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A numerical analysis of magnetohydrodynamic natural convection along a thin vertical cylinder with a sinusoidal heat flux at the
wall immersed in copper (Cu) and aluminum-oxide (Al2O3) hybrid nanofluids has been studied. A 2D vertical thin cylinder shape
geometry has been considered with a radius of R. The fluid flow is considered laminar and incompressible with the Prandtl number
of Pr= 6.2 and 10% concentration of hybrid nanoparticles. The nondimensional governing equations have been solved numerically
by using the implicit finite difference method. An in-house FORTRAN 90 code is used for solving this problem and the code is
validated with the available benchmark results. Numerical simulations have been performed for a wide range of governing
parameters, Hartmann number from Ha= 0 to Ha= 4, nanoparticles volume fractions ϕ= 0.0 to ϕ= 0.1, and the amplitude of
the wall heat flux ε= 0.0–0.3. The findings have been illustrated in terms of streamlines, isotherms, local skin friction coefficients,
local Nusselt numbers, velocity, and temperature distributions. The flow field and temperature distribution within the boundary
layer are deceased by the effects of the wall heat flux amplitudes. It is also noted that the rate of heat transfer increases with particle
volume fraction and the amplitude of the wall heat flux. According to the findings, Nu increases by 24.72% as ϕ increases from 0 to
0.1 while ε= 0.3, and 27.66% while ε increases from 0.0 to 0.3 at 5% hybrid nanoparticles. The local skin frictions and Nusselt
number diminish with the increment of the Hartman number due to the effects of the Lorenz force. The findings of this study can
lead to a better understanding of the fundamental principles regarding the behavior of hybrid nanofluids under complex condi-
tions, such as a vertical thin cylinder with a sinusoidal wall heat flux. Understanding the behavior of hybrid nanofluids in the
presence of a magnetic field and a nonuniform wall heat flow can also lead to the development of innovative heat transfer
enhancement strategies.

1. Introduction

The impact of the heating and cooling mechanism on many
businesses and consumer goods motivates researchers
throughout the world to concentrate on heat transfer studies.
Its significance is seen in various industrial processes, includ-
ing laser cooling, environmental engineering, and thermal
power stations. In every engineering application, maximum
heat transfer efficiency in the shortest amount of time is
preferred. This may be accomplished by using a working
fluid with high thermal conductivity. Conventional working
fluid options do not meet today’s industrial standards
because of their poor thermal conductivity. Nanofluid can

variously solve this issue. The mixer of the nanofluid is even
more thermally conductive than nanofluid, which is defined
as a hybrid nanofluid [1]. A hybrid nanofluid on a vertical
narrow cylinder experiences natural convective heat transfer
in which heat is transferred from the cylinder to the fluid due
to buoyancy pressures brought on by variations in tempera-
ture. A mixer of nanofluid combines two or more different
kinds of nanoparticles that can improve the fluid’s thermal
characteristics. The transmission phenomena grow more
complicated in the presence of the nanofluid/hybrid nano-
fluid and magnetic field, and they exhibit reliance on the
imposed boundary conditions, geometric configuration,
and so on [2, 3]. Because of the higher thermal conductivity,
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the study of nanofluid and hybrid nanofluid along a vertical
wavy surface under different conditions has become popular
nowadays [4]. It has many potential applications, such as
drug delivery, heat exchanger design, cooling, energy gener-
ation, etc. [5].

Numerous types of nanoparticles are introduced into the
base liquids to improve the thermal conductivity of a partic-
ular fluid, such as water, ethylene glycol, and engine oils.
Many studies have been conducted using hybrid nanofluid.
Tlili et al. [6] investigate the movement and transmission of
energy of (Ti−Cu) based hybrid nanofluid caused by the
continuously significant point in the hydromagnetic flow.
Arifin et al. [7] looked at the movement of 3D hybrid nano
liquids with a particular goal of similarity factors. Giwa et al.
[8] discussed mixed nanoliquids with a specific class of nano-
fluids known for their improved heat and flow properties
against single-particle nanoparticles. According to Anitha
et al. [9], producing dual-tube heat transfer using a hybrid
nanofluid as a cooling system with outer magnetization field
effects revealed thermal transport efficacy. In the presence of
a hybrid nanofluid and heat radiation, Venkateswarlu et al.
[10] watched significant characteristics of varying thermo-
conduction and viscosity distribution by permeable growing
surface. The ratio of the thermal efficiency in a hybrid nano-
fluid of ethylene glycol and various volume fraction distribu-
tions of ethanol glycol as the base liquid was meticulously
addressed by Pourrajab et al. [11]. A hybrid nanoliquid’s
movement and heat transfer were examined by Yashkun
et al. [12] in their paper using an exponentially stretched/
shrunk surface along with combined convective and Joule
heating. All of them have been reported the improved ther-
mal conductivity than ordinary nanofluid. In this context,
the present literature review explores the research landscape
related to the implicit finite difference simulation of hybrid
nanofluids flowing along a vertical thin cylinder exposed to a
sinusoidal wall heat flux and subjected to the influence of a
magnetic field.

