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Complex fuzzy sets (CFSs) have recently emerged as a potent tool for expanding the scope of fuzzy sets to encompass wider ranges
within the unit disk in the complex plane. This study explores complex fuzzy numbers and introduces their application for the first
time in the literature to address a complex fuzzy partial differential equation that involves a complex fuzzy heat equation under
Hukuhara differentiability. The researchers utilize an implicit finite difference scheme, namely the Crank–Nicolsonmethod, to tackle
complex fuzzy heat equations. The problem’s fuzziness arises from the coefficients in both amplitude and phase terms, as well as in
the initial and boundary conditions, with the Convex normalized triangular fuzzy numbers extended to the unit disk in the complex
plane. The researchers take advantage of the properties and benefits of CFS theory in the proposed numerical methods and
subsequently provide a new proof of the stability under CFS theory. A numerical example is presented to demonstrate the proposed
approach’s reliability and feasibility, with the results showing good agreement with the exact solution and relevant theoretical aspects.

1. Introduction

Zadeh introduced the theory of fuzzy sets, which is a useful
tool to handle uncertainty and vagueness in mathematical
models, leading to a better understanding of real-life phe-
nomena. Many real-life problems can be formulated as
mathematical models that involve differential equations.
However, the classical (Crisp) quantities in these equations
can often be uncertain and imprecise. To account for this,
fuzzy quantities can be used instead, resulting in what are
known as fuzzy differential equations. Recently, there has
been a growing interest in the analysis and applications of
fuzzy differential equations, as they have found considerable

use in fields such as mathematical physics [1], engineering
[2], medicine [3], and others [4–8].

The fuzzy partial differential equation is commonly uti-
lized to explain the behavior of dynamic phenomena in
which imprecision or indeterminacy is present. This includes
fuzzy heat conduction and fuzzy particle diffusion, with the
fuzzy heat equation being one of the most important fuzzy
parabolic partial differential equations for describing how a
fuzzy quantity such as heat diffuses through a given area
[9–21]. While exact analytical solutions for fuzzy heat equa-
tions may be challenging to obtain, numerical techniques are
needed to achieve the solution. In recent decades, there have
been numerous studies on solutions to the fuzzy heat equa-
tion. Allahviranloo [22] developed finite difference methods
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for solving fuzzy heat and wave equations, which were dem-
onstrated to be effective by numerical examples. Ahmadi and
Kiani [23] extended the differential transformation method to
solve fuzzy partial differential equations under strongly gen-
eralized differentiability, which was found to be a straightfor-
ward and efficient method for obtaining analytical–numerical
solutions. Wang and Qiu [24] proposed a fuzzy numerical
technique based on the finite difference method for solving
heat conduction problems that incorporate uncertainties in
initial/boundary conditions and physical parameters. Bayrak
and Can [25] considered the concept of generalized differen-
tiability to solve fuzzy parabolic partial differential equations
using the finite difference method, demonstrating its effi-
ciency and simplicity.

The aforementioned studies employed fuzzy sets theory
to solve governing equations, where the range of values falls
within [0, 1]. Fuzzy sets have recently been utilized in medi-
cal applications to tackle complex biological systems and
develop algorithmic solutions. To enhance the representa-
tion of information in accordance with the human brain,
the range of membership function in complex fuzzy sets
(CFSs) has been expanded from [0, 1] to the unit disk in
the complex plane. This expansion allows for a more detailed
representation of information while retaining its full mean-
ing. The human mind typically processes meaningful infor-
mation from vast amounts of data and produces reasonable
solutions, but it can be influenced by various phases/factors
that affect thinking and decision-making. Therefore, we pro-
pose that the use of CFS provides a suitable foundation for
summarizing and extracting information from large datasets
that impact the human brain under different phases/factors
related to task performance.

