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The time-fractional diffusion equation coupled with a first-order irreversible reaction is investigated by employing integral
transforms. We derive Green’s functions for short and long times via approximations of the Mittag-Leffler function. The time
value for which the crossover between short- and long-time asymptotic holds is presented in explicit form. Based on the
developed Green’s functions, the exact analytic asymptotic solutions of the time-fractional reaction-diffusion equation are
obtained. The applicability of the obtained solutions is demonstrated via quantification of the reaction-diffusion kinetics during
heterogeneous catalytic chitin conversion to chitosan.

1. Introduction

Fractional calculus postulates derivatives and integrals of
noninteger order. In recent years, fractional calculus has
gained much interest because it deals with systems posses-
sing long-tailed dynamics, memory effects, and nonlocality.
The fractional-order tools are useful for the description of
various processes and phenomena. The fractional-order
tools are successively utilized instead of usual integer-
order derivatives, e.g., in the Lotka-Volterra model [1],
Kelvin-Voigt model [2], Debye relaxation model [3], heat
conduction [4], anomalous diffusion modeling [5],
Kuramoto-Sivashinsky and Korteweg-de Vries equations
[6], and reactive transport modeling [7].

Fractional-order tools also play a central role in
modeling transport phenomena. The non-Fickian trans-
port may be mathematically represented in terms of the
time-fractional, space-fractional, or space-time-fractional
diffusion equation [8]. A transport process quantified in
the frame of the fractional-order derivatives may be
accompanied by a chemical reaction. This situation is typ-
ical in heterogeneous catalysis and adsorption processes.
In this case, the fractional-order reaction-diffusion equa-

tion is used. For this equation, an additional complication
is associated with the form of the reaction term. The latter
may be either linear or nonlinear, both reversible and irre-
versible. The solution to a reaction-diffusion problem with
nonlinear reaction kinetics may not be derived analytically
[9]. In this paper, we treat the reaction-diffusion equation
with a temporal fractional derivative and a linear reaction
term. Seeking the analytic solutions to this equation is an
extensive topic of the studies in the literature. Particularly,
the analytic solutions to the problem were obtained using
the homotopy perturbation method [10], the homotopy
analysis transform method [11], a combination of homo-
topy analysis and Sumudu transform [12], a mixture of
the homotopy perturbation method and the Yang trans-
form [13], the Laplace transform coupled with the Ado-
mian decomposition technique [14], the residual power
series method [15], and a separation of variable technique
[16]. The analytic solution to the problem may be also
established via Green’s function approach. Green’s func-
tion for the time-fractional reaction-diffusion equation
has been obtained in terms of the Fox H-function [17].
The integral representation of the relevant Green’s func-
tion has been reported [18].
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The anomalous non-Fickian transport has been observed
in various porous solids and fractured media [19–22]. The
non-Fickian transport may be described by the time-
fractional diffusion equation [23, 24]. Depending on the
value of the anomalous diffusion exponent, the transport
rate may be either superdiffusive (i.e., faster than standard
Fickian) or subdiffusive (i.e., slower than standard Fickian)
[25]. Since the transport stage is an obligatory step of a cat-
alytic or sorption process, the effectiveness of such a process
may be significantly improved by enhancing the transport
rate, e.g., by keeping the superdiffusive regime of transport.
To quantify the effect of anomalous transport on the rate
of a process, a mathematical description of the anomalous
reaction-diffusion process is required.

To achieve this goal, we introduce the asymptotic
Green’s functions for short and long times for the time-
fractional diffusion equation with a first-order irreversible
reaction using the inverse spatial Fourier transforms of the
different approximations of the Mittag-Leffler function.
The derived asymptotic Green’s functions are further uti-
lized to obtain the closed-form analytic solutions of the
time-fractional reaction-diffusion equation at short and long
times separately. The solutions are obtained for the diffusion
problem on a semi-infinite rod with a reflecting boundary
condition. The closed-form expression for the crossover
time between the short- and long-time solutions is also
derived. The applicability of the corresponding solutions is
experimentally verified for a real reaction-diffusion process,
e.g., diffusion-controlled conversion of chitin to chitosan.