In numerical analysis, the best method for addressing an
issue must be chosen based on its benefits and effectiveness.
The implicit finite difference approach is a strong, dependable,
numerically efficient, and unconditionally convergent way to
solve a boundary layer problem in second-order spatiotempo-
ral [13, 14]. Moreover, the implicit finite difference techniques’
convenience of use and computational effectiveness have made
them popular for modeling heat transport processes. High-
performance computing on fluid flow equations using hetero-
geneous clusters is another capability. Working with unknown
functions and their corresponding derivatives at each node
simultaneously is necessary for some parts of the complex
grid. By using the Keller box approach and, if necessary, defin-
ing interface and boundary conditions, this procedure may be
made more numerically simple [14]. Many studies have been
conducted to provide a comprehensive overview of finite dif-
ference methods in heat transfer simulations (see [14–16]).

Natural convection is commonly considered in the
numerical research of physical sciences in heat transfer appli-
cations. Natural thermal flow (free convection) is a type of
mass and heat transmission in which fluidmotion is driven by

density differences in the fluid induced by temperature gra-
dients rather than by any external device. There are several
applications for natural convective flow. Many industrial uses
rely on it. It is employed for the convection flow of nanopar-
ticles. Natural magnetohydrodynamic (MHD) convection,
classified as convective heat transfer caused solely by the tem-
perature difference of a conductive medium in the magnetic
field, has gained a lot of interest [17, 18] in various studies,
including boundary layer problems [19]. Very few studies
have been performed to analyze the effect of free convection
along a vertical cylinder. Studies of fluid flow about a cylinder
are usually 2D since the radius is taken into account more
thoroughly than boundary layer thickness. Processing equip-
ment operating at low pressure often uses thin cylinders or
any thin-walled shapes. It is worthwhile to highlight a few of
the earlier free convective studies conducted by researchers on
cones or cylinders. In a thermally stratified medium, Hossain
et al. [20] investigated natural convection over a vertical cir-
cular cone having uniform surface heat flux and temperature;
nevertheless, further in-depth talks on different fluids or
Prandtl numbers (Pr) are still needed. Hossain and Alim
[21] considered the impact of radiation on a thin vertical
cylinder’s boundary layer for fixed Pr; however, their results
were restricted to the surface temperature uniformity. Gori
et al. [13] provided a much better presentation since they
showed the applicability of their method with both high
(Pr= 730) and low (Pr= 0.7) Pr. Nonetheless, further consid-
eration was needed for the viscosity variations. Pr can also
reveal the sort of fluids in a standard numerical study by
connecting viscosity and thermal conductivity. According to
Smith et al. [22], a larger Pr (>5) denotes heat transfer that is
influenced by fluid momentum as opposed to thermal diffu-
sion. As a result, adopting a numerical strategy to the relevant
sector is more confidently established when Pr varies at dif-
ferent scales. Most of the time, the existing literature lacks a
thorough examination that integrates hybrid nanofluids,
sinusoidal wall heat flux, magnetic field effects, and implicit
finite difference simulations on a vertical thin cylinder,
despite the notable advancements in each of these domains.
To improve our comprehension of intricate heat transfer pro-
cesses and enhance thermal system design, this review
emphasizes the necessity of conducting a thorough investiga-
tion that unites various ideas.

