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The irreducible representations of the extended Galilean group are used to derive the symmetric and asymmetric wave equations.
It is shown that among these equations only a new asymmetric wave equation is fundamental. By being fundamental the equation
gives the most complete description of propagating waves as it accounts for the Doppler effect, forward and backward waves, and
makes the wave speed to be the same in all inertial frames. To demonstrate these properties, the equation is applied to acoustic
wave propagation in an isothermal atmosphere, and to determine Lamb’s cutoff frequency.

1. Introduction

In modern physics, a dynamical equation is called funda-
mental if it is local, has its own Lagrangian, and remains
invariant with respect to the spatiotemporal transformations
that form a group of the metric and internal symmetries that
form a gauge group [1]. The latter is related to interactions,
which do not affect the description of free particles and
waves. The law of inertia for classical particles [2–4] and
the Schrödinger [5] and Lévy-Leblond [6] equations for
quantum particles are examples of nonrelativistic funda-
mental equations. Moreover, all the basic equations of rela-
tivistic classical and quantum physics are fundamental [1].

In nonrelativistic physics, space and time are Galilean,
and their metrics are ds21 = dx2 + dy2 + dz2 and ds22 = dt2,
respectively, with x, y, and z being the spatial coordinates
and t being time. All transformations that leave the Galilean
metrics unchanged form the Galilean group of the metric
[6], meaning that the metrics preserve their forms in all
inertial frames, and observers associated with these frames
are called Galilean observers.

For free particles in classical mechanics (CM), the law of
inertia is fundamental because it is local, has its well-known
Lagrangian [2–4], and is also invariant with respect to the
Galilean group of the metric [6]. This means that for all Gal-

ilean observers, the form of the equation describing this law
is the same. On the other hand, the second law of dynamics
may or may not be Galilean invariant depending on the
form of its force [2–4].

The wave equation of classical physics describes the prop-
agation of waves in a given background medium [7–9]; how-
ever, the wave equation is not fundamental because it is not
Galilean invariant [6, 7]. There are two main reasons: (i) the
Galilean metrics require wave equations to be asymmetric in
space and time derivatives and (ii) Galilean invariance
requires the wave speed to be the same in all inertial frames,
which is violated by any classical wave propagating slower
than the speed of light. Both reasons apply to the wave equa-
tion; therefore, it is not fundamental.

The Galilean group of the metric can be extended to
make its structure similar to that of the Poincaré group
[10, 11]. Let Ge be the extended Galilean group [9–12] with
its mathematical structure G e = ½Oð3Þ ⊗ sBð3Þ� ⊗ s½Tð3 + 1Þ
⊗Uð1Þ�, where Oð3Þ and Bð3Þ are subgroups of rotations
and boosts, respectively. In addition, Tð3 + 1Þ is an invariant
Abelian subgroup of combined translations in space and
time, and Uð1Þ is a one-parameter unitary subgroup. The
subgroup Tð3 + 1Þ plays an important role in G e because
its irreducible representations (irreps) are well-known [13,
14], and they provide labels for all the irreps of Ge [13–15].
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The Schrödinger equation of quantum mechanics (QM) is
Galilean invariant since its form remains the same when all
transformations of Ge are applied to it; however, the invariance
requires that the phase factor is introduced [5, 16–18]. By being
Galilean invariant, local, and with its Lagrangian known, the
Schrödinger equation is the fundamental equation of QM as
its form remains the same for all Galilean observers. Moreover,
the scalar wavefunction of the equation transforms as one of the
irreps of Ge, which guarantees that all Galilean observers iden-
tify the same physical object represented by the function.

The Lévy-Leblond equation [(6)] whose spinor wave
function describes elementary particles with spin in nonrel-
ativistic QM is linear, has a Lagrangian, and is also Galilean
invariant, which means that it is fundamental. Thus, the
Lévy-Leblond and Schrödinger equations are two funda-
mental wave equations of nonrelativistic QM, and they
describe particles with and without spin, respectively.

In relativistic classical physics, the wave equation for
electromagnetic waves is fundamental since the speed of
light remains the same in all inertial frames. However, there
is no similar equation in nonrelativistic physics for classical
waves propagating with speeds lower than the speed of light.
Previous attempts to use different forms of the Schrödinger
equation to describe the propagation of classical waves were
made [19–23], but the resulting equations were not funda-
mental. Therefore, the main aim of this paper is to derive
such an equation by following the recent work [24] in which
a new asymmetric wave equation was discovered, and used
to formulate a theory of cold dark matter [25].

In this paper, the conditions for the new asymmetric
wave equation to become a fundamental wave equation for
classical waves are established and discussed. To compare
the wave description given by the nonfundamental and fun-
damental wave equations, both formulations are used to
describe the propagation of acoustic waves in an isothermal
atmosphere and to determine Lamb’s cutoff frequency.

The paper is organized as follows: in Section 2, the basic
equations are derived and discussed; the wave equations and
their Lagrangians are obtained in Section 3; Galilean invariance
of the wave equations is investigated in Section 4; applications
of the obtained results to acoustic wave propagation are pre-
sented in Section 5; and conclusions are given in Section 6.

2. Derivation of Symmetric and
Asymmetric Equations

The invariant Abelian subgroup Tð3 + 1Þ of combined trans-
lations in space and time plays an important role in Ge
because its irreps are well-known [11, 13–15] and they pro-
vide labels for all the irreps of Ge [13, 14]. The conditions
that the scalar wave function ϕðt, xÞ transforms as one of
the irreps of Ge are given by the following eigenvalue equa-
tions [17, 18] (see the appendix for their derivation):

i
∂
∂t

ϕ t, xð Þ = ωϕ t, xð Þ, ð1Þ

−i∇ϕ t, xð Þ = kϕ t, xð Þ, ð2Þ

where ϕðt, xÞ is an eigenfunction of the generators of Tð3
+ 1Þ, and the eigenvalues ω and k are real constants that
label the irreps. The generator of translation in time is Ê =
i∂/∂t, and the generator of translations in space is P̂ = −i∇,
with ½Ê, P̂� = 0 being the commuting operators. The group
G e also has the generator of boosts given by V̂ = tP̂, which
means that the eigenvalues for the operators V̂ and P̂ must
be the same [17, 18]. The fact that ϕðt, xÞ obeys Equations
(1) and (2) and transforms as one of the irreps of Ge means
that all Galilean observers identify the same object, which is
a wave under consideration, and their description of this
wave is identical.

