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In this section, the dynamic propagation behavior of a penny-shaped interface crack in piezoelectric bimaterials is analyzed. The
objective of this paper is to use the boundary conditions of the penny-shaped interface crack to study the dynamic propagation of
the crack under the action of load, so as to provide some valuable implications for the fracture mechanics of the piezoelectric
bimaterials and simulate the interface crack between piezoelectric bimaterials, it is necessary to establish a suitable model and give
appropriate boundary conditions according to the actual situation. The elastic displacement and potential equations are con-
structed according to the structural characteristics of the circular crack. In the case of a given displacement or stress, the Laplace
transform and Hankel transform are used to simplify the problem into an integral equation with unknown functions. According to
the boundary conditions, the corresponding unknowns are obtained, and the closed solution is derived. The results show that the
fracture toughness of a penny-shaped interface crack in piezoelectric bimaterials is related to the thickness of the material, the
impact time, the material characteristics, and the electric field. At the same time, it can be found that different materials have
different roles in the crack propagation, so it is very important to study the crack opening displacement (COD) intensity factor of
the crack for safety design.

1. Introduction

1.1. Background. Piezoelectric materials are widely used to
make all kinds of transducers and sensors because of their
piezoelectric effects. They are commonly used in electronic,
excited light, ultrasonic, hydroacoustic, microacoustic, red
external, navigation, biological, and other technical fields.
However, the brittleness of piezoelectric ceramic material in
mechanical properties will lead to the generation and expan-
sion of cracks from the stress concentrations, leading to the
failure of components. It is necessary to analyze the crack
propagation process of piezoelectric materials to improve
the operational performance of high-voltage electric ceramic
elements and predict their active life.

In order to meet the practical needs, experts have used
experimental, theoretical, and simulation methods to study
the influence factors of piezoelectric materials in the different

situations [1, 2]. The forced vibration of a piezoelectric plate
with initial stress and the factors affecting the dynamic sta-
bility of a prestressed piezoelectric plate are studied [3, 4].

Based on the above situation, research on the fracture
mechanics of piezoelectric ceramics has received attention
from the experts [5–13]. Influence of incomplete bonding
on the dynamic response of prestressed sandwich plate–strip
with elastic layers and a piezoelectric core was studied by
Daşdemir [14]. The influence of poling direction and imper-
fection defects of the prestressed system with a piezoelectric
core bonded to elastic faces was analyzed [15]. In most cases,
the crack is simulated by a penny shape [16, 17]. A 3D prob-
lem of a half-space with penny-shaped cracks has been stud-
ied [18]. Zikun [19] solved a penny-shaped crack problem
and obtained analytical expressions of the stress field and
electric displacement field near the crack tip. Using the Dug-
dale hypothesis and Hankel transform theory, Danyluk et al.
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[20] analyzed the penny-shaped crack in a thick transversely
isotropic elastic layer. Kogan et al. [21] obtained the stress
intensity factors of a penny-shaped crack. The plasticity of a
penny-shaped Dugdale crack tip in an infinite elastic medium
has also been estimated [22].

A penny-shaped crack has been considered in a piezo-
electric medium to analyze the coupling behavior [23].
Penny-shaped cracks in 3D piezoelectric media are analyzed
by the extended displacement discontinuity method [24].
The Dugdale plastic zone of a penny-shaped crack under
axisymmetric loading has been analyzed [25]. Wu at al.
[26] studied a penny-shaped crack in a piezoelectric layer
sandwiched between two elastic layers with the electrical
saturation and mechanical yielding zones. The crack propa-
gation behavior of an infinite 1D hexagonal piezoelectric
quasicrystal plate with a penny-shaped dielectric crack has
been analyzed [27].

The crack propagation will change into a dynamic behav-
ior with time under an explosion or impact load. Wang et al.
[28] investigated the penny-shaped interface crack configu-
ration in orthotropic multilayers under dynamic torsional
loading by utilizing Laplace transform and the Hankel trans-
forms technique. The dynamic behavior of a penny-shaped
crack in a magnetoelectroelastic materials has been analyzed
in detail [29]. A point force method was proposed for obtain-
ing the transient response of dynamic penny-shaped cracks
in multilayer sandwich composites [30]. The dynamic behav-
ior of a magnetoelectroelastic material with a penny-shaped
dielectric crack under impact loading has been determined
[31]. A mathematical expression for the dynamic behavior
(open function circular) of a permeable penny-shaped crack
in an infinitely porous elastic solid has been presented [32].

In order to overcome the weak characteristics of the
piezoelectric effect of a single piezoelectric material and bet-
ter expand the piezoelectric effect, the piezoelectric double
material has emerged, which is better applied in intelligent
structures such as transducers, sensors, and drivers, and it
has also produced great application and economic value. At
the same time, because of its superiority, it has also been
studied and analyzed by many experts and scholars
[33–39]. Under loading conditions, the interface of piezo-
electric bimaterials is prone to fracture due to surface offset.
In addition, crack propagation becomes a dynamic behavior
when piezoelectric bimaterials are impacted in practice [40].
There are few studies on the dynamic change of a penny-
shaped interface crack in piezoelectric bimaterials. There-
fore, the dynamic analysis of a penny-shaped interface crack
in piezoelectric bimaterials is very important in designing
practical engineering applications.