Buckley et al. [26–29] first introduced the concept of
fuzzy complex numbers (FCNs) in 1987. FCNs incorporate
complex numbers into the support of a fuzzy set, resulting in
a new type of fuzzy set with complex-valued membership
functions. This idea was further extended in 2002 with the
introduction of CFSs [30], which generalize the membership
function of fuzzy sets from the unit interval [0, 1] to the unit
disk in the complex plane. CFSs have been widely studied
and applied by many researchers [31–43]. The innovation of
CFS lies in its ability to represent both uncertainty and peri-
odicity semantics simultaneously without losing the full
meaning of the data. The concept of phase degrees was devel-
oped to classify similar data that are measured in different
phases or levels. The complex fuzzy membership grade can
be represented using polar and Cartesian forms with two
fuzzy components, where the amplitude and phase terms
of the complex numbers lie in the range [0, 1] [35]. The
CFS reduces to a traditional fuzzy set when the phase mem-
bership is not considered [44]. To address the limitations and
restrictions of CFS, Tamir and Kandel [34] developed an
axiomatic for propositional complex fuzzy logic.

As known, the fuzzifications of the fuzzy heat equation
are represented by the value in (real numbers) [0, 1]. The
modified Crank–Nicolson method for solving the fuzzy com-
plex heat equation improves accuracy by considering fuzzy
complex temperature values at the half-time step, effectively

capturing uncertainties and imprecisions in amore preciseman-
ner compared to the classical Crank–Nicolson method [45–48].
The aim of this paper is focused on the fuzzification of complex
fuzzy heat equation using the modified Crank–Nicolson
method, where represented by two values (amplitude and phase
terms) in the unit disk in the complex plane to provide the
generalization and more accuracy for the solution of fuzzy
heat equation by putting in the account of a new periodicity
semantics that appears in the complex fuzzy information
[30, 43].

2. Heat Equation in Complex
Fuzzy Environment

Consider the general form of 1D complex fuzzy heat equa-
tion [49] as follows:

∂eu x; tð Þ
∂t

¼ eD x; tð Þ ∂
2eu x; tð Þ
∂x2

þ eb x; tð Þ;   0<x< l; t>0

eu x; 0ð Þ ¼ ef xð Þ; eu 0; tð Þ ¼ eg tð Þ; eu l; tð Þ ¼ ez tð Þ;
ð1Þ

where eu x;ð tÞ is the complex fuzzy unknown function of the

crisp variable x and t. ∂eu x; tð Þ
∂t ; ∂

2eu x; tð Þ
∂x2 are first and second com-

plex fuzzy partial derivatives with eD x;ð tÞ and eb x;ð tÞ are the
complex fuzzy functions. eu 0;ð xÞ is the complex fuzzy initial
condition. eu 0;ð tÞ and eu l;ð tÞ are the complex fuzzy boundary
conditions. where the range of complex functions lies in the
unit disk in the complex plane.

In Equation (1), the complex fuzzy functions eD xð Þ, eb xð Þ,ef xð Þ; eg tð Þ, and ez tð Þ being complex fuzzy convex numbers
which are defined as follows [34]:

eD x; tð Þ ¼ eq1eiαew1 s1 x; tð Þeb x; tð Þ ¼ eq2eiαew2 s2 x; tð Þef xð Þ ¼ eq3eiαew3 s3 xð Þeg tð Þ ¼ eq4eiαew4 s4 tð Þez tð Þ ¼ eq5eiαew5 s5 tð Þ;

ð2Þ

where s1 x;ð tÞ, s2 x;ð tÞ, s3 xð Þ, s4 tð Þ, and s5 tð Þ are the crisp
functions of the crisp variable x and t with eq1, eq2, eq3, eq4,eq5, ew1, ew2, ew3, ew4, and ew5 being fuzzy convex numbers.

The fuzzification of Equation (1) for all r 2 0;½ 1� is as
follows [50]:

eu x; tð Þ½ �r;θ ¼ u x; t; r; θð Þ; u x; t; r; θð Þ: ð3Þ

∂eu x;tð Þ
∂t

h i
r;θ

¼ ∂u x; t; r; θð Þ
∂t

;
∂u x; t; r; θð Þ

∂t
: ð4Þ

∂2eu x;tð Þ
∂x2

h i
r;θ

¼ ∂2u x; t; r; θð Þ
∂x2

;
∂2u x; t; r; θð Þ

∂x2
: ð5Þ

eD x; tð ÞÂ Ã
r;θ ¼ D x; t; r; θð Þ;D x; t; r; θð Þ: ð6Þ
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eb x; tð Þ
h i