The obtained eigenvalue equations can be used to derive
all wave equations of physics for scalar wave functions that
are allowed to exist in Galilean space and time. In general,
the derived dynamical equations can be divided into two
separate families, namely, the symmetric equations, with
the same order of space and time derivatives, and the asym-
metric equations, with different orders of space and time
derivatives [17]. Moreover, the equations can be of any order
[18], but in this paper, only the second-order equations are
considered.

The only second-order symmetric equation that can be
derived from the eigenvalue equations is

∂2

∂t2
− C1∇

2
" #

ϕ t, xð Þ = 0, ð3Þ

where C1 = ω2/k2, with k2 = ðk · kÞ. Since C1 is a real con-
stant coefficient of an arbitrary value, there is an infinite
set of these second-order equations, and they are called
wave-like equations [(24)].

Two different asymmetric second-order equations result-
ing from Equations (1) and (2) can also be obtained [24]

i
∂
∂t

+ C2∇
2

� �
ϕ t, xð Þ = 0, ð4Þ

∂2

∂t2
− iC3k · ∇

" #
ϕ t, xð Þ = 0, ð5Þ

where C2 = ω/k2 and C3 = ω2/k2 = C1 are arbitrary constants.
This means that there are two infinite sets of second-order
asymmetric equations.

The form of Equation (4) is the same as that of the
Schrödinger equation [5], except for the presence of the
coefficient C2. Therefore, all equations of the same form as
Equation (4) are called Schrödinger-like equations. However,
the equations are given by Equation (5) with different coef-
ficients C3 are called new asymmetric equations, as originally
named when the equation was first introduced [24]. It must
also be noted that the constants C1, C2, and C3 are expressed
in terms of the eigenvalues, which label the irreps of Ge.

In the previous work [24], it was shown that by using the
de Broglie relationship [5], the coefficient C2 expressed in
terms of the labels of the irreps ω and k can be evaluated,
and it becomes the same as the coefficient in the Schrödinger
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equation of QM [5]. The obtained Schrödinger equation does
not include any potentials, which means that it describes free
quantum particles of ordinary matter. Moreover, the coeffi-
cient C3 of the new asymmetric equation was also evaluated,
and the resulting equation was used to describe a quantum
structure of dark matter particles [25]. In the following sec-
tion, the coefficients C1, C2, and C3 are evaluated in such a
way that the resulting equations describe classical waves.

3. Wave Equations for Classical Waves

There are infinite sets of symmetric (Equation (3)) and
asymmetric (Equations (4) and (5)) equations. To select
equations that describe classical waves, the constants C1,
C2, and C3 must be expressed in terms of the wave frequency
and wave vector as well as the wave speed. This can be
achieved by identifying the labels of the irreps ω and k as
the wave frequency and wave number, respectively, and
introducing the characteristic wave speed, cw = ω/k. Then,
Equation (3) becomes

∂2

∂t2
− c2w∇

2
" #

ϕ t, xð Þ = 0, ð6Þ

which is the well-known standard wave equation SWE
[7–9]. Moreover, the Schrödinger-like and new asymmetric
wave equations for classical waves can be written as

i
∂
∂t

+ c2w
ω
∇2

� �
ϕ t, xð Þ = 0, ð7Þ

∂2

∂t2
− ic2wk · ∇

" #
ϕ t, xð Þ = 0: ð8Þ

Observe that the obtained standard, Schrödinger-like,
and new asymmetric wave equations are of different forms,
and yet they can be used to describe the free propagation
of classical waves, as it is now demonstrated.

If the wave speed cw is constant in the above wave equa-
tions, then it is easy to verify that the solutions to the SWE
given by Equation (6) are either

ϕ t, xð Þ = Ae−i ωt−k·rð Þ + Be−i ωt+k·rð Þ, ð9Þ

or

ϕ t, xð Þ = Cei ωt−k·rð Þ +Dei ωt+k·rð Þ, ð10Þ

where A, B, C, and D are constants to be determined by
specifying boundary conditions. The solutions given by
Equations (9) and (10) are equivalent, and they reflect the
fact that

ffiffiffiffiffiffi
−1

p
= ±i, which means that the choice of solutions

is a matter of convention, and it has no physical effect [7–9].
Moreover, the first and second solutions in Equation (9)
describe the forward and backward waves, respectively, and
the same is true for Equation (10). Substitution of any solu-
tion presented above into the SWE results in the dispersion

relation ω2 = k2c2w, which verifies the choice of C1 = c2w
selected for Equation (3).

For the Schrödinger-like wave equation given by Equa-
tion (7), the only solutions that describe classical waves are
given by Equation (9) as after substituting any of these two
solutions into the equation, the dispersion relation ω2 = k2

c2w is obtained; this relation justifies the choice of C2 = c2w/ω
in Equation (4). However, the solutions given by Equation
(10) lead to the dispersion relation ω2 = −k2c2w, which does
not represent waves, instead ω = −ikcw describes exponen-
tially decaying oscillations in the background medium.

The new asymmetric wave equation given by Equation
(7) allows only for the solutions that can be written in the
following form

ϕ t, xð Þ = Aei k·r−ωtð Þ +Dei k·r+ωtð Þ, ð11Þ

where the first and second solutions represent the forward
and backward propagating waves, respectively. Substituting
any of these two solutions into the new asymmetric wave
equation gives the dispersion relation ω2 = k2c2w, which jus-
tifies the choice of C3 = c2w in Equation (5). The two other
remaining solutions of Equations (9) and (10) give the dis-
persion relation ω2 = −k2c2w, which does not describe waves
but instead exponentially decaying oscillations with ω = +ik
cw in a medium where the waves propagate.

The presented results demonstrate that all three considered
wave equations account for both the forward and backward
waves, whose dispersion relations are the same, namely, ω2 =
k2c2w, which allows expressing the coefficients C1, C2, and C3
in terms of the wave speed cw. It is also shown that the standard
wave equation allows for two solutions identified with either +i
or−i. However, the Schrödinger-like wave equation is limited to
the solutions with −i, while the new asymmetric wave equation
allows only for the solutions with +i, which means that these
two wave equations are complementary.