It is well-known that defects such as interface cracks,
holes, and dislocations seriously affect the mechanical behav-
ior and change their strength. In addition, the interface crack
boundary conditions are of great significance for selecting
fracture criteria and predicting crack propagation. In addi-
tion, the penny-shaped interface crack, which is the research
target of this paper, is a common type of crack, and the

dynamic propagation to be studied is also the most practical
and research value. However, the dynamic propagation of a
penny-shaped interface crack is difficult in experiments and
simulations. Therefore, in order to meet the needs of devel-
opment and safety, the objective of this paper is to use the
boundary conditions of the penny-shaped interface crack to
study the dynamic propagation of the crack under the action
of load, so as to provide some valuable implications for the
fracture mechanics of the piezoelectric bimaterials.

1.2. Outline. After the introduction, the model and constitu-
tive equations are described. Section 3 discusses the calcula-
tion methods under the Laplace transform and Hankel
transform. In Section 4, the dynamic field intensity factors
of crack-tip propagation are derived. In Section 5, numerical
results are obtained based on the model and calculation. The
final section presents some conclusions drawn from this
study.

2. Problem Statement and Formulation

In Figure 1, a penny-shaped interface crack made in piezo-
electric materials one and two is considered. The thickness of
piezoelectric Materials 1 and 2 are h1 and h2, respectively.
The radius of the penny-shaped interface crack is a. Let us
analyze the case of the poling direction along the z-axis in
polar the coordinates ðr; θ; zÞ. The center of the crack is the
origin of coordinates, and its region is r≤ a; z¼ 0. The
names of the parameters can be seen in nomenclature.

According to Tiersten [41], thess balance equation
(divergence equation) of the dynamic behavior of a penny-
shaped interface crack in piezoelectric bimaterials can be
expressed as follows:

∂τrrk
∂r

þ ∂τrzk
∂z

þ τrrk − τθθk
r

¼ ρk
∂2urk
∂t2

∂τrzk
∂r

þ ∂τzzk
∂z

þ τrzk
r

¼ ρk
∂2uzk
∂t2

∂Drk

∂r
þ ∂Dzk

∂z
þ Drk

r
¼ 0

8>>>>>>><
>>>>>>>:

;   k¼ 1; 2: ð1Þ

The constitutive equations (equations of state) [41] can
be written as follows:
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FIGURE 1: A penny-shaped propagating crack at the interface of
piezoelectric bimaterials.
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11
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∂z

þ e kð Þ
31

∂φk
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15

∂uzk
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15
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− ε kð Þ
11

∂φk
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Dzk ¼ e kð Þ
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ð2Þ

3. Solution to the Problem

Inserting Equation (2) into Equation (1), we have

c kð Þ
11

∂2urk
∂r2

þ 1
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∂urk
∂r

� �
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44
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33
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ð5Þ

In order to further solve the problem, the piezoelectric
bimaterials are in a mechanical and electrical static state
when t¼ 0. The initial conditions for piezoelectric bimater-
ials are zero at t¼ 0, which can be expressed by the formulas
as follows:

urk r; z; 0ð Þ ¼ 0;  
∂urk r; z; tð Þ

∂t

����
t¼0

¼ 0;  uzk r; z; 0ð Þ

¼ 0;  
∂uzk r; z; tð Þ

∂t

����
t¼0

¼ 0:
ð6Þ

For piezoelectric media, the boundary conditions of the
crack surface are well known. In this paper, we consider the
boundary conditions in the presence of a circular coin-type
interface crack. For piezoelectric bimaterials, we assume that
there are impact stresses and electric fields above and below,
and it is sufficient to solve the corresponding problems pre-
sented in the following boundary conditions according to

symmetry. The boundary conditions under impacts of elastic
stress and electric field at t>0 are as follows:

τzz1 r; h1; tð Þ ¼ τzz2 r;−h2; tð Þ ¼ τ0H tð Þ;  r<1; ð7Þ

Ez1 r; h1; tð Þ ¼ Ez2 r;−h2; tð Þ ¼ E0H tð Þ;  r<1; ð8Þ

ur1 r; h1; tð Þ ¼ ur2 r;−h2; tð Þ;  r<1: ð9Þ

In this paper, the defect problem of piezoelectric bima-
terials with finite thickness is studied. According to symme-
try, the upper and lower materials are continuous in the z¼ 0
plane (crack plane). On the other hand, applying symmetry
to the z¼ 0 plane at t>0, we get

τrz1 r; 0þ; tð Þ ¼ τrz2 r; 0−; tð Þ ¼ 0;  r<a; ð10Þ

Dz1 r; 0þ; tð Þ ¼ Dz2 r; 0−; tð Þ ¼ d0 tð Þ;  r<a; ð11Þ

τzz1 r; 0þ; tð Þ ¼ τzz2 r; 0−; tð Þ ¼ 0;  r<a; ð12Þ

uz1 r; 0þ; tð Þ ¼ uz2 r; 0−; tð Þ ¼ 0;  r ≥ a; ð13Þ

φ1 r; 0þ; tð Þ ¼ φ2 r; 0−; tð Þ ¼ 0;  r ≥ a; ð14Þ

τrz1 r; 0þ; tð Þ ¼ τrz2 r; 0−; tð Þ ¼ 0;  r ≥ a: ð15Þ

To solve, the following is the Laplace transform concern-
ing the time t

f ∗ x; y; pð Þ ¼
Z þ1

0
f x; y; tð Þe−ptdt;  f x; y; tð Þ

¼ 1
2πi

Z
Br
f ∗ x; y; pð Þeptdp;