2. Materials and Methods

2.1. Reaction-Diffusion Equation. Herein, we consider the
anomalous diffusion process accompanied by a first-order
irreversible chemical reaction. The governing equation is
represented in terms of the time-fractional derivative

Dα
t C x, tð Þ = K∙D2

xC x, tð Þ − k∙C x, tð Þ, ð1Þ

where 0 < α ≤ 1, t > 0, 0 < x <∞, and K and k are real
constants.

The time-fractional derivative is utilized in the Caputo
sense [26]. By definition, Caputo’s fractional derivative of
order α is given as follows:

Dα
t C x, tð Þ = ∂α

∂tα
C x, tð Þ =

1
Γ m − αð Þ ∙

ðt
0

Cm x, tð Þ
t − τð Þα+1−m dτ,m − 1 < α ≤m,

Cm x, tð Þ, α =m ∈N:

8><
>:

ð2Þ

Numerous definitions of the fractional derivative have
been developed and successively applied to a description of
different phenomena in various fields [27–32]. Some opera-
tors introduced as “fractional,” e.g., Caputo-Fabrizio [33],
are also utilized for mathematical modeling of the relevant
physical phenomena. The motivation to use Caputo’s defini-
tion is governed by the properties of this derivative [26]. Par-
ticularly, Caputo’s derivative from constant equals zero, as

for a usual integer-order derivative. Boundary conditions
for Caputo’s derivative are typically set in terms of integer-
order derivatives. These properties are essential for modeling
the reaction-diffusion process in a chemical reactor under
steady-state conditions.

2.2. The Mittag-Leffler Function. In this section, we consider
some properties of the Mittag-Leffler function which will be
useful to derive the final result. The Mittag-Leffler function
Eα is a special function with a series representation

Eα λð Þ = 〠
∞

n=0

λn

Γ α∙n + 1ð Þ , ð3Þ

where Г is the Euler gamma function and λ ∈ℂ.
The Laplace transform of the Mittag-Leffler function

gives [34]

L Eαf g sð Þ = sα−1

sα + 1 : ð4Þ

According to the above relation, the Mittag-Leffler func-
tion appears to be the solution of a fractional differential
equation [35]

Dα
t f tð Þ = −γ∙f tð Þ,
f tð Þ = f 0ð Þ∙Eα −γ∙tαð Þ:

ð5Þ

Another interesting property of the Mittag-Leffler func-
tion is its different approximations depending on the value
of the argument of the function [36]

Eα λð Þ =
exp −

λα

Γ 1 + αð Þ
� �

, λ≪ λ∗,

1
λα∙Γ 1 − αð Þ , λ≫ λ∗:

8>>><
>>>:

ð6Þ

The parameter vanishing the crossover between the dif-
ferent approximations of the Mittag-Leffler function (λ∗)
satisfies the relation [37]

λ∗ = λ1/α: ð7Þ

2.3. Green’s Function Approach. We provide some textbook
information to highlight the importance of Green’s function
approach to solving fractional differential equations. In the
present case, Green’s function ðGðx, tj0, 0ÞÞ is a solution of
the differential equation (1) under the initial conditions

C x, tð Þ = δ xð Þ∙δ tð Þ, ð8Þ

where δ is the Dirac delta function.

2 Advances in Mathematical Physics



Consider the reaction-diffusion problem on a semi-
infinite rod with reflecting boundary condition

C x, 0ð Þ = C0 xð Þ,
∂C
∂x

����
x=0

= 0:
ð9Þ

Using the method of imaging, the solution of Equation
(1) via Green’s function approach is given by

C x, tð Þ =
ðL
0
G x, t ∣ ε, 0ð Þ +G x, t∣−ε, 0ð Þð Þ∙C0 εð Þdε: ð10Þ

Equation (10) provides the exact analytic solution of the
reaction-diffusion equation. The solution may be established
for a spatial position x = L in the range of 0 ≤ x = L <∞.