The derived three-wave equations are second order,
thus, they are local, which is one of the requirements for
them to be fundamental. Since the wave equations describe
freely propagating waves, the requirement of gauge invari-
ance [1] does not have to be considered. However, it remains
to be determined whether these equations have Lagrangians,
and whether they are Galilean invariant or not.

4. Lagrangians for Wave Equations

The Lagrangian formalism requires prior knowledge of a
Lagrangian from which a dynamical equation is derived.
Typically, the Lagrangians are presented without explaining
their origin because there are no methods to derive them
from first principles; however, for some systems, a Lagrang-
ian can be constructed by accounting for the invariance of
physical laws, the invariance of a physical system under con-
sideration, and the structure of its equations (linear or non-
linear, driven or undriven, damped or undamped, etc.).
Historically, most equations of physics were established first,
and only then their Lagrangians were found, often by guessing.
Once the Lagrangians are known, the process of finding the
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resulting equations is straightforward requiring the substitution
of these Lagrangians into the Euler-Lagrange (E-L) equation.
Despite some progress in deriving Lagrangians for physical sys-
tems described by ordinary differential equations (ODEs) (e.g.,
[26–31]), similar work for partial differential equations (PDEs)
has only limited applications (e.g., [9, 32, 33]).

Let Lðϕ, ∂tϕ,∇ϕÞ, where ∂t = ∂/∂t, be a Lagrangian that
satisfies the E-L equation

∂L
∂ϕ

− ∂t
∂L

∂ ∂tϕð Þ
� �

−∇ · ∂L
∂ ∇ϕð Þ
� �

= 0: ð12Þ

Substituting Lðϕ, ∂tϕ,∇ϕÞ into Equation (12) gives the
required dynamical equation if, and only if, the Lagrangian
is a priori known. In case the equation is given first, its
Lagrangian must be constructed in such a way that when
substituted into Equation (12), the desired dynamical equa-
tion is obtained; this is the Lagrangian formalism.

Since the SWE given by Equation (6) is hyperbolic, its
Lagrangian can be constructed [9, 32], and the result is

Lswe ∂tϕ,∇ϕð Þ = 1
2 c−2w ∂tϕð Þ2 − ∇ϕð Þ2Â Ã

: ð13Þ

It is easy to verify that the substitution of the Lagrangian
L = Lsweð∂tϕ,∇ϕÞ into Equation (12) gives the required sym-
metric wave-like equation.

The Schrödinger-like wave equation given by Equation
(7) is parabolic; thus, its Lagrangian must be of a special
form involving both ϕ and its complex conjugate ϕ∗ [32].
The form of this Lagrangian is

LSch ϕ, ϕ∗, ∂tϕ, ∂tϕ∗,∇ϕ,∇ϕ∗ð Þ = i
2 ϕ∗∂tϕ − ϕ∂tϕ

∗ð Þ − c2w
ω

∇ϕ∗ð Þ · ∇ϕð Þ:
ð14Þ

This Lagrangian gives the Schrödinger-like wave equa-
tion when substituted into the E-L equation for the varia-
tions in ϕ∗. On the other hand, the variations in ϕ lead to
the complex conjugate Schrödinger-like wave equation,
which becomes important when the probability density
jϕj2 is required. However, in theories of classical waves,
jϕj2 does not play any significant role as it does in QM [5].

To find the Lagrangian for the new asymmetric wave
equation given by Equation (8), the Lagrangian for the
Schrödinger-like wave equation must be modified as

Lasy ϕ, ϕ∗, ∂tϕ, ∂tϕ∗,∇ϕ,∇ϕ∗ð Þ = ∂tϕ
∗ð Þ ∂tϕð Þ

++ i
2 c

2
w ϕ∗ k · ∇ϕð Þ − ϕ k · ∇ϕ∗ð Þ½ �:

ð15Þ

Then, this Lagrangian is substituted into the E-L equation

∂Lasy
∂ϕ∗

− ∂t
∂Lasy

∂ ∂tϕ
∗ð Þ

� �
− k · ∇ð Þ · ∂Lasy

∂ k · ∇ϕ∗ð Þ
� �

= 0, ð16Þ

and the new asymmetric wave equation (see Equation (8)) is
obtained.

The presented results demonstrate that Lagrangians exist
for the symmetric and asymmetric wave equations and that
these equations are local. Therefore, the last requirement
for a wave equation to be called fundamental is its Galilean
invariance, which is now investigated.

5. Galilean Invariance of Wave Equations

5.1. Known Fundamental Equations of Nonrelativistic
Physics. Let S and S′ be two inertial frames moving with
respect to each other with the velocity v = const, which
allows writing a boost as x = x′ + vt ′ with t ′ = t. Then, the
Galilean metric in space is ds2 = dx · dx = dx2 + dy2 + dz2

with ds2 = ds′2, and in time dt2 = dt ′2. By performing the
Galilean transformations (translations in space and time,
rotations, and boosts) that form the Galilean group of the
metric [10] or the extended Galilean group Ge [12], Galilean
invariance of the metrics can be verified. The invariance
means that the forms of the metrics remain the same for
all Galilean observers.

Similarly, for a dynamical equation to be Galilean invari-
ant, it is required that the form of the equation remains the
same in all inertial frames. This means that the coefficients
of this equation must also be the same in all inertial frames.
With the equation retaining its form, the solutions of this
equation are also the same for all Galilean observers. The
simplest example is the second-order ODE describing the
law of inertia, whose invariance with respect to all transfor-
mations that form the Galilean group of the metrics is well-
known [3, 10]. It is also known that the Lagrangian of the
law of inertia is not Galilean invariant [2, 3, 10]; however,
it was recently shown that Galilean invariance of the
Lagrangian can be restored by using the so-called null
Lagrangians [34]. Thus, the law of inertia is a fundamental
equation of classical mechanics.

