deviant subgroups. On the other hand, the length of the
series solution obtained using the RPSM increases starting
with the beginning of the COVID-19 pandemic and takes
a lot of time. It begins to decline in the direction of the t
-axis, showing that the susceptible individuals who con-
tract the SARS virus also persistently infect the popula-
tion subjects. Despite this, the series solution using the
FPSM is more consistent with the field data at the start
of the disease outbreak than the series solution using
the RPSM.

On the other hand, using the RPSM is more consistent
with the field data as the COVID-19 infection is present in
the population subjects over a long period of time in com-
parison to the FPSM’s series solution. This is indicated by
the deep red plot. A similar observation was made in
Figure 9 when comparing the two series solutions using both
the FPSM and the RPSM.

4. Discussion

In contrast, the FPSM series solution for the number of
susceptible individuals is proportional to the RPSM series
solution for the number of susceptible individuals, with a
proportional constant of ψΓððn − 1Þα + 1Þ. The series solu-
tion of the vulnerable members utilizing the RPSM then
reduced quickly in comparison to the series solution using
the FPSM. For instance, the third term of the series solu-
tion using the RPSM is reduced by S1ðxÞðI1ðxÞ + I∗1 ðxÞ +
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Figure 8: Plots of the field data on the number of exposed persons and the series solutions using both the FPSM and the RPSM.
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Q1ðxÞÞ when compared to the series solution using the
FPSM. In comparison, using the RPSM in obtaining the
series solutions of the nonlinear system of equations,
(2)–(7), together with the initial conditions in equation
(8), are more consistent with the field data as compared
to the series solutions given by the FPSM, as displayed
in Figures 8 and 9.

5. Conclusion

There are more terms for the total number of susceptible
members and exposed individuals in the series of solutions
of the nonlinear system of fractional PDEs provided by the
RPSM than the series of solutions yielded by the FPSM.
The nonlinear term SðxÞðIðxÞ + I∗ðxÞ +QðxÞÞ is what
causes the difference between the two series solutions for
the number of susceptible members and exposed individ-

uals. The power of SðxÞðIðxÞ + I∗ðxÞ +QðxÞÞ is linear for
the first and second terms and then increases in the pat-
tern of natural numbers, that is, having positive integer
binomial powers, when employing the RPSM. Because
the product of this nonlinear term is differentiated, this
occurs. The nonlinear term, however, increases linearly
when the FPSM is used to find the series solutions of
the system of equations (2)–(7) along with the initial con-
ditions in equation (8). Interestingly, series solutions of the
nonlinear system of the equations using the RPSM were
observed to be more consistent as compared to series solu-
tions given by FPSM. This is due to the fact that the
RPSM utilizes the variations in the nonlinear system of
equations unlike the FPSM. However, both the RPSM
and the FPSM yield the same series solutions of the linear
system of equations, as indicated by equations (24)–(29)
and system of equations (51)–(55).
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Figure 9: Plots of the field data on the number of infected persons and the series solutions using both the FPSM and the RPSM.
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Data Availability

The data is freely available at [28] https://ourworldindata
.org/coronavirus.
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