3. Results and Discussions

3.1. Derivation of the Asymptotic Green’s Functions. Integral
transformation is a typical procedure to obtain Green’s func-
tion for the fractional diffusion equation with different terms
[18]. Applying the Fourier transforms in the spatial domain
and the Laplace transforms in the temporal domain to
Equation (1) yields

Ĝ ω, sð Þ = sα−1

sα + k − K∙ −i∙ωð Þ2 : ð11Þ

After the inverse Laplace transforms, we have

Ĝ ω, tð Þ = Eα k − K∙ −i∙ωð Þ2À Á
∙tα

À Á
: ð12Þ

Approximation of the Mittag-Leffler function in Equa-
tion (12) results in the following expressions:

Ĝ
0
ω, tð Þ = exp −

k − K∙ −i∙ωð Þ2
Γ 1 + αð Þ ∙tα

" #
, ð13Þ

Ĝ
∞

ω, tð Þ = Γ 1 + αð Þ∙ k − K∙ −i∙ωð Þ2À Á
∙tα

À Á−1
: ð14Þ

The crossover time t∗ is defined by

t∗ = k − K∙ −i∙ωð Þ2À Á1/α
: ð15Þ

The inverse Fourier transform of Equations (13)–(15)
gives

G0 x, t ∣ 0, 0ð Þ = exp − x2∙Γ 1 + αð Þ/4∙K∙tαÀ Á
+ k∙tα/Γ 1 + αð Þð ÞÀ ÁÂ Ã

2∙
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π∙K∙tα/ Γ 1 + αð Þð Þp , ð16Þ

G∞ x, t ∣ 0, 0ð Þ =
exp −x∙

ffiffiffiffiffiffiffiffi
k/K

ph i
2∙

ffiffiffiffiffiffiffiffi
k∙K

p
∙Γ 1 − αð Þ∙tα

, ð17Þ

t∗ =
21+ 1/αð Þ∙k1/α∙Y 1/2ð Þ+ 1/αð Þ x/

ffiffiffiffiffiffiffiffi
K/k

p� �
Γ −1/αð Þ∙ K/kð Þ α−2ð Þ/4∙α∙x α+2ð Þ/2∙α∙

ffiffiffi
π

p , ð18Þ

where YnðzÞ is the Bessel function of the second kind.
Equation (16) corresponds to the asymptotic Green’s func-
tion at short times, whereas Equation (17) provides the
long-time asymptotic Green’s function.

Application of the same procedure as in Equations
(11)–(16) for the standard diffusion, i.e., α = 1, results in a
well-known Gaussian behavior of the Green’s function

G x, tj0, 0ð Þ = exp − x2/ 4∙D∙tð ÞÀ Á
+ k∙t

À ÁÂ Ã
2∙

ffiffiffiffiffiffiffiffiffiffiffiffi
π∙D∙t

p , ð19Þ

where D denotes the standard Fickian diffusion coefficient. It
should be emphasized that the crossover time t∗ equals zero
for α = 1. As a consequence, Equation (19) is recovered via
substitution of α = 1 in Equation (16) since no long-time
asymptotic Green’s function exists for the standard diffusion
equation.

3.2. Closed-Form Analytic Solutions. Substituting the devel-
oped Green’s function for small times in Equation (10)
yields the following exact analytic solution in the closed
form:

C0 L, tð Þ = C0
2 ∙erf L∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1 + αð Þ
K∙tα

r" #
∙exp −

k∙tα

Γ 1 + αð Þ
� �

: ð20Þ

For long times, the asymptotic solution may be also
obtained in the same manner

C∞ L, tð Þ = C0∙
exp 2∙L∙

ffiffiffiffiffiffiffiffi
k/K

ph i
− 1

� �
∙exp −2∙L∙

ffiffiffiffiffiffiffiffi
k/K

ph i
2∙k∙tα∙Γ 1 − αð Þ :

ð21Þ

Setting α = 1 in Equation (20) gives the solution of the
standard Fickian diffusion equation with a linear reaction
kinetics

C L, tð Þ = C0
2 ∙erf Lffiffiffiffiffiffiffi

D∙t
p

� �
∙exp −k∙t½ �: ð22Þ

In the absence of the reaction term, i.e., k = 0, Equation
(22) simplifies to the product of half of the initial concentra-
tion and the error function. This is a well-known solution of
the standard diffusion equation in a semispace with the
Dirichlet boundary conditions [38].