r;θ
¼ b x; t; r; θð Þ; b x; t; r; θð Þ: ð7Þ

eu x; 0ð Þ½ �r;θ ¼ u x; 0; r; θð Þ; u x; 0; r; θð Þ: ð8Þ

eu 0; tð Þ½ �r;θ ¼ u 0; t; r; θð Þ; u 0; t; r; θð Þ: ð9Þ

eu l; tð Þ½ �r;θ ¼ u l; t; r; θð Þ; u l; t; r; θð Þ: ð10Þ

ef xð Þ
h i

r;θ
¼ f x; r; θð Þ; f x; r; θð Þ: ð11Þ

eg tð Þ½ �r;θ ¼ g t; r; θð Þ;g t; r; θð Þez tð Þ½ �r;θ ¼ z t; r; θð Þ; z t; r; θð Þ: ð12Þ

eD x; tð ÞÂ Ã
r;θ ¼ q

1
rð Þ; q1 rð Þ

h i
eiα w1 θð Þ;w1 θð Þ½ �s1 x; tð Þeb x; tð Þ

h i
r;θ

¼ q
2
rð Þ; q2 rð Þ

h i
eiα w2 θð Þ;w2 θð Þ½ �s2 x; tð Þ

ef xð Þ
h i

r;
¼ q

3
rð Þ; q3 rð Þ

h i
eiα w3 θð Þ;w3 θð Þ½ �s3 xð Þ

eg tð Þ½ �r;θ ¼ q
4
rð Þ; q4 rð Þ

h i
eiα w4 θð Þ;w4 θð Þ½ �s4 tð Þ

ez tð Þ½ �r;θ ¼ q
5
rð Þ; q5 rð Þ

h i
eiα w5 θð Þ;w5 θð Þ½ �s5 tð Þ:

ð13Þ

The complex membership function is defined by using
the fuzzy extension principle (ref based on complex).

u x; t; r; θð Þ ¼ min eu eμ r; θð Þ; tð Þ Þ eμj r; θð Þ 2 eu x; t; r; θð Þf g
u x; t; r; θð Þ ¼ max eu eμ r; θð Þ; tð Þ eμj r; θð Þ 2 eu x; t; r; θð Þf g:

ð14Þ

Now by substitute Equations (3)–(13) into Equation (1)
to get the follows:

∂u x; t; r; θð Þ
∂t

¼ q
1
rð Þeiαw1 θð Þs1 x; tð Þ

h i ∂2u x; t; r; θð Þ
∂x2

þ q
2
rð Þeiαw2 θð Þs2 x; tð Þ

u x; 0; r; θð Þ ¼ q
3
rð Þeiαw3 θð Þs3 xð Þ

u 0; t; r; θð Þ ¼ q
4
rð Þeiαw4 θð Þs4 tð Þ; u l; t; r; θð Þ ¼ q

5
rð Þeiαw5 θð Þs5 tð Þ:

ð15Þ

∂u x; t; r; θð Þ
∂t

¼ q1 rð Þeiαw1 θð Þs1 x; tð ÞÂ Ã ∂2u x; t; r; θð Þ
∂x2

þ q2 rð Þeiαw2 θð Þs2 x; tð Þ
u x; 0; r; θð Þ ¼ q3 rð Þeiαw3 θð Þs3 xð Þ
u 0; t; r; θð Þ ¼ q4 rð Þeiαw4 θð Þs4 tð Þ; u l; t; r; θð Þ ¼ q5 rð Þeiαw5 θð Þs5 tð Þ:

ð16Þ

Equations (15) and (16) represent the general lower and
upper forms of complex fuzzy heat equations, respectively.

3. Crank–Nicolson Method for Solution of
Complex Fuzzy Heat Equation

This section adapts and uses a central difference approxima-
tion for the first-order time derivative and central difference
approximation at time level jþ 1

2 for the second-order space
derivative to solve the complex fuzzy heat equation.