The objective of this study stems from the fact that this
sort of boundary condition occurs frequently in practice. As
a result, based on the aforementioned literature, it is evident
that more excellent research into the MHD-free convection
combined with the hybrid nanofluid in a thin vertical cylin-
der is required. The present study aims to analyze numerical
simulations of MHD natural convection of hybrid nanofluid
in a thin vertical cylinder. The findings of this study can lead
to a better understanding of the fundamental principles
regarding the behavior of hybrid nanofluids under complex
conditions, such as a vertical thin cylinder with a sinusoidal
wall heat flux. Understanding the behavior of hybrid nano-
fluids in the presence of a magnetic field and a nonuniform
wall heat flow can also lead to the development of innovative
heat transfer enhancement strategies.
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2. Theoretical Formulation

2.1. Problem Statement. A 2D vertical thin cylinder of radius
R with nonuniform heat flux − kf ð∂T∂r Þ¼ − qw½1þ A

R sin ξ� is
considered, as shown in Figure 1. The fluid flow is considered
laminar and incompressible with the Prandtl number of
Pr= 6.2, and the cylinder is immersed in a mixture of water
with Cu and Al2O3 hybrid nanoparticles. Both are consid-
ered to be in the fluid phase, with nanoparticles in thermo-
dynamic equilibrium and moving at the same velocity.

2.2. Hybrid Nanofluid. Nanofluids are nanoparticles used as
a passive control parameter in various energy systems,
including solar power, heat exchanger design, and cooling
processes. Hybrid nanofluids are constructed to directly mix
up two different nanoparticles with a base fluid. In this work,
it is considered that the Cu/Al2O3-water hybrid nanofluids
improve their thermal performance, such as conductivity,
heat transfer, and other fundamental features. The thermo-
physical properties of the nanoparticles and based fluid are
given in Table 1.

The effective density ρhnf and dynamic viscosity μhnf of
nanofluids can be stated as follows [17]:

ρhnf ¼ 1 − ϕð Þρf þ ϕρnp; ð1Þ

where ϕ is the particle volume fraction, subscripts f and s
represent the base fluid and solid particle, respectively, and
[10, 17]

μhnf ¼
μf

1 − ϕð Þ2:5 : ð2Þ

Therefore, the thermal diffusivity αhnf is as follows
[4, 5, 17]:

αhnf ¼
khnf

ρCp

À Á
hnf

; ð3Þ

where the thermophysical characteristics of hybrid nanofluid
are as follows [5, 17]:

khnf ¼
knp þ 2kf − 2 kf − knp

À Á
ϕ

knp þ 2kf þ kf − knp
À Á

ϕ
kf ; ð4Þ

ρCp

À Á
hnf ¼ 1 − ϕð Þ ρCp

À Á
f þ ϕ ρCp

À Á
np; ð5Þ

ρβð Þhnf ¼ 1 − ϕð Þ ρβð Þf þ ϕ ρβð Þnp: ð6Þ

Cu
Al2O3

A
R sin ξ

Tbl = Termal boundary layer

Mbl = Momentum boundary layer

Mbi

Tbl

–kf (  ) = qw [                 ]

r
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z

δT

δv

∂r 1 +∂r

FIGURE 1: Schematic diagram of the vertical thin cylinder with the coordinate system.

TABLE 1: Properties of the nanoparticles and base fluid (H2O, Cu, and Al2O3).

Elements name Density ρ (kgm−3)
Specific heat at constant
pressure Cp (J kg K

−1)
Thermal conductivity

k (Wm−1 K)
Electric

conductivity σ (Sm−1)
Thermal expansion
coefficients (β) (K−1)

Pure water (H2O) 991.1 4,179 0.613 0.05
Copper (Cu) 8,933 385 401 5.96× 107 1.67× 10−5

Alumina (Al2O3) 3,970 765 40 3.69× 107 0.85× 10−5
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That is, np1¼Al2O3 and np2¼Cu

ϕ¼ ϕnp1 þ ϕnp2; ð7Þ

knp ¼
ϕnp1knp1 þ ϕnp2knp2

ϕ
; ð8Þ

ρnp ¼
ϕnp1ρnp1 þ ϕnp2ρnp2

ϕ
; ð9Þ

Cp

À Á
np ¼

ϕnp1 Cp

À Á
np1 þ ϕnp2 Cp

À Á
np2

ϕ
; ð10Þ

βnp ¼
ϕnp1βnp1 þ ϕnp2βnp2

ϕ
: ð11Þ

The electrical conductivity for hybrid nanofluid is as fol-
lows [4, 5, 10, 17]:

σhnp ¼ σf 1þ
3

σnp
σf

− 1
� �

ϕ

σnp
σf

þ 2
� �

−
σnp
σf

− 1
� �

ϕ

2
4

3
5; ð12Þ

where

σnp ¼
ϕnp1σnp1 þ ϕnp2σnp2

ϕ
; ð13Þ

where np1 and np2 stand for nanoparticle 1 and nanoparticle
2, respectively.