As shown above, space and time in Galilean relativity are
separated and obey different metrics. Therefore, for dynam-
ical equations to be Galilean invariant they must be asym-
metric in time and space derivatives. The ODE describing
the law of inertia is asymmetric as it does not have any space
derivative. However, among the wave equations obtained in
this paper and given by Equations (6), (7), and (8), the SWE
is symmetric and the two other wave equations are asym-
metric. As a result, the SWE is not Galilean invariant and,
thus, it is not fundamental. In other words, for classical par-
ticles, the law of inertia is the fundamental equation, but
there is no corresponding fundamental equation for classical
waves. The main objective of this paper is to find such an
equation and apply it to wave theories.

The Schödinger equation of QM is asymmetric and its
Galilean invariance is well-known, requiring a phase factor,
whose form is frame-dependent [5, 12, 16–18]. The exis-
tence of this phase factor makes the wavefunction to be dif-
ferent for each Galilean observer, which may imply that the
equation is not Galilean invariant. However, the presence of
the phase factor in the solutions does not violate Galilean
invariance because in QM only the square of the absolute
value of the wavefunction is the measurable quantity, and
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this quantity remains the same for all Galilean observers.
Thus, the Schrödinger equation for free quantum particles
is a fundamental equation of QM. Similarly, the Lévy-
Leblond equation for its spinor wavefunction is Galilean
invariant and a fundamental equation of QM [6, 12]. More-
over, the Lagrangians for the Schrödinger and Lévy-Leblond
equations are Galilean invariant.

Having demonstrated that the law of inertia and the
Schrödinger and Lévy-Leblond equations are the fundamen-
tal equations of nonrelativistic physics, and the SWE cannot
be a fundamental equation for classical waves, it remains
now to determine whether the Schrödinger-like and new
asymmetric equations are fundamental.

5.2. Schrödinger-Like Wave Equation. Applying the Galilean
transformations to Equation (7), the transformed
Schrödinger-like wave equation can be written as

i
∂
∂t ′

+ cw′ 2
ω′

∇′2
" #

ϕ′ t ′, x′
� �

= 0, ð17Þ

where the original and transformed wave functions are
related by

ϕ t, xð Þ = ϕ t ′, x′ + vt ′
� �

= ϕ′ t ′, x′
� �

eiη t ′,x ′ð Þ, ð18Þ

with the phase factor given by

η t ′, x′
� �

= ω′
2cw′

2 v · x′ + v2t ′/2
� �

: ð19Þ

For the obtained transformed Schrödinger-like wave
equation to be Galilean invariant, it is also required that c2w
/ω = cw′ 2/ω′. This condition is satisfied when

k′ = k − ω

2c2w
v, ð20Þ

ω′ = ω 1 + v2

4c2w

� �
− k · v: ð21Þ

The above results demonstrate that the Schrödinger-like
wave equation preserves its form in all inertial frames if, and
only if, the wavefunction transforms according to Equation
(18), and Equations. (20) and (21) are satisfied. The exis-
tence of the phase factor given by Equation (19), which is
a frame-dependent quantity, is well-known, and its presence
does not violate Galilean invariance of the Schödinger equa-

tion in QM because of its requirement that only jϕðt, xÞj2
= jϕ′ðt ′, x′Þj2 must be valid for all Galilean observers [5,
12, 16–18].

For classical waves, the wavefunction ϕðt, xÞ represents
one of the physical variables describing a wave; thus, to get
the same wave description by all Galilean observers, the
solutions for ϕðt, xÞ and ϕ′ðt ′, x′Þ must be the same in all
inertial frames. However, they are not because of the pres-

ence of the phase factor (see Equation (18)) that is different
in different inertial frames. As a result, Galilean observers
describe waves differently in their inertial frames, which
means that the Schrödinger-like equation for classical waves
is not Galilean invariant, and therefore it is not fundamental.

5.3. New Asymmetric Wave Equation. Let ϕðt, xÞ be the
wavefunction of Equation (8) and ϕðx′, t ′Þ be the trans-
formed wavefunction. After performing the Galilean trans-
formations, Equation (8) becomes

∂2

∂t ′2
− icw′ 2k′ · ∇′

" #
ϕ t ′, x′
� �

= 2 v · ∇′
� � ∂

∂t ′
− v · ∇′
� �2� �

ϕ t ′, x′
� �

:

ð22Þ

A comparison of this equation to Equation (8) shows
that its LHS is of the same form as the new asymmetric wave
equation if, and only if, the RHS is zero. Let ϕ′ðt ′, x′Þ be the
wavefunction that satisfies the RHS of Equation (22). As
already demonstrated [24], the solution to the RHS of Equa-
tion (22) is any function ϕ′ðt ′, x′Þ = ϕ′ðr′Þ, where r′ = x′
+ vt ′/2.

Then, with ϕðt ′, x′Þ = ϕ′ðt ′, x′Þ = ϕ′ðr′Þ, the LHS of
Equation (22) can be written as

d2

dr′2
− i

2cw′
v

 !2

k′ · d

dr′

" #
ϕ′ r′
� �

= 0: ð23Þ

Using the Galilean transformations, r′ = x − vt/2 ≡ r,
and Equation (8) becomes

d2

dr2 − i
2cw
v

� �2
k · d

dr

" #
ϕ rð Þ = 0, ð24Þ

where ϕðrÞ = ϕðt, xÞ = ϕðt ′, x′Þ = ϕ′ðt ′, x′Þ = ϕ′ðr′Þ. Then,
Equations (23) and (24) are of the same form if, and only if,
cw′ = cw and k′ = k. To show that these conditions are valid,
let the phase of a wave in the inertial frame S′ be given by

k′ · r′ = k′ · x′ + 1
2 k′ · v
� �

t ′ = k′ · x′ + 1
2

ω′
cw′

 ! ck′ · v̂� �
vt ′,

ð25Þ

where k̂ and v̂ are unit vectors corresponding to k and v,
respectively. It must also be noted that the dispersion relation
ω′ = k′cw′ was used to obtain the wave phase.

After the Galilean transformations, Equation (25)
reduces to

k′ · r′ = k′ · x − 1
2

ω′
cw′

 ! ck′ · v̂� �
vt, ð26Þ

which represents the forward waves in an inertial frame S′
(see Equation (11)). However, since ðk̂′ · v̂Þ = cos θ′ can be
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either positive or negative, k′ · r′ may also describe the back-
ward waves if cos θ′ < 0. This can be fixed by writing

k′ · r′ = k′ · x ± 1
2

ω′
cw′

 ! ck′ · v̂���� ����vt, ð27Þ

where the + and − signs correspond to the backward and
forward waves, respectively.