The partial time derivative ∂u x; t;r; θð Þ
∂t ; ∂u x; t;r; θð Þ

∂t is discre-
tised as follows:

∂ui;j x; t; r; θð Þ
∂t

¼ ui;jþ1 x; t; r; θð Þ − ui;j x; t; r; θð Þ
Δt : ð17Þ

∂ui;j x; t; r; θð Þ
∂t

¼ ui;jþ1 x; t; r; θð Þ − ui;j x; t; r; θð Þ
Δt : ð18Þ

Also, the second partial derivatives ∂2 u i; j x; t;r; θð Þ
dx2 ;

∂2ui; j x; t;r; θð Þ
dx2 can be defined as follows:

∂2ui;j x; t; r; θð Þ
dx2

¼ uiþ1;jþ1
2
x; t; r; θð Þ − 2ui;jþ1

2
x; t; r; θð Þ þ ui−1;jþ1

2
x; t; r; θð Þ

Δx2
:

ð19Þ

∂2ui;j x; t; r; θð Þ
dx2

¼ uiþ1;jþ1
2
x; t; r; θð Þ − 2ui;jþ1

2
x; t; r; θð Þ þ ui−1;jþ1

2
x; t; r; θð Þ

Δx2
:

ð20Þ
Now substitute Equations (17)–(20) into Equations (15)

and (16), respectively, to obtain the following:
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ui;jþ1 x; t; r; θð Þ − ui;j x; t; r; θð Þ
Δt

¼ D x; t; r; θð Þ uiþ1;jþ1
2
x; t; r; θð Þ − 2ui;jþ1

2
x; t; r; θð Þ þ ui−1;jþ1

2
x; t; r; θð Þ

Δx2
þ b x; t; r; θð Þ:

ð21Þ

ui;jþ1 x; t; r; θð Þ − ui;j x; t; r; θð Þ
Δt

¼ D x; t; r; θð Þ uiþ1;jþ1
2
x; t; r; θð Þ − 2ui;jþ1

2
x; t; r; θð Þ þ ui−1;jþ1

2
x; t; r; θð Þ

Δx2
þ b x; t; r; θð Þ:

ð22Þ

By assume that es r;ð θÞ ¼ eD x; t;r; θð ÞΔt
Δx2 and then Equations

(21) and (22) are simplified to get the generally lower and
upper solution for the complex fuzzy heat equation for all r;
θ 2 0;½ 1� as follows:

2þ 2sð Þui;jþ1 x; t; r; θð Þ − s uiþ1;jþ1 x; t; r; θð Þ þ ui−1;jþ1 x; t; r; θð Þ
� �

¼ 2 − 2sð Þui;j x; t; r; θð Þ þ s uiþ1;j x; t; r; θð Þ þ ui−1;j x; t; r; θð Þ
� �

þ Δtb x; t; r; θð Þ:
ð23Þ

2þ 2sð Þui;jþ1 x; t; r; θð Þ − s uiþ1;jþ1 x; t; r; θð Þ þ ui−1;jþ1 x; t; r; θð ÞÀ Á
¼ 1 − 2sð Þui;j x; t; r; θð Þ þ s uiþ1;j x; t; r; θð Þ þ ui−1;j x; t; r; θð ÞÀ Á

þ Δtb x; t; r; θð Þ:
ð24Þ

4. The Stability of Crank–Nicolson for Fuzzy
Complex Heat Equation

Theorem 1. The Crank–Nicolson method in Equation (23)
for complex fuzzy heat equation is unconditionally stable.

Proof. Let eε0i represent the fuzzy error of the discretization of
the initial condition. □

Let eu0
i ¼ éu0

i −eε0i , eun
i , and éun

i refer to numerical solution
of Equation (15) in terms to the initial data ef 0i and

´ef 0i ;
respectively.