3.3. Implementation Results. Figure 1 demonstrates the
asymptotic solutions at short and long times plotted using
various time-fractional orders. The lower is α, the slower is
the concentration decay of the diffusing species. This is typ-
ical for a subdiffusive process, i.e., the process characterized
by α < 1. A subdiffusive process provides a lower diffusion
rate compared to the standard Fickian diffusion. For 0:5 <
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α < 1, a weak subdiffusion is observed, whereas a strong sub-
diffusion holds for α in the range between 0 and 0.5 [25].

For the standard diffusion equation, the crossover
between the short-time and long-time asymptotic solu-
tions is in the range of approximately 0:5 × C0 [39]. In
the case of the time-fractional diffusion, the crossover
time strongly depends on the parameters of the time-
fractional reaction-diffusion equation. Particularly, consider-
ing k = 0:1 s−α, K = 0:01m2/sα, α = 0:8, and x = 0:1m under
Equation (18), the crossover time is t∗ = 10:3 s. For a catalytic
reaction-diffusion system, consider more realistic parameters,
e.g., k = 10−4 s-α, K = 10−6m2/sα, α = 0:85, and a catalyst parti-
cle with a size of x = 0:002m. This results in the calculated
value of t∗ equal to 65.8 s.

Finally, we utilize the obtained exact analytic solutions to
describe the experimental reaction-diffusion data. We adopt
the experimental data of the reaction-diffusion kinetics from
ref. [40] for exemplary calculations. The experimental data
for diffusion-limited conversion of chitin to chitosan in chi-
tin flakes at 60°C are shown in Figure 2(a). The experimental
data in Figure 2 are reproduced from ref. [40] with permis-
sion. To evaluate the experimental kinetics, Equation (21)
may be linearized in the logarithmic coordinates as follows:

ln C L, tð Þ
C0

� �
= ln A − α∙ln t, ð23Þ

where

A =
exp 2∙L∙

ffiffiffiffiffiffiffiffi
k/K

ph i
− 1

� �
∙exp −2∙L∙

ffiffiffiffiffiffiffiffi
k/K

ph i
2∙k∙Γ 1 − αð Þ : ð24Þ

Figure 2(b) presents the experimental data fitted by
Equation (23). There is a good correspondence between
the experimental data and the theoretical solution. The fitted
slope equals the fractional order (α = 0:40), as it follows from
Equation (23). Considering L = 5 × 10−5m and k = 2:3 ×
10−4 m3/ðmol × sÞ [40], the estimated value of K is 1:13 ×
10−5m2/sα. For these values, t∗ < 0; i.e., the long-time solu-
tion may be used in the whole experimental data range.
The obtained results demonstrate that the solutions obtained
via utilization of the asymptotic Green’s functions may be
successively used for a phenomenological description of
the living phenomena.

There exist many methods to derive the analytic solution
for the time-fractional reaction-diffusion equation. How-
ever, the existing methods treat the concentration decay on
the whole temporal scale with no possibility to crossover
between the short and long times. It is worth noting that
the behavior of the concentration decay may be different at
various time scales [41, 42]. The power series methods typi-
cally admit the nonlinear reaction term, e.g., Fischer equa-
tion. Applying the integral transforms [43], as well as the
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Figure 1: The asymptotic solutions of the time-fractional reaction-diffusion equation for (a) short and (b) long times. The plots are obtained
for k = 0:1, K = 0:01, and α = 0:25 (dot-dashed line), 0.5 (dotted line), 0.75 (dashed line), and 1 (solid line).
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Figure 2: (a) The experimental relative concentration decay and (b) experimental data (points) fitting by Equation (23) (line). The fitted
equation is y = −0:42 − 0:40∙x, R2 = 0:98.
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separation of variables, gives the solutions in terms of inte-
grals that cannot be derived analytically in closed form.
The presented analytic approach is free of these drawbacks.
It is developed for linear reaction kinetics.

4. Concluding Remarks

The asymptotic Greens’ functions for the time-fractional
reaction-diffusion equation with linear reaction kinetics are
developed using the integral transform approach. The
Greens’ functions hold for short and long times. The asymp-
totic solutions of the time-fractional reaction-diffusion equa-
tion are derived and applied for a description of a real
reaction-diffusion process.
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