On the other hand, the wave phase in an inertial frame S is

k · r = k · x ± 1
2

ω

cw

� �
k̂ · v̂
��� ���vt, ð28Þ

with the + and − signs corresponding to the backward and for-
ward waves, respectively.

The requirement of Galilean invariance is that the wave
phases are the same in all inertial frames, which means that
k′ · r′ = k · r. Hence,

k′ − k
� �

· x ± 1
2

ω′
cw′
ck′ · v̂���� ���� − ω

cw
k̂ · v̂
��� ���" #

vt = 0, ð29Þ

which is only satisfied when k′ = k and ω′/cw′ = ω/cw.
With k′ = k = const (see Equation (2)), Equations (22)

and (23) can be written in the following form:

d

d k′ · r′
� � d

d k′ · r′
� � − i

2cw′
v

 !224 35ϕ′ k′ · r′
� �

= 0, ð30Þ

d
d k · rð Þ

d
d k · rð Þ − i

2cw
v

� �2
" #

ϕ k · rð Þ = 0: ð31Þ

Since k′ · r′ = k · r, ϕ′ðk′ · r′Þ = ϕðk · rÞ, and cw′ = cw, the
above equations are of the same form, they are Galilean
invariant, and this invariance does not require any phase
factor. However, the form of Equation (31) is very different
from that of the original new asymmetric equation given
by Equation (8), which means that in order for this equation
to be fundamental, the existence of its Lagrangian must be
established.

5.4. Fundamental Wave Equation for Classical Waves. The
Galilean invariant equation (Equation (31)) is an ordinary dif-
ferential equation, whose Lagrangian can be found by one of
the methods previously developed for ODEs (e.g., [26–31]).
The Lagrangian for Equation (31) can be written as

Las dkrϕ, k · rð Þ = 1
2 dkrϕ k · rð Þ½ �2e−4i k·rð Þc2w/v2 , ð32Þ

where dkr = d/dðk · rÞ. The derived Lagrangian depends on the
wave phase k · r that involves both x and t.

In CM, the dependence of Lagrangians on t implies that
the total energy of a dynamical system is not conserved and,
as a result, the energy function must be calculated [3, 4]. For

physical systems with their Lagrangians explicitly time-
dependent, the exponentially decaying or increasing terms
are present, like in the well-known Caldirola-Kanai Lagrang-
ian [35, 36], originally written for the Bateman oscillator [37,
38]. However, the Lagrangian given by Equation (32) is of a
different form as its exponential term is periodic in k · r
instead. Since the first term on the RHS in Equation (32)
represents the wave kinetic energy, the exponential term
shows that this energy is required to oscillate in time and
space in the Lagrangian so that the correct wave equation
is obtained. This is a new phenomenon in classical waves
and, thus, Lnewðdkrϕ, k · rÞ forms a separate class among all
Lagrangians known in physics.

To demonstrate that the Lagrangian Lasðdzϕ, zÞ is Gali-
lean invariant, the Galilean transformations are applied,
and the following transformed Lagrangian is found

Las′ dkr′ ϕ′, k′ · r′
� �

= 1
2 dkr′ ϕ′ k′ · r′

� �h i2
e−4i k ′ ·r′ð Þcw′ 2/v2 ,

ð33Þ

where dkr′ = d/dðk′ · r′Þ. The transformed Lagrangian is of
the same form as the original one given by Equation (32)

because k · r = k′ · r′, ϕðk · rÞ = ϕ′ðr′ · k′Þ, and c2w/v2 = cw′
2/

v2. Therefore, the Lagrangian Lasðdkrϕ, k · rÞ is Galilean
invariant.

After substituting the Lagrangian given by Equation (32)
into the E-L equation

dkr
dLas

d dkrϕð Þ
� �

−
dLas
dϕ

= 0, ð34Þ

the following equation is obtained

d2ϕ

d k · rð Þ2 − i
2cw
v

� �2 dϕ
d k · rð Þ

" #
e−4i k·rð Þc2w/v2 = 0: ð35Þ

Since e−4iðk·rÞc
2
w/v2 ≠ 0, the terms in the square brackets

must be zero, which gives Equation (31). This shows that
in addition to being local and Galilean invariant, Equation
(31) can also be derived from the Lagrangian given by Equa-
tion (32). With its Lagrangian known and Galilean invari-
ance of the Lagrangian verified, Equation (31) is the new
fundamental asymmetric wave equation or simply the fun-
damental wave equation (FWE). By being fundamental, the
FWE gives the most comprehensive description of free clas-
sical waves, as it accounts for the Doppler effect, the forward
and backward waves, and makes the wave speed to be the
same in all inertial frames.

The wave speed cw is constant for all Galilean observers,
and since v = const, the coefficient 4c2w/v2 = const. This is an
interesting result. It shows that this coefficient plays a similar
role for classical waves in Galilean relativity as the speed of
light c plays in the special theory of relativity (STR) for elec-
tromagnetic (EM) waves. However, while c = const is the
basic principle of nature and the foundation of STR, the
coefficient 4c2w/v2 = const is the necessary condition for
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Galilean invariance, and its validity is guaranteed by the
existence of the FWE and by selecting the wave phase as
the variable representing the waves.

Thus, the main result of this paper is that classical waves
propagating at speeds cw < <c may “mimic” the behavior of
EM waves in STR when they are described by the FWE.
For this reason, it is suggested that these waves be called
the basic classical waves in Galilean Relativity.

6. Applications to Acoustic Wave Propagation

6.1. Freely Propagating Acoustic Waves. Acoustic waves
propagate freely in uniform media, and the solutions of
the SWE that describe such propagation are given by
Equations (9) and (10), with the wave frequency ω and
the wave vector k being frame-dependent (the Doppler
effect); this means that Galilean observers see plane waves
with their frequencies and wave vectors being different in
their respective inertial frames moving with constant
velocity v. Therefore, the SWE is not Galilean invariant,
and thus it is not fundamental.