Let eun
iþ1 x; tð ÞÂ Ã

r; θ ¼ u r;ð θÞ− u r;ð θÞ, where r; θ 2 0;½ 1�.
The fuzzy absolute error is established by the follow-

ing form:
The fuzzy error equations for Equation (12) are as fol-

lows:

eεni½ �r;θ ¼ éun
i − eun

i

h i
r;θ
; n ¼ 1; 2;…;X ×M; i ¼ 1; 2;…;X − 1:

ð25Þ

2þ 2sð Þeεnþ1
i − s eεnþ1

iþ1 þ eεnþ1
i−1

À Á ¼ 2 − 2sð Þeεni þ s eεniþ1 þ eεni−1À Á
:

ð26Þ

eεn0 ¼eεnX ¼ 0; n ¼ 1; 2;…;T ×M: Let eεni ¼ eεn1 ;½ eεn2 ;…;eεnX−1�,
and introduce the following fuzzy norm:

eεnk k22 ¼ ∑
X−1

i¼1
h eεnij j2: ð27Þ

Suppose that eεni can be expressed in the form

eεni ¼ eλne ffiffiffiffiffi
−θi

p
; where eθ i ¼ qih: ð28Þ

Substituting Equation (28) into Equation (26) to obtain
the following:

2þ 2sð Þeλnþ1e
ffiffiffiffiffi
−θi

p
− s eλnþ1e

ffiffiffiffiffiffiffiffi
−θiþ1

p
þ eλnþ1e

ffiffiffiffiffiffiffiffi
−θi−1

p� �
¼ 2 − 2sð Þeλne ffiffiffiffiffi

−θi
p

þ s eλne ffiffiffiffiffiffiffiffi
−θiþ1

p
þ eλne ffiffiffiffiffiffiffiffi

−θi−1
p� �

:

ð29Þ

Divide Equation (29) on eλne ffiffiffiffiffi
−θi

p
to obtain the following:

2þ 2sð Þeλ − s eλe ffiffiffiffiffi
−θi

p
þ eλe− ffiffiffiffiffi

−θi
p� �

¼ 2 − 2esð Þ þes e
ffiffiffiffiffi
−θi

p
þ e−

ffiffiffiffiffi
−θi

p� �
;

ð30Þ

Since e
ffiffiffiffiffi
−θi

p
þ e−

ffiffiffiffiffi
−θi

p� �
¼ cos θ ¼ 1− 2 sin2 θ

2

À Á
and substi-

tuted in Equation (30) to get the following:

eλ ¼ 1 − 2 s sin2 θ
2

À Á
1þ 2 s sin2 θ

2

À Á�����
�����: ð31Þ

Since the maximum of sin2 θ
2

À Á ¼ 1, we obtain esj j ≤ 1.
So the Crank–Nicolson method is unconditionally stable.
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5. Numerical Example

The fuzzy heat equation by Allahviranloo and Taheri [51] is
generalized by adding the phase term, as discussed in the
previous sections, to be a complex heat equation as follows:

∂eU x; tð Þ
∂t

−
∂2 eU x; tð Þ

∂x2
¼ 0;  0<x<1; t>0; ð32Þ

with the boundary conditions eu 0;ð tÞ ¼ eu 1;ð tÞ ¼ 0 and ini-
tial conditioneu x;ð 0Þ ¼ef xð Þ, where complex fuzzy function ef xð Þ is
defined as follows:

ef xð Þ ¼ ekei2πewcos πx −
π

2

� �
; ð33Þ

where

ekh i
r
¼ −1; 0; 1½ �r ¼ r − 1; 1 − r½ �: ð34Þ

ew½ �θ ¼ −1; 0; 1½ �θ ¼ θ − 1; 1 − θ½ �: ð35Þ

eEÂ Ã
r;θ ¼ eU�� t; x; r; θð Þ − eu t; x; r; θð Þ

¼
E½ �r;θ ¼ U t; x; r; θð Þ − u t; x; r; θð Þj j
E
Â Ã

r;θ ¼ U t; x; r; θð Þ − u t; x; r; θð Þ�� ��
(

:
ð36Þ

The exact solution of Equation (32) is defined as follows:

eu x; t; rð Þ ¼ eαei2πew−πtcos πx −
π

2

� �
: ð37Þ

Figures 1–4 and Tables 1 and 2 show that the obtained
numerical solutions by the implicit Crank–Nicolson method
possess a high degree of congruence with the exact solution
at x ¼ 0:9, t ¼ 0:05 for all r; θ 2 0;½ 1�. Furthermore, both the
exact solution and numerical solutions to the proposed
schemes take on the shape of a triangular fuzzy number for
both the real part and imaginary part, which satisfies the
properties of complex fuzzy numbers [46–48]. Additionally,
from Tables 1 and 2, it can be noted that the accuracy of
numerical results depends upon the value of phase term θ
which satisfies with our theoretical analysis and demon-
strates the significance and impact of adding the phase term.
It takes into consideration that the numerical solution of the
fuzzy heat equation is obtained from the complex fuzzy heat
by substituting θ ¼ 0 and 1.