ð16Þ

where Br denotes the Bromwich path of integration.
Using the Laplace transform, Equations (7)–(15) can be

transformed into

τ∗zz1 r; h1; pð Þ ¼ τ∗zz2 r;−h2; pð Þ ¼ τ0
p
;  r<1; ð17Þ

E∗
z1 r; h1; pð Þ ¼ E∗

z2 r;−h2; pð Þ ¼ E0
p
;  r<1; ð18Þ

u∗r1 r; h1; pð Þ ¼ u∗r2 r;−h2; pð Þ;  r<1; ð19Þ

τ∗rz1 r; 0þ; pð Þ ¼ τ∗rz2 r; 0−; pð Þ ¼ 0;  r<a; ð20Þ

D∗
z1 r; 0þ; pð Þ ¼ D∗

z2 r; 0−; pð Þ ¼ d∗0 pð Þ;  r<a; ð21Þ

τ∗zz1 r; 0þ; pð Þ ¼ τ∗zz2 r; 0−; pð Þ ¼ 0;  r<a; ð22Þ

u∗z1 r; 0þ; pð Þ ¼ u∗z2 r; 0−; pð Þ ¼ 0;  r ≥ a; ð23Þ

φ∗
1 r; 0þ; pð Þ ¼ φ∗

2 r; 0−; pð Þ ¼ 0;  r ≥ a; ð24Þ
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τ∗rz1 r; 0þ; pð Þ ¼ τ∗rz2 r; 0−; pð Þ ¼ 0;  r ≥ a: ð25Þ

From Equations (17)–(19), the elastic displacement and
electric potential by unknown functions Ajk and Bjk ( j¼ 1; 2;
3 and k¼ 1; 2) in the transformed domain can be obtained
as follows:

u∗rk r; z; pð Þ
¼∑

3

j¼1

Z 1

0
Ajk ξ; pð Þe 3−2kð Þβjk ξz þ Bjk ξ; pð Þe− 3−2kð Þβjk ξz
h i

J1 ξrð Þdξ;

ð26Þ

u∗zk r; z; pð Þ
¼ − ∑

3

j¼1

Z 1

0
γ1jkβjk Ajk ξ; pð Þe 3−2kð Þβjk ξz − Bjk ξ; pð Þe− 3−2kð Þβjk ξz

h i

J0 ξrð Þdξþ A kð Þ
0 z
p

;

ð27Þ

φ∗
k r; z; pð Þ
¼ − ∑

3

j¼1

Z 1

0
γ2jkβjk Ajk ξ; pð Þe 3−2kð Þβjk ξz − Bjk ξ; pð Þe− 3−2kð Þβjk ξz

h i

J0 ξrð Þdξ − B0z
p

;

ð28Þ

where AðkÞ
0 ¼ τ0þeðkÞ33 E0

cðkÞ33

, B0 ¼E0, J0ðξrÞ, and J1ðξrÞ are zeroth

order and first order Bessel functions of the first kind, respec-
tively, known constants γ1jk ; γ2jk and βjk are determined by
the Hankel and Laplace transform.

By substituting Equations (26)–(28) to Equations (3)–(5),
we find βjk satisfy the following

det  Rk½ � ¼ 0; ð29Þ

where

Rk ¼

c kð Þ
11 − c kð Þ

44 β
2
jk
3 − 2kð Þ2 þ ρ kð Þ p

2

ξ2
c kð Þ
13 þ c kð Þ

44

� �
βjk 3 − 2kð Þ e kð Þ

15 þ e kð Þ
31

� �
βjk 3 − 2kð Þ

c kð Þ
13 þ c kð Þ

44

� �
βjk 3 − 2kð Þ c kð Þ

33 β
2
jk
3 − 2kð Þ2 − c kð Þ

44 − ρ kð Þ p
2

ξ2
e kð Þ
33 β

2
jk
3 − 2kð Þ2 − e kð Þ

15

e kð Þ
15 þ e kð Þ

31

� �
βjk 3 − 2kð Þ e kð Þ

33 β
2
jk
3 − 2kð Þ2 − e kð Þ

15 ε kð Þ
11 − ε kð Þ

33 β
2
jk
3 − 2kð Þ2

2
6666664

3
7777775
; ð30Þ

and γijk ði¼ 1; 2Þ meet this condition

Rk

1

−γ1jkβjk
−γ2jkβjk

2
64

3
75¼ 0: ð31Þ

From Equation (2) and Equations (26)–(28), the solu-
tions can be obtained as follows:

τ∗zzk r; z; pð Þ ¼ c kð Þ
13

∂u∗rk
∂r

þ c kð Þ
13

u∗rk
r
þ c kð Þ

33

∂u∗zk
∂z

þ e kð Þ
33

∂φ∗
k

∂z

¼ − ∑
3

j¼1

Z 1

0
c kð Þ
33 γ1jk þ e kð Þ

33 γ2jk

� �
3 − 2kð Þβ2jk − c kð Þ

13

h i
ξ Ajk ξ; pð Þe 3−2kð Þβjk ξz þ Bjk ξ; pð Þe− 3−2kð Þβjk ξz
h i

J0 ξrð Þdξþ τ0
p

¼ − ∑
3

j¼1

Z 1

0
η1jkξ Ajk ξ; pð Þe 3−2kð Þβjk ξz þ Bjk ξ; pð Þe− 3−2kð Þβjk ξz

h i
J0 ξrð Þdξþ τ0

p
;