Finding the solutions to the FWE given by Equation (31)
is straightforward. After two integrations, it yields

ϕ k · rð Þ = c1e
iθs + c2, ð36Þ

where c1 and c2 are integration constants, and the phase of
the acoustic wave is

θs ≡
2cs
v

� �2
k · rð Þ = 2cs

v

� �2
k · x ± 1

2
v
2cs

� �
k̂ · v̂
��� ���ωt� �

,

ð37Þ

where cw ≡ cs is the speed of sound. The solution for ϕðk · rÞ
describes both the forward and backward propagating
acoustic waves (see Equation (11)). The conditions k · r = k
′ · r′ and ð2cs/vÞ2 = ð2cs′/vÞ

2
guarantee that the solution is

the same in all inertial frames and that it accounts for the
Doppler effect. Thus, the above solution shows that its
description of acoustic waves freely propagating in a uni-
form medium is much more comprehensive than that given
by the SWE.

In the next section, the assumption of uniform media is
removed and a gradient of density is included, making the
background medium stratified.

6.2. Lamb’s Cutoff Frequency. In his original work, Lamb
[39–41] considered acoustic waves propagating in the z
-direction in the background medium with gravity g! = −gẑ
and density gradient ρ0ðzÞ = ρ00 exp ð−z/HÞ, where ρ00 is
the gas density at the height z = 0, and H = c2s /γg is the den-
sity scale height, with γ denoting the ratio of specific heats.
In his model, the background gas pressure p0 and gas density
ρ0 vary with height z; however, the temperature T0 remains
constant. As a result, H = const and cs = const.

This stratified but otherwise isothermal medium is often
referred to as an isothermal atmosphere, and acoustic waves
in this atmosphere are described by the following variables:

velocity uðt, zÞ, pressure pðt, zÞ and density ρðt, zÞ perturba-
tions. The resulting acoustic wave equation (AWE) is
derived for the transformed wave variables u1ðt, zÞ = uðt, zÞ
ρ1/20 , p1ðt, zÞ = pðt, zÞρ−1/20 , and ρ1ðt, zÞ = ρðt, zÞρ−1/20 using
the hydrodynamic equations [40–43]. The resulting wave
equation can be written as

∂2

∂t2
− c2s

∂2

∂z2
+Ω2

ac

" #
u1 t, zð Þ, p1 t, zð Þ, ρ1 t, zð Þ½ � = 0, ð38Þ

where the speed of sound is cs = ½γp0ðzÞ/ρ0ðzÞ�1/2 =
½γRT0/μ�1/2, while the acoustic cutoff frequency Ωac = cs/2H
= γg/2cs remains constant in the entire isothermal atmo-
sphere [39–43]. The Lamb cutoff frequency describes the
effects of the atmospheric density gradient on acoustic wave
propagation, and it is used to determine the wave propaga-
tion conditions (see Section 6.4). Note also that the form
of the wave equation is the same for each wave variable in
an isothermal atmosphere.

The fact that the form of the derived AWE remains the
same at every height in an isothermal atmosphere is well-
known, and it was first shown by Lamb [39–41]. However,
different inertial observers see the waves differently, namely,
with their different characteristic speeds, frequencies, and
wave vectors. Different waves seen in different inertial
frames mean that the theory of waves based on the AWE
is not fundamental because it is not the same for all Galilean
observers.

In numerous studies of propagation of acoustic waves
that followed Lamb’s work, different aspects of the wave
propagation were investigated by using methods based on
either global and local dispersion relations, or the WKB
approximation, or finding analytical solutions to acoustic
wave equations for special cases [44–46]. A method to deter-
mine the cutoff frequency for linear and adiabatic acoustic
waves propagating in nonisothermal media without gravity
was also developed [43] based on transformations of wave
variables that lead to standard wave equations and using
the oscillation theorem to determine the turning point fre-
quencies. Physical arguments are used to select the largest
of these frequencies as the Lamb cutoff frequency. In this
paper, the Lamb cutoff frequency is obtained for the new
fundamental wave equation.

6.3. Fundamental Wave Equation and Lamb’s Cutoff
Frequency. The acoustic wave equation given by Equation
(38) is obtained from the hydrodynamic equations. It is easy
to show that neither the Schrödinger-like wave equation
nor the new asymmetric wave equation can be derived
using only the hydrodynamic equations. However, both
wave equations can be derived from the hydrodynamic
equations if, and only if, these equations are supplemented
by the eigenvalue equations. Specifically, the Schrödinger-
like wave equation is obtained when the eigenvalue equa-
tion given by Equation (1) is applied to Equation (38).
However, the Schrödinger-like wave equation is not funda-
mental (see Section 5.2); therefore, the equation will not
be further considered here.
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Instead, the new asymmetric equation given by Equation
(7) is considered. By applying the eigenvalue equation given
by Equation (2) to Equation (38), the following equation is
obtained

∂2

∂t2
− ikc2s

∂
∂z

+Ω2
ac

" #
ϕ t, zð Þ = 0: ð39Þ

For the considered acoustic wave propagation along the
z-axis, the label k of the irreps of G e is identified with the
wave vector and k = k · ẑ. In addition, the wavefunction ϕðt
, zÞ represents one of the acoustic wave variables in Equation
(38).

The results presented in Section 5.3 demonstrate that the
new asymmetric wave equation can be converted into a form
that is Galilean invariant (see Equation (31)). Applying the
results to Equation (39), the resulting wave equation is

d2

dχ2 − i
2cs
v

� �2 d
dχ

+ 2Ωac
kv

� �2
" #

ϕ χð Þ = 0, ð40Þ

where χ = k · r = kðz ± jẑ · v̂jvt/2Þ. Since Ωac = γg/2cs, with
cs = cs′, k = k′, and with γ and g being the same in all inertial
frames, Equation (40), and its solutions are the same for all
Galilean observers; this means that the derived equation is
the FWE for the considered acoustic waves. The obtained
FWE describes the effects of an isothermal atmosphere on
acoustic wave propagation. Thus, Equation (40) generalizes
Equation (31), which describes only freely propagating
acoustic waves in a medium without any gradients.