6. Conclusions

In this paper, the FCN has been applied to solve the complex
fuzzy heat equation based on the Crank–Nicolson method.
The fuzziness of the problem appears in the initial and
boundary conditions as well as coefficients in both amplitude
and phase terms simultaneously. The obtained results using
the Crank–Nicolson scheme satisfy the complex fuzzy num-
ber properties by taking the triangular fuzzy number shape
for both the real part and imaginary part and have an accu-
racy of order O Δtþð Δx2Þ. The stability of the proposed
approach is discussed to show that Crank–Nicolson scheme
is unconditionally stable. Furthermore, it was found that the
complex fuzzy approach is general and computationally effi-
cient to transfer the information that happens periodically.
The presented approach may be extended to solve several
linear and nonlinear complex fuzzy partial differential equa-
tions, and this will be investigated in detail at a later stage.
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FIGURE 1: (a) Fuzzy numerical and (b) fuzzy exact solution of Equation (32) at θ ¼ 0:2 and r ¼ 0.
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FIGURE 2: (a) Fuzzy numerical and (b) fuzzy exact solution of Equation (32) at t ¼ 5; θ ¼ 0:2; and r ¼ 0.
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FIGURE 3: The exact and numerical solution of Equation (32) by C–N
at t ¼ 0:05, x ¼ 0:9, and θ ¼ 0:2 for all r 2 0;½ 1�.
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FIGURE 4: The exact and numerical solution of Equation (32) by C–N
at t ¼ 0:05, x ¼ 0:9, and θ ¼ 0:4 for all r 2 0;½ 1�.

TABLE 1: Numerical solution of Equation (32) by C–N at t ¼ 0:05 and x ¼ 0:9 for all r; θ 2 0;½ 1�.
Lower solution Upper solution

θ r u 0:9;ð 0:05; r; θÞ E 0:9;ð 0:05; r; θÞ u 0:9;ð 0:05; r; θÞ E 0:9;ð 0:05; r; θÞ

0.2

0 − 0:09093− 0:27985 i 0:00307þ 0:00946 i 0:09093þ 0:27985 i 0:00307þ 0:00946 i
0.2 − 0:07274− 0:22388 i 0:00246þ 0:00756 i 0:07274þ 0:22388 i 0:00246þ 0:00756 i
0.4 − 0:05455− 0:16791 i 0:00184þ 0:00567 i 0:05455þ 0:16791 i 0:00184þ 0:00567 i
0.6 − 0:03637− 0:1119 i 0:00123þ 0:00378 i 0:03637þ 0:1119 i 0:00123þ 0:00378 i
0.8 − 0:01819− 0:05597 i 0:00061þ 0:0019 i 0:01819þ 0:05597 i 0:00061þ 0:0019 i
1 0 0 0 0

0.4

0 0:23805− 0:17295 i 0:00804þ 0:00584 i − 0:23805þ 0:17295 i 0:00804þ 0:00584 i
0.2 0:19044− 0:13836 i 0:00643þ 0:00467 i − 0:19044þ 0:13836 i 0:00643þ 0:00467 i
0.4 0:14283− 0:10377 i 0:00483þ 0:00351 i − 0:14283þ 0:10377 i 0:00483þ 0:00351 i
0.6 0:09522− 0:06918 i 0:00322− 0:06682 i − 0:09522þ 0:06918 i 0:00322− 0:06682 i
0.8 0:04761− 0:03459 i 0:00162þ 0:00118 i − 0:04761þ 0:03459 i 0:00162þ 0:00118 i
1 0 0 0 0
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