ð32Þ

τ∗rzk r; z; pð Þ ¼ c kð Þ
44

∂u∗rk
∂z

þ c kð Þ
44

∂u∗zk
∂r

þ e kð Þ
15

∂φ∗
k

∂r

¼∑
3

j¼1

Z 1

0
c kð Þ
44 3 − 2kþ γ1jk
À Áþ e kð Þ

15 γ2jk

h i
βjkξ Ajk ξ; pð Þe 3−2kð Þβjk ξz − Bjk ξ; pð Þe− 3−2kð Þβjk ξz

h i
J1 ξrð Þdξ

¼∑
3

j¼1

Z 1

0
η2jk Ajk ξ; pð Þe 3−2kð Þβjk ξz − Bjk ξ; pð Þe− 3−2kð Þβjk ξz

h i
J1 ξrð Þdξ;

ð33Þ
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D∗
zk r; z; pð Þ ¼ e kð Þ

31

∂u∗rk
∂r

þ e kð Þ
31

u∗rk
r
þ e kð Þ

33

∂u∗zk
∂z

− ε kð Þ
33

∂φ∗
k

∂z

¼ − ∑
3

j¼1

Z 1

0
η3jkξ Ajk ξ; pð Þe 3−2kð Þβjk ξz þ Bjk ξ; pð Þe− 3−2kð Þβjk ξz

h i
J0 ξrð Þdξþ D kð Þ

0

p
;

ð34Þ

where

D kð Þ
0 ¼ e kð Þ

33

c kð Þ
33

τ0 þ e kð Þ
33 E0

� �
þ ε kð Þ

33 E0; η1jk

¼ c kð Þ
33 γ1jk þ e kð Þ

33 γ2jk

� �
3 − 2kð Þβ2jk − c kð Þ

13 ;

ð35Þ

η2jk¼ c kð Þ
44 3 − 2kþ γ1jk
À Áþ e kð Þ

15 γ2jk

h i
βjkξ;

η3jk¼ e kð Þ
33 γ1jk − ε kð Þ

33 γ2jk

� �
3 − 2kð Þβ2jk − e kð Þ

31 :
ð36Þ

According to Li and Lee [42], the relationship between
τ0; E0 and D0 is as follows:

D0 ¼
c11 þ c12ð Þe33 − 2c13e31
c11 þ c12ð Þc33 − 2c213

τ0

þ c11 þ c12ð Þe233 þ 2c33e231 − 4c13e31e33
c11 þ c12ð Þc33 − 2c213

þ ε33

� �
E0:

ð37Þ

According to the boundary conditions, we have

Ajk ¼ −e−2βjk ξhkBjk ;  Bj1 ¼ −
1þ e−2βj2 ξh2

1þ e−2βj1 ξh1
Bj2 : ð38Þ

Inserting boundary conditions Equations (23) and (24)
into Equations (27) and (28), respectively, they are

−∑
3

j¼1

Z 1

0
γ1jkβjk Ajk ξ; pð Þ − Bjk ξ; pð ÞÂ Ã

J0 ξrð Þdξ¼ 0; ð39Þ

−∑
3

j¼1

Z 1

0
γ2jkβjk Ajk ξ; pð Þ − Bjk ξ; pð ÞÂ Ã

J0 ξrð Þdξ¼ 0; ð40Þ

∑
3

j¼1

Z 1

0
η2jk Ajk ξ; pð Þ − Bjk ξ; pð ÞÂ Ã

J1 ξrð Þdξ¼ 0: ð41Þ

Introducing new functions fikðs; pÞ ði¼ 1; 2Þ and qikðs; pÞði¼ 1; 2Þ, we have

∑
3

j¼1
γ1j1βj1 e−2βj1 ξh1 þ 1

À Á
Bj1 − ∑

3

j¼1
γ1j2βj2 e−2βj2 ξh2 þ 1

À Á
Bj2

¼ −

Z
a

0
f1 s; pð Þsin ξsð Þds¼ −q1;

ð42Þ

∑
3

j¼1
γ2j1βj1 e−2βj1 ξh1 þ 1

À Á
Bj1 − ∑

3

j¼1
γ2j2βj2 e−2βj2 ξh2 þ 1

À Á
Bj2

¼ −

Z
a

0
f2 s; pð Þsin ξsð Þds¼ −q2;

ð43Þ

∑
3

j¼1
η2j2 e−2βj2 ξh2 þ 1

À Á
Bj2 ¼ 0: ð44Þ

From Equations (42)–(44), one can see that the unknown
functions Bj2ðξ; pÞ ðj¼ 1; 2; 3Þ can be obtained as follows:

B12 ξ; pð Þ
B22 ξ; pð Þ
B32 ξ; pð Þ

2
64

3
75¼ − Cji

Â Ã
3×3

Z
a

0

f1

f2

0

2
64

3
75sin ξsð Þds: ð45Þ

From the study of Abramowitz and Stegun [43], we have

Z 1

0
J0 ξrð Þsin ξsð Þdξ¼

0; r<s

H s − rð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − r2

p ; r>s

8<
: : ð46Þ

By applying Equation (46) and substituting Equations (27)
and (28) into Equations (23) and (24), respectively, the values
of elastic displacement u∗zk and electric potentialφ

∗
k on the z¼

0 can be obtained as follows:

u∗zk r; 0; pð Þ ¼ −

Z 1

0

Z
a

r
f1 s; pð Þ sin ξsð ÞJ0 ξrð Þdsdξ

¼ −

Z
a

r
f1 s; pð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 − r2
p ds;

ð47Þ

φ∗
k r; 0; pð Þ ¼ −

Z 1

0

Z
a

r
f2 s; pð Þ sin ξsð ÞJ0 ξrð Þdsdξ

¼ −

Z
a

r
f2 s; pð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 − r2
p ds:

ð48Þ

It is moreover, inserting Equations (32) and (34) into
Equations (21) and (22), respectively, we arrive at

τ∗zz2 r; 0; pð Þ ¼ −

Z 1

0
∑
2

i¼1
∑
3

j¼1
η

1j2
Cji 1 − e−2βj2 ξh2

À Á
qiξJ0 ξrð Þdξþ τ0

p
;

ð49Þ
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D∗
z2 r; 0; pð Þ ¼ −

Z 1

0
∑
2

i¼1
∑
3

j¼1
η

3j2
Cji 1 − e−2βj2 ξh2

À Á
qiξJ0 ξrð Þdξþ D0

p
:

ð50Þ

Then we have

Z 1

0
∑
2

i¼1
∑
3

j¼1
η

1j2
Cji 1 − e−2βj2 ξh2

À Á
qiξJ0 ξrð Þdξ¼ τ0

p
; ð51Þ

Z 1

0
∑
2

i¼1
∑
3

j¼1
η

3j2
Cji 1 − e−2βj2 ξh2

À Á
qiξJ0 ξrð Þdξ¼ D0

p
: ð52Þ

Using what we already know [42]

Z
x

0

rJ0 ξrð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − r2

p dr ¼ sin ξxð Þ
ξ

;  ξJ0 ξrð Þ ¼ sin ξxð Þ: ð53Þ

We finally obtain

Z 1

0
∑
2

i¼1
∑
3

j¼1
η

1j2
Cji 1 − e−2βj2 ξh2

À Á
qi sin ξxð Þdξ¼ τ0

p
; ð54Þ

Z 1

0
∑
2

i¼1
∑
3

j¼1
η

3j2
Cji 1 − e−2βj2ξh2

À Á
qi sin ξxð Þdξ¼ D0

p
: ð55Þ

By substituting Equations (43) and (44) into Equations (54)
and (55), respectively, one can obtain the following results

Z 1

0

Z
a

0
∑
2

i¼1
∑
3

j¼1
η

1j2
Cji 1 − e−2βj2 ξh2

À Á
fi s; pð Þ sin ξsð Þ sin ξxð Þdξds¼ τ0

p
;

ð56Þ
Z 1

0

Z
a

0
∑
2

i¼1
∑
3

j¼1
η

3j2
Cji 1 − e−2βj2 ξh2

À Á
fi s; pð Þ sin ξsð Þ sin ξxð Þdξds¼ D0

p
:

ð57Þ

Using the known relation [42]

Z 1

0
sin ξsð Þ sin ξxð Þdξ¼ π

2
δ s − xð Þ; ð58Þ

where δð∗Þ is the Dirac delta function.
By applying Equation (58), Equations (56) and (57) can

be further read as follows:

Z
a

0
∑
2

i¼1
d1ifi s; pð Þ π

2
δ s − xð Þds¼ τ0

p
; ð59Þ

Z
a

0
∑
2

i¼1
d2ifi s; pð Þ π

2
δ s − xð Þds¼ D0

p
; ð60Þ

where

∑
3

j¼1
η

1j2
Cji 1 − e−2βj2 ξh2

À Á¼ d1i; ð61Þ

∑
3

j¼1
η

3j2
Cji 1 − e−2βj2 ξh2

À Á¼ d2i: ð62Þ

Let us consider the following limiting form

lim
ξ→1

d1i ξ; pð Þ ¼ l1i; i¼ 1; 2; ð63Þ

lim
ξ→1

d2i ξ; pð Þ ¼ l2i; i¼ 1; 2: ð64Þ

Equations (59) and (60) can be further written as follows:

∑
2

i¼1
l1ifi x; pð Þ þ

Z
a

0
∑
2

i¼1
L1i s; x; pð Þfi s; pð Þds¼ 2τ0

pπ
x; x<a;

ð65Þ

∑
2

i¼1
l2ifi x; pð Þ þ

Z
a

0
∑
2

i¼1
L2i s; x; pð Þfi s; pð Þds¼ 2D0

pπ
x; x<a;

ð66Þ

where

L1i s; x; pð Þ ¼ 2
π

Z 1

0
l1i − d1ið Þ sin ξtð Þ sin ξxð Þdξ; i¼ 1; 2;

ð67Þ

L2i s; x; pð Þ ¼ 2
π

Z 1

0
l2i − d2ið Þ sin ξtð Þ sin ξxð Þdξ; i¼ 1; 2:

ð68Þ

For the convenience of calculation, the following trans-
formations are introduced as follows:

s
_¼ s

a
; x_¼ x

a
; gi x

_; p
� �

¼ pfi x; pð Þ
a

: ð69Þ

Hence, Equations (65) and (66) can be expressed as fol-
lows:

∑
2

i¼1
l1ifi x

_; p
� �

þ
Z

1

0
∑
2

i¼1
L
_

1i s
_; x_; p

� �
fi s

_; p
� �

ds
_¼ 2τ0

π
x
_;

ð70Þ

∑
2

i¼1
l2ifi x

_; p
� �

þ
Z

1

0
∑
2

i¼1
L2i s

_; x_; p
� �

fi s
_; p

� �
ds
_¼ 2D0

π
x
_:

ð71Þ
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4. Dynamic Field Intensity Factors

From the perspective of fracture mechanics, the dynamic
field intensity factor is an essential factor in characterize
the penny-shaped crack. From Equation (32), we have

τ∗zz r; pð Þ ¼−

Z 1

0

Z
a

0
∑
2

i¼1
∑
3

j¼1
η

1j2
Cji 1 − e−2βj2ξh2

À Á
fi s; pð Þξ sin ξsð ÞJ0 rξð Þdξds;