As a result of the Galilean transformations, the term that
represents Lamb’s cutoff frequency is now modified by the
factor 2/kv, which describes the effects of moving inertial
frames on the cutoff. These effects are more prominent for
smaller velocities v and wavevectors k. All the presented
results are valid for v > 0 (see Section 5.1), which means that
if S′ moves with respect to S with velocity v, then S moves
with respect to S′ with velocity −v. In the case where there
is only one stationary inertial frame with v = 0, this frame
must be treated separately by using Equation (8) that is
not Galilean transformed. It is also important to point out
that any Galilean observer may boost its inertial frame to
the wave frame by setting v = cs.

6.4. Conditions for Acoustic Wave Propagation. As originally
demonstrated by Lamb [39–41], the frequency Ωac uniquely
determines whether acoustic waves in an isothermal atmo-
sphere are propagating or evanescent. Since Ωac = const in
the isothermal atmosphere, after making the Fourier trans-
forms in time and space, the AWE (Equation (38)) gives
the global dispersion relation: ðω2 −Ω2

acÞ = k2c2s , where ω is
the wave frequency and k = k · ẑ is the wave vector. The
obtained dispersion relation is valid in one selected inertial
frame, which is called stationary. In this frame, the waves
are propagating when ω >Ωac and k is real, and they are
nonpropagating (evanescent) when either ω =Ωac with k =
0 or ω <Ωac with k being imaginary.

When a Galilean observer moves with velocity v with
respect to the stationary frame, then the wave frequency
(the Doppler effect), wave vector, and characteristic wave
speed change, which means that ðω′2 −Ωac′ 2Þ = k′2cs′2; the
dispersion relation preserves its form, but the values of the
wave parameters change from one inertial frame to another.
With Ωac ≠Ωac′ , the acoustic cutoff frequency is different in
different inertial frames.

The same conditions for wave propagation are obtained
when the Fourier transforms in time and space are per-
formed in the new asymmetric wave equation (Equation
(39)), and the result is ðω2 −Ω2

acÞ = k2c2s , which is the same
as the dispersion relation obtained for the AWE. Thus, the
conditions for wave propagation are also the same. However,
neither the AWE given by Equation (38) nor the new asym-
metric wave equation given by Equation (39) is fundamen-
tal. The only FWE is given by Equation (40). The
conditions for wave propagation resulting from this equa-
tion are now determined and discussed.

To find the conditions for acoustic wave propagation in
an isothermal atmosphere, the FWE given by Equation
(40) must be solved. The obtained solutions ϕ1ðχÞ and ϕ2ð
χÞ are

ϕ1,2 χð Þ = exp i
2

2cs
v

� �2
1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + v

cs

� �2 Ω2
ac

ω2 −Ω2
ac

s !
χ

" #
,

ð41Þ

and their superposition gives the general solution ϕðχÞ =
C1ϕ1ðχÞ + C2ϕ2ðχÞ. Note that the dispersion relation k2c2s
= ðω2 −Ω2

acÞ was used to derive Equation (41). Using the
dispersion relation, the wave phase χ = k · r = kðz ± jẑ · v̂jvt/
2Þ can be written as

χ = z
cs

± 1
2
v
cs

ẑ · v̂j jt
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 −Ω2
ac

q
, ð42Þ

which allows writing the solutions given by Equation (41) in
the following form

θ1,2 t, zð Þ = cs
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −Ω2

ac

q
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1 − v2

c2s

� �
Ω2

ac

s" #
2z
v

± ẑ · v̂j jt
� �

,

ð43Þ

and the general solution becomes

ϕ t, zð Þ = C1e
iθ1 t,zð Þ + C2e

iθ2 t,zð Þ: ð44Þ

This solution and its wave phases are now used to deter-
mine the conditions for the propagation of acoustic waves in
an isothermal atmosphere.

The general solution given by Equation (43) shows that
any real θ1ðt, zÞ and θ2ðt, zÞ describe propagating waves.
On the other hand, imaginary wave phases make the general
solution exponentially decay, which corresponds to nonpro-
pagating (or evanescent) waves. There are several cases of
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interest that are now considered. If ω > >Ωac, then the wave
phases are θ1ðt, zÞ = ð2z/v ± jẑ · v̂jtÞω and θ2ðt, zÞ = 0, with
the first phase representing a freely propagating acoustic
wave along the z − axis, and the second phase is a trivial
(constant) solution that shows no acoustic wave; these
results are consistent with a more general (3-dimensional)
solution given by Equations (36) and (38). The obtained
results demonstrate that the propagation of very high-
frequency acoustic waves is not affected by the stratification
of the isothermal atmosphere.

The effects of medium stratification on the acoustic wave
propagation become important when ω ≳Ωac; in this case,
the wave phase is given by Equation (43) and both solutions
contribute to ϕðz, tÞ given by Equation (44). The most inter-
esting case is when ω =Ωac, which gives θ1,2ðt, zÞ = ±ð2z/v
± jẑ · v̂jtÞΩac, showing that propagating acoustic waves cease
to exist as they are replaced by oscillations of the atmosphere
with its natural frequency Ωac. The existence of oscillations
in planetary, solar, and stellar atmospheres is well known
[47–49]. The origin of solar 5min oscillations is attributed
to the acoustic waves trapped in the solar interior [48]; how-
ever, the 3min oscillations of the solar atmosphere are
driven by the propagating acoustic waves [50]. The results
presented in this paper demonstrate that the propagation
of acoustic waves is terminated when ω =Ωac, and that the
solar atmosphere begins to oscillate with its natural fre-
quency Ωac, which is also the cutoff frequency for acoustic
waves, as it was first shown by Lamb [39–41].

Having demonstrated that acoustic wave propagation is
terminated in the limit when ω⟶Ωac, this means that Ωac
is the Lamb (acoustic) cutoff frequency. It must be now veri-
fied that the wave phases given by Equation (43) become
imaginary for any ω <Ωac, that is, the solutions ϕ1,2ðt, zÞ are
exponentially decaying and the waves are evanescent. If ω ≲
Ωac, the wave phases are imaginary and given by

θ1,2 t, zð Þ = i
cs
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

ac − ω2
q

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2s

� �
Ω2

ac − ω2

s" #
2z
v

± ẑ · v̂j jt
� �

:

ð45Þ

In general, the term ½ð1 − v2/4c2s ÞΩ2
ac − ω2� > 0, but it may

also become negative if v > 2cs, which means that if the second
term of these phases becomes imaginary, then this term would
give oscillatory solutions. However, this does not affect the
general solution as the exponential decay caused by the first
term takes over and makes the entire solution evanescent.
Similarly, when ω < <Ωac, the wave phases become

θ1,2 t, zð Þ = i
cs
v

Ωac ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2s

� �s
Ωac

" #
2z
v

± ẑ · v̂j jt
� �

,

ð46Þ

showing that the solutions are exponentially decaying. Based
on the above discussion, the obtained results are valid in both
cases when v ≤ 2cs as well as when v > 2cs. Thus, acoustic
waves of all frequencies lower thanΩac are always evanescent.