The properties of the water (H2O), copper (Cu), and
alumina (Al2O3) particles are given below [4, 5, 10, 17]:

2.3. Governing Equations. The governing equation for the
boundary layer in cylindrical coordinates is considered as
in [23–26]:

∂
∂x

rxð Þ þ ∂
∂y

ryð Þ ¼ 0; ð14Þ

ρhnf u
∂u
∂x

þ v
∂u
∂r

� �
¼ μhnf

r
∂
∂r

r
∂u
∂r

� �
þ g ρβð Þhnf T − T1ð Þ

−σhnf B2
ou;

ð15Þ

u
∂T
∂x

þ v
∂T
∂y

¼ αhnf
r

∂
∂r

r
∂T
∂r

� �
; ð16Þ

where x-coordinates are along the axis, and r-coordinates are
perpendicular to the x-axis, u and v velocity components are
along x and r directions, respectively. Here, B0 is the mag-
netic field strength, and g is the acceleration due to gravity.

The corresponding boundary conditions [27] are as fol-
lows:

u¼ v ¼ 0;−kf
∂T
∂r

¼ qw 1þ A
R
sin ξ

� �
at; r ¼ 0; ð17Þ

u→ 0; v→ 0;T → T1; r →1: ð18Þ

For the local nonsimilarity solutions, the nondimen-
sional variables are defined as follows [4, 5, 17]:

ξ¼ 2x
R
Gr−1=5x ;   η¼ r2 − R2

2Rx
Gr1=5x ;  

r2

R2 ¼ 1þ ξη;  

ψ ¼ 5νf RGr
1=5
x f ξ; ηð Þ;

ð19Þ

θ ¼ T − T1
qwx
kf

� � Gr1=5x ;  Gr ¼ gβf qwx4

5kf ν2f
;  Ha¼

ffiffiffiffiffi
σf
μf

s
BoR:

ð20Þ

Here, Gr is the Grashof number, Ha is the Hartmann
number, θ is the nondimensional temperature, kf is the ther-
mal conductivity, σf is the electric conductivity, and μf is the
dynamics viscosity of the base fluid.

The nondimensional velocity components can be calcu-
lated from the stream function as follows:

u¼ 1
r
∂ψ
∂r

;   v ¼ 1
r
∂ψ
∂x

ð21Þ

where

v ¼ −
R
r

νf
x
Gr1=5x ξ

∂f
∂ξ

− ηf 0 þ 4f

� �
; u¼ 5

νf
x
Gr2=5x f 0;

ð22Þ

∂u
∂x

¼ νf
x
Gr2=5x ξ

∂f 0

∂ξ
− ηf 00 þ 3f 0

� �
; ð23Þ

∂u
∂r

¼ r
R

� �
5
νf
x2

Gr3=5x f 00; ð24Þ

∂
∂r

r
∂T
∂r

� �
¼ r3

R2

� �
5
νf
x3

Gr4=5x f 000 þ r
R

� �
5
νf
x2

Gr3=5x f 00

þ r
R

� �
5
νf
x2

Gr3=5x f 00:

ð25Þ

Here, by putting values of Equations (22)–(25) in
Equation (15), we get the final form of the momentum
equation as follows:
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ρhnf
ρf

μhnf
μf

1þ ξηð Þf 000 þ ξf 00½ � þ 4ff 00 − 3f 02 þ βhnf
βf

θ

−
σhnf ρf
σf ρhnf

Ha2ξ2f 0 ¼ ξ f 0
∂f 0

∂ξ
− f 00

∂f
∂ξ

� �
:

ð26Þ

For the energy equations, the following calculations are
as follows:

∂T
∂x

¼ qw
5kfGr

1=5
x

ξ
∂θ
∂ξ

− ηθ þ θ

� �
; ð27Þ

∂u
∂r

¼ r
R

� � qw
kf

θ0; ð28Þ

∂
∂r

r
∂T
∂r

� �
¼ r3

R2

� �
qw
kf x

Gr1=5x θ00 þ 2
r3

R2

� �
qw
kf

θ0: ð29Þ

From Equations (27)–(29), we get the final result for
temperature. That is:

1
Pr

αhnf
αf

1þ ξηð Þθ00 þ ξθ0½ � þ 4θ0f − θf 0 ¼ ξ f 0
∂θ
∂ξ

− θ0
∂f
∂ξ

� �
:

ð30Þ

The corresponding boundary conditions are as follows:

f ¼ f 0 ¼ 0; θ0 ¼ − 1þ ε sin πξð Þ½ � at;  η¼ 0; ð31Þ

f ¼ θ ¼ 0;  as;  η→1; ð32Þ

where ε¼AR is the amplitude of the non-uniform heat flux
and Pr= νf /αf is the Prandtl number. The detailed calcula-
tion of the above derivatives is given in Appendix.

3. Numerical Methods

Now, the local nonsimilar boundary layer Equations (26)
and (30) will be transformed into a suitable form for the
implicit finite difference method.

Let f ¼V and U ¼ f 0 consequently ∂U
∂η ¼ f 00 and ∂2U

∂η2 ¼ f 000
then Equation (26) becomes:

N1
∂2U
∂η2

þ N2
∂U
∂η

þ 4V
∂U
∂η

− 3U2 þ N3θ − N4U

¼ξ U
∂2U
∂ξ

−
∂U
∂η

∂V
∂ξ

� �
:

ð33Þ

Equation (33) is discretized by the finite difference
method, where the diffusion and convection terms are by
major difference. The ξ-derivative term is discretized by
the different backward formulas for numerical stability.
The following results in the creation of a system of algebraic
equations:

Ai;jFi;j−1 þ Bi;jFi;j þ Ci;jFi;jþ1 ¼ Di;j: ð34Þ

For the transformed momentum Equation (33), the
matrix coefficients are as follows:

Ai;j ¼ N1 − T1
Δη

2

� �
; ð35Þ

Bi;j ¼ −2N1 þ −3Ui;j − N4

À Á
Δη2 − ξUi;j

Δη2

Δξ
; ð36Þ

Ci;j ¼ N1 þ T1
Δη

2

� �
; ð37Þ

Di;j ¼ −N3θi;jΔη
2
− ξUi;jUi−1;j

Δη2

Δξ
; ð38Þ

where

N1 ¼
μhnf ρf
μf ρhnf

1þ ξηð Þ;   N2 ¼
μhnf ρf
μf ρhnf

ξ;   N3 ¼
βhnf
βf

;   

N4 ¼
σhnf
σf

ρf
ρhnf

Ha2ξ2 and T1 ¼ 4Vi;j þ N2 þ ξ
∂V
∂ξ

:

ð39Þ

Similarly, for the energy Equation (30), the matrix coef-
ficients are as follows:

Ai;j ¼ N1 − T1
Δη

2

� �
; ð40Þ

Bi;j ¼ −2N1 − Ui;jΔη
2
− ξUi;j

Δη2

Δξ
; ð41Þ

Ci;j ¼ N1 þ T1
Δη

2

� �
; ð42Þ

Di;j ¼ −XUi;jθi−1;j
Δy2

Δx
; ð43Þ

where

N1 ¼
1
Pr

αhnf
αf

1þ ξηð Þ;  N2 ¼
1
Pr

αhnf
αf

ξ  and  

T1 ¼ 4Vi;j þ N2 þ ξ
∂V
∂ξ

;

ð44Þ

where Fi; j is the generic variable for the U-velocity and tem-
perature θ. The algebraic Equation (34) is solved by the
Thomson algorithm. In computation, the velocity (Vi; j)
component along the normal direction is attained after solv-
ing the equation U ¼ f 0 ¼V 0 as follows:
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Vi;j ¼ Vi;j−1 þ
1
2

Uiþ1;j þ Ui;jþ1

À Á
Δη: ð45Þ

From ξ= 0.0, the iteration begins and then continues
downstream discreetly. The tolerance for the iteration pro-
cess is 10−6. An in-house FORTRAN 90 code based on the
above discretization, a marching order implicit finite differ-
ence method (MOIFDM), is used for the present simulation.