ð72Þ

D∗
z r; pð Þ ¼−

Z 1

0

Z
a

0
∑
2

i¼1
∑
3

j¼1
η

3j2
Cji2 1 − e−2βj2 ξh2

À Á
fi s; pð Þξ sin ξsð ÞJ0 rξð Þdξds:

ð73Þ

After some calculation, the expressions for τ∗zzðr; pÞ and
D∗
z ðr; pÞ can be obtained as follows:

τ∗zz r; pð Þ ¼ ∑
2

i¼1
l1ifi a; pð Þ

Z 1

0
cos ξað ÞJ0 ξrð Þdξþ o 1ð Þ;

ð74Þ

D∗
z r; pð Þ ¼ ∑

2

i¼1
l2ifi a; pð Þ

Z 1

0
cos ξað ÞJ0 ξrð Þdξþ o 1ð Þ:

ð75Þ

We note that

Z 1

0
cos ξað ÞJ0 ξrð Þdξ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − a2
p ; r>a: ð76Þ

The dynamic field intensity factor in the Laplace trans-
form domain can be defined as follows:

K∗
τ pð Þ ¼ lim

r→aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π r − að Þ

p
τ∗zz r; pð Þ ¼

∑
2

i¼1
l1ifi 1; pð Þ
p

ffiffiffiffiffi
πa

p
;

ð77Þ

K∗
D pð Þ ¼ lim

r→aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π r − að Þ

p
D∗
z r; pð Þ ¼

∑
2

i¼1
l2ifi 1; pð Þ
p

ffiffiffiffiffi
πa

p
:

ð78Þ

Similarly, the field intensity factor is related to the prop-
agation displacement of the crack tip and the electric poten-
tial, so it can be defined as follows:

K∗
COD pð Þ ¼ lim

r→a−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2 a − rð Þ
r

u∗z r; pð Þ ¼ f1 a; pð Þ
a

ffiffiffiffiffi
πa

p
;

ð79Þ

K∗
φ pð Þ ¼ lim

r→a−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2 a − rð Þ
r

φ∗ r; pð Þ ¼ f2 a; pð Þ
a

ffiffiffiffiffi
πa

p
: ð80Þ

According to Equations (69)–(71), one can obtain

KCOD ¼ f1 1; pð Þ
a

ffiffiffiffiffi
πa

p
; ð81Þ

Kφ ¼
f2 1; pð Þ

a

ffiffiffiffiffi
πa

p
: ð82Þ

5. Numerical Examples

When the dynamic field intensity factors exceed the corre-
sponding critical value, the crack expands. Some numerical
calculations are shown to describe the dynamic behavior of a
penny-shaped crack. The material coefficients of the numer-
ical examples are shown in Table 1.

Let us take the inverse Laplace transform as Stehfest [44]
proposed. In our example, the stress impact load τ0 is
selected to be 4.2MPa. The parameters relating the electrical
and mechanical loadings are expressed by I∗ ¼ e33E0=τ0 and
cv ¼ vt. Let us define the dimensional function as F=F0, where
F0 is the static COD intensity factor (F is KCOD in
Equation (81)).

When the double material degenerates into a single
material, we can calculate the corresponding value (Appen-
dix B). Figure 2 is drawn to describe the trend of F=F0 relative
to h=a (E0∗ ¼ 1). The two piezoelectric single materials are
PZT-6B and BaTiO3, respectively. The F=F0 of both materials
decreases monotonically and tends to change smoothly with
increasing h=a. On the other hand the changes in the two
curves are shown in Figure 2. We can see that the change in
the value of the material BaTiO3 is greater than that of mate-
rial PZT-6B, which in a particular sense implies the correct-
ness of our results.

For the F=F0 plot with E0 change in Figure 3, a thinner
piezoelectric layer can be found to cause an increase in F=F0,

TABLE 1: The properties of piezoelectric material.

Material PZT-6B PZT-5H BaTiO3

c11 (10
10 N/m2) 16.8 12.6 22.6

c33 (10
10 N/m2) 16.3 11.7 21.6

c44 (10
10 N/m2) 2.71 3.53 4.4

c12 (10
10 N/m2) 6 5.3 12.5

c13 (10
10 N/m2) 6 5.5 12.4

e31 (C/m
2) −0.9 −6.5 −2.2

e33 (C/m
2) 7.1 23.3 9.3

e15 (C/m
2) 4.6 17 5.8

ε11 (10
−10 F/m) 36 15.052 56.4

ε33 (10
−10 F/m) 34 13 63.5

ρ (103 kg/m3) 7.55 7.5 5.7
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which means that the contribution of the electric field to the
fracture toughness is evident for the thin piezoelectric layer
in Figure 3. When h1=a>2; F=F0 is also insensitive.

Figure 4(a)–4(c) discuss the influence of the applied elec-
tric fields E0 and vt=a on F=F0. Under the impact problem,
this time normalization is denoted by vt=a, where v is the

shear wave velocity. In Figure 4, for a given pressure τ0; F=F0
increases with increasing of electric fields E0 and vt=a. At a
fixed time, it can be found that an increase in E0 will lead to
an increase in F=F0, which is consistent with the result shown
in Figure 3. For a fixed electric field E0, an increase in vt=a
leads to an increase in F=F0. However, we can see that the
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FIGURE 4: A three-dimensional picture of how F=F0 changes with E0 and vt=a: (a) PZT-6B and PZT-6B, (b) BaTiO3 and BaTiO3, and (c) PZT-
6B and BaTiO3.
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FIGURE 2: The variations of F=F0 on h=a with material BaTiO3 and
material PZT-6B, respectively.
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FIGURE 3: The variations of F=F0 on E0 with PZT-6B and PZT-6B
(h1=a¼ 2; h1=a¼ 2:3 and h1=a¼ 2:5).
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increase in F=F0 flattens out in the later period. From
Figures 2–4 show that different materials play different roles
in the crack propagation.