The presented results show that the FWE for acoustic
waves can be derived from the hydrodynamic equations
after using the eigenvalue equation given by Equation
(2). As a result, the FWE directly displays the characteris-
tic atmospheric frequency Ωac similar as the AWE does.
By solving the FWE for acoustic waves, it is demonstrated
that Ωac is the Lamb (acoustic) cutoff frequency that
uniquely determines the conditions for the acoustic wave
propagation, which is consistent with the original results
presented by Lamb in 1910 [39]. However, there are main
differences between the results presented in this paper and
those obtained by Lamb [39–41], namely, Lamb’s results
are valid in only one stationary inertial frame S, which is
selected to describe the waves, while the presented results
are the same for all inertial observers in the Galilean space
and time. In other words, for all Galilean observers, the
waves have the same wave speed, frequency, and wave-
number, and their propagation conditions remain also
frame-independent, which shows that the newly formu-
lated theory of acoustic waves based on the FWE is
fundamental.

In realistic physical situations where the wave speed is
not constant and wave damping and nonlinearities may be
present, the FWE may lose its status as being fundamental.
Nevertheless, it will still remain another wave equation,
which may be applicable to some physical situations involv-
ing classical waves as the Schrödinger equation has been
used [19–23].

7. Conclusions

A method based on the irreps of the extended Galilean
group is used to derive infinite sets of symmetric and
asymmetric second-order PDEs with constant coefficients
of arbitrary real values. The obtained results demonstrate
that among these equations only one asymmetric equation
is a new fundamental wave equation, which gives the most
complete description of propagating waves as it accounts
for the Doppler effect, forward and backward waves, and
makes the wave speed to be the same in all inertial frames.
Thus, the main result of this paper is that classical waves
propagating at speeds cw < <c may “mimic” the behavior
of electromagnetic waves when they are described by the
FWE. It is suggested that these waves be called the basic
classical waves in Galilean Relativity because they “mimic”
the behavior of EM waves in the special theory of
relativity.

Contrary to the standard wave equation and the
Schrödinger equation for classical waves, which are
second-order PDEs, the new fundamental asymmetric
wave equation discovered in this paper is an ODE. The
conversion from the PDE to ODE was achieved by using
wave phases as the independent wave variables that
depend on both time and space. An interesting result of
this paper is that only the new asymmetric equation can
be converted into the fundamental wave equation and that
its form resembles the law of inertia. The mathematical
forms of both equations are similar; however, the new fun-
damental asymmetric wave equation has one extra term
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that allows for periodic solutions. This may suggest that
the derived fundamental wave equation plays the same
role for classical waves in theories of waves as the law of
inertia plays for classical particles in CM.

The fundamental wave equation is applied to the prop-
agation of acoustic waves in an isothermal atmosphere.
The analysis shows that the wave propagation conditions
are uniquely determined by the existence of the atmo-
spheric natural frequency, which is identified with the
acoustic cutoff frequency originally introduced by Lamb
[39]. However, while Lamb’s wave description and its cut-
off frequency are frame-dependent, the wave description
given by the new fundamental wave equation (Equation
(40)) and its acoustic cutoff remains the same for all Gal-
ilean observers in their inertial frames. The presented the-
ory of waves based on the fundamental wave equation also
predicts the existence of atmospheric oscillations with the
natural atmospheric frequency that are driven by the pro-
cess of the propagating waves becoming evanescent when
their frequencies become equal to the Lamb frequency.

Appendix

Derivation of the Eigenvalue Equations

Let us consider a set of N functions that forms a basis of
an N-dimensional representation given by a set of N ×N
matrices A for each irrep, and for each element of the
group

bα f kð Þ
l =〠

m

Aml bαð Þf kð Þ
m , ðA:1Þ

where α is one of the elements of the group, k labels the
irreps, and l is one of the members of the set of N func-
tions satisfying Equation (A.1). In addition, the sum on
m is over the N members of the set, and the matrices A
are unitary.

Writing Equation (A.1) for space translations a, the
result is

T̂aψ t, xð Þ ≡ ψ t, x + að Þ = eik·aψ t, xð Þ: ðA:2Þ

Making the Taylor series expansion of ϕðr + aÞ, one
gets

ϕ t, x + að Þ = exp i −ia · ∇ð Þ½ �ϕ t, xð Þ: ðA:3Þ

Comparing Equation (A.3) to Equation (A.2), the fol-
lowing eigenvalue equation is obtained

−i∇ϕ t, xð Þ = kϕ t, xð Þ, ðA:4Þ

which is the eigenvalue equation given by Equation (2).
For the time translation t0, one obtains

T̂t0
ψ t, xð Þ ≡ ψ t + t0, xð Þ = e−iωt0ψ t, xð Þ: ðA:5Þ

Comparison of this equation to the Taylor series
expansion

ϕ t + t0, xð Þ = exp i −it0∂/∂tð Þ½ �ϕ t, xð Þ, ðA:6Þ

gives

i
∂
∂t

ϕ t, xð Þ = ωϕ t, xð Þ, ðA:7Þ

which is the eigenvalue equation given by Equation (1).
The derived eigenvalue equations represent the neces-

sary conditions that ϕðt, xÞ transforms as one of the irreps
of Tð3 + 1Þ [17]. The above results also show that the irreps
of the group Tð3 + 1Þ are labeled by the real vector k and the
real scalar ω, and there are no other restrictions on these
quantities. It must also be mentioned that these labels are
preserved in the irreps of the entire Ge because Tð3 + 1Þ is
its invariant subgroup [12].
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