Figure 5 shows that when the substrate is constant, the
thicker the material 1, the less influence it has. In other
words, when the thickness of Material 2 is constant, the
thickness of Material 1 is small, and the COD intensity factor
changes greatly, indicating that the thinner of Material 1
when appropriate, the more conducive it is to safe design.

It can be seen from Figures 3 and 4 that both positive and
negative electric fields will affect the propagation of cracks.
At the same time, it can be found that the COD intensity
factor value is large under a positive electric field, while the
COD intensity factor value is small under a negative electric
field, which indicates that the positive electric field will cause
the expansion of the piezoelectric material, while the nega-
tive electric field will cause the contraction of the piezoelec-
tric material. This conclusion is consistent with that of the
study by Li and Lee [42]. In other words, crack propagation
can be controlled by the regulation of electric field.

For the F=F0 plot with I∗ in Figure 6, a thinner piezoelec-
tric layer can be found to cause an increase in F=F0. In
addition, observations of Figures 4–6 suggest that the elec-
tromechanical coupling coefficient plays an important role in
crack propagation: the stronger the electromechanical cou-
pling effect, the smaller F=F0 is.

All the c figures in Figures 4–6 studied the crack growth
of different piezoelectric bimaterials. By comparing the
images, we can find that when Materials 1 and 2 are different,
the variation trend of COD intensity of crack growth is basi-
cally the same as that when Materials 1 and 2 are the same.
That is, different material parameters will affect the change
of COD intensity factor, so in practical applications, the
appropriate material should be selected according to the
actual situation.

It can be seen from Figures 5 and 6 that when the thick-
ness of Material 2 is constant, the thickness of Material 1 is
small, and the COD intensity factor changes greatly, indicat-
ing that the thinner the material when appropriate, the more
conducive it is to safe design.
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FIGURE 5: The variations of F=F0 on cv=a with different piezoelectric bimaterials: (a) PZT-5H and PZT-5H, (b) BaTiO3 and BaTiO3, (c) PZT-
5H and BaTiO3.
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6. Conclusion

Based on the piezoelectric theory, the dynamic penny-shaped
interface crack propagation of piezoelectric bimaterials is ana-
lyzed. The boundary conditions are transformed into a nonlinear
Fredholm integral equation by using the Hankel transformation
technique. Numerical solutions are given. According to the given
surface displacement and stress of the layer, the corresponding
models are constructed, and the displacement functions that
meet the conditions are established. Solving themodel, the influ-
ences of the electric field, impact time and layer thickness on the
dynamic COD are analyzed accordingly. The results show that
the COD increases with decreasing h1. At the same time, when
the speed v and crack size a are fixed, the COD increases with
increasing impact time, and tends to be flat after reaching the
peak value. The stronger the electromechanical coupling effect is,
the smaller F=F0 is. At the same time, different materials have
different roles in crack propagation, so it is very important to
study the COD factor of cracks for safety design.

Nomenclature

cðkÞ11 ; c
ðkÞ
12 ; c

ðkÞ
13 ; c

ðkÞ
44 ; c

ðkÞ
33 : Elastic constants

εðkÞ11 ε
ðkÞ
11 ; ε

ðkÞ
33 : Dielectric constants

urk ; uzk : Radial and axial components of
displacements vector

Drk ;Dzk : Electric displacement
v: Shear wave velocity
k¼ 1; 2: Materials 1 and 2
E0: Electric loading

eðkÞ15 ; e
ðkÞ
31 ; e

ðkÞ
33 : Piezoelectric constants

ρðkÞ: Density
τrrk ; τθθk ; τzzk ; τrzk : Stress tensor
HðtÞ: Step function
t: Impact time
τ0: Mechanical loading
E0∗: Dielectric load normalization.
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FIGURE 6: The variations of F=F0 on I∗ with different piezoelectric bimaterials (a) PZT-5H and PZT-5H, (b) BaTiO3 and BaTiO3, (c) BaTiO3

and PZT-5H.
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Appendix

A. Elements of Matrix [C]

A1¼ γ111β11 1þ e−2β11 ξh1
À Á

1 − e−2β12 ξh2
À Á

= 1 − e−2β11 ξh1
À Á

− γ112β12 1þ e−2β12 ξh2
À Á

;
ðA:1Þ

B1¼ γ121β21 1þ e−2β21 ξh1
À Á

1 − e−2β22 ξh2
À Á

= 1 − e−2β21 ξh1
À Á

− γ122β22 1þ e−2β22 ξh2
À Á

;
ðA:2Þ

C1¼ γ131β31 1þ e−2β31 ξh1
À Á

1 − e−2β32 ξh2
À Á

= 1 − e−2β31 ξh1
À Á

− γ132β32 1þ e−2β32 ξh2
À Á

;
ðA:3Þ

A2¼ γ211β11 1þ e−2β11 ξh1
À Á

1 − e−2β12 ξh2
À Á

= 1 − e−2β11 ξh1
À Á

− γ212β12 1þ e−2β12 ξh2
À Á

;
ðA:4Þ

B2¼ γ221β21 1þ e−2β21 ξh1
À Á

1 − e−2β22 ξh2
À Á

= 1 − e−2β21 ξh1
À Á

− γ222β22 1þ e−2β22 ξh2
À Á

;
ðA:5Þ

C2¼ γ231β31 1þ e−2β31 ξh1
À Á

1 − e−2β32 ξh2
À Á

= 1 − e−2β31 ξh1
À Á

− γ232β32 1þ e−2β32 ξh2
À Á

;
ðA:6Þ

A3 ¼ η212 1þ e−2β12 ξh2
À Á

; ðA:7Þ

B3 ¼ η222 1þ e−2β22 ξh2
À Á

; ðA:8Þ

C3 ¼ η232 1þ e−2β32 ξh2
À Á

; ðA:9Þ

C0 ¼ A1 B2C3 − C2B3ð Þ − A2 B1C3 − C1B3ð Þ þ A3 B1C2 − B2C1ð Þ;
ðA:10Þ

C11 ¼ B2C3 − B3C2ð Þ=C0; ðA:11Þ

C12 ¼ B3C1 − B1C3ð Þ=C0; ðA:12Þ

C13 ¼ B1C2 − B2C1ð Þ=C0; ðA:13Þ

C21 ¼ C2A3 − C3A2ð Þ=C0; ðA:14Þ

C22 ¼ C3A1 − C1A3ð Þ=C0; ðA:15Þ

C23 ¼ C1A2 − C2A1ð Þ=C0; ðA:16Þ

C31 ¼ A2B3 − A3B2ð Þ=C0; ðA:17Þ

C32 ¼ A3B1 − A1B3ð Þ=C0; ðA:18Þ

C33 ¼ A1B2 − A2B1ð Þ=C0: ðA:19Þ

B. The Element Value of Matrix [C] in
Single Material

a¼ η23β1 1þ e2β1ξh
À Á

γ11 − η21β3 1þ e2β3ξh
À Á

γ13
Â Ã

β2 1þ e2β2ξh
À Á

η22β1 1þ e2β1ξh
À Á

γ11 − η21β2 1þ e2β2ξh
À Á

γ12
Â Ã

β3 1þ e2β3ξh
À Á

−
γ23γ11 − γ21γ13
γ22γ11 − γ21γ12

;

ðB:1Þ

b1 ¼
η21β2 1þ e2β2ξh

À Á
γ23γ11 − γ21γ13ð Þ

η21β2 1þ e2β2ξh
À Á

γ12 − η22β1 1þ e2β1ξh
À Á

γ11
Â Ã

γ22γ11 − γ21γ12ð Þ ;

ðB:2Þ

b2 ¼
η23β1 1þ e2β1ξh

À Á
γ11 − η21β3 1þ e2β3ξh

À Á
γ13

Â Ã
β2 1þ e2β2ξh
À Á

γ21
η22β1 1þ e2β1ξh

À Á
γ11 − η21β2 1þ e2β2ξh

À Á
γ12

Â Ã
β3 1þ e2β3ξh
À Á

γ21γ12 − γ22γ11ð Þ ; ðB:3Þ

b3¼ −
η21β2 1þ e2β2ξh

À Á
η21β2 1þ e2β2ξh

À Á
γ12 − η22β1 1þ e2β1ξh

À Á
γ11

þ γ21
γ22γ11 − γ21γ12

;

ðB:4Þ

b4 ¼
η23β1 1þ e2β1ξh

À Á
γ11 − η21β3 1þ e2β3ξh

À Á
γ13

Â Ã
β2 1þ e2β2ξh
À Á

γ11
η22β1 1þ e2β1ξh

À Á
γ11 − η21β2 1þ e2β2ξh

À Á
γ12

Â Ã
β3 1þ e2β3ξh
À Á

γ22γ11 − γ21γ12ð Þ ; ðB:5Þ

b5 ¼
β1 1þ e2β1ξh
À Á

β2 1þ e2β2ξh
À Á

γ11
η22β1 1þ e2β1ξh

À Á
γ11 − η21β2 1þ e2β2ξh

À Á
γ12

; ðB:6Þ
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b6 ¼
β1 1þ e2β1ξh
À Á

β2 1þ e2β2ξh
À Á

γ11 γ11γ23 − γ21γ13ð Þ
η22β1 1þ e2β1ξh

À Á
γ11 − η21β2 1þ e2β2ξh

À Á
γ12

Â Ã
γ11γ22 − γ21γ12ð Þ ;

ðB:7Þ

b7 ¼
γ12
γ11

; b8 ¼
γ13
γ11

; b9 ¼
1
γ11

; b10 ¼
γ11

γ22γ11 − γ21γ12
;

b11 ¼
1

β1 1þ e2β1ξh
À Á ;

ðB:8Þ

b12 ¼
1

β2 1þ e2β2ξh
À Á ; b13 ¼ 1

β3 1þ e2β3ξh
À Á ; ðB:9Þ

c11 ¼
b1b7 − b2b7 þ b9a − b8b3ð Þ

a
b11;

c12 ¼
b8b10 − b4b7

a
b11; c13 ¼

b6b7 − b5b8
a

b11;

c21 ¼
b2 − b1

a
b12; c22 ¼

b4b12
a

; c23 ¼ −
b6
a
b12;

ðB:10Þ

c31 ¼
b3
a
b13; c32 ¼ −

b10
a

b13; c33 ¼
b5b13
a

: ðB:11Þ

The value of cji corresponds to the value of Cji for the
matrix in Appendix A.
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