4. Local Skin-Friction Coefficient and the Local
Nusselt Number

From the numerical solutions of the above equations, two
physical quantities are calculated, such as local shearing
stress in terms of the local skin friction coefficient Cf , the
local rate of heat transfer Nu, and the average rate of heat
transfer Nu. These quantities play an essential role in their
physical significance and can be expressed using the follow-
ing dimensionless relations:

Cf 5Gr1=5x

� �
¼ f 00 ξ; 0ð Þ; ð46Þ

NuGr−1=5x ¼ khnf
kf

1
θ ξ; 0ð Þ : ð47Þ

5. Grid-Independent Test and Code Validation

In computational fluid dynamics research, it is an obvious
event to study the grid independence test (GIT) and the code
validation. The GIT and code validation are shown in the
following subsections.

5.1. Grid-Independent Test. Conducting the grid-
independent test is a mandatory step for any numerical
simulation.

Here, three different grid sizes (ξ× η): Case 1—500× 150,
Case 2—1,000× 300, and Case 3—2,000× 600 have been
considered, and the results are shown in Figures 2(a) and
2(b) in terms of the local skin-frictions and Nusselt number,
respectively. From Figures 2(a) and 2(b), it is evident that
numerical solutions are grid independence.

5.2. Code Validation. Code validation is also an important
step of any numerical simulation. The present code is vali-
dated for the heat flux boundary condition along a vertical
flat and wavy surface investigated by Moulic and Yao [25]. A
comparison in terms of the surface temperature (θw (ξ, 0))
for a vertical flat plate (α= 0) and a wavy surface (α= 0.1) is
shown in Figure 3. This comparison shows an excellent
agreement. Another comparison has been made for a vertical
thin cylinder with wall heat flux in terms of the Nusselt

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

500 × 150
1,000 × 300

2,000 × 600

C f

ξ

ðaÞ

500 × 150
1,000 × 300

2,000 × 600

0 2 4 6 8 10
0

1

2

3

4

5

N
u

ξ

ðbÞ
FIGURE 2: Grid independent test for the three different grid sizes (ξ× η): (a) local skin-frictions and (b) Russel Nusselt number while case 1—
500× 150, case 2—1,000× 300, and case 3—2,000× 600, while Pr= 6.2, Ha= 2, ε= 0.3, and ϕ= 0.1.
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number with the results of Heckel et al. [26] by varying the
Prandtl number, which is shown in Table 2. From Table 2, it
is also evident the present code is suitable for the vertical thin
cylinder with wall heat flux condition.

6. Results and Discussions

The present study discussed the Cu and Al2O3 hybrid nano-
fluids along a thin vertical cylinder with uniform heat flux
conditions at different parameters such as particle volume
fractions, Hartmann numbers, and amplitudes. Based on
these parameters, three sets of the results are shown graphi-
cally as streamlines and isotherms, temperature and velocity
distribution with skin friction, and Nusselt number for the
amplitude variations, Hartmann number, and volume
fraction.

6.1. Effect of the Amplitude of the Wall Heat Flux. Figure 4
shows the effects of the amplitude of sinusoidal temperature

(ε) on the nondimensional velocity and temperature inside
the fluid flow. The velocity in the x-direction is plotted
against the height of the cylinder in the mid-section along
the vertical direction, as shown in Figure 4 for amplitude.
Figure 4 indicates the u-velocity and the temperature distri-
bution of a thin vertical cylinder for nanoparticle amplitudes
from ε= 0.0 to 0.3. In fluid flow, the velocity and tempera-
ture can be significantly impacted by ε. The rise in the ε can
change the fluid’s density, reducing the fluid flow and affect-
ing the spread of temperature. As seen from the figure, the
velocity and temperature distribution variation exhibit simi-
lar trends at the beginning and end but vary when the tem-
perature θ= 0.06–θ= 0.09. The fluids inside the boundary
layer drop their velocity, and the temperature when ε gradu-
ally increases. The fluids in the boundary layer move at the
minimum velocity when the surface temperature is low. The
velocity decreases as the amplitude increases. Temperature
variations of greater amplitude reduce the more vigorous

0 1 2 3 4
1.3

1.35

1.4

1.45

1.5

Moulic and Yao
Present

α = 0.1

α = 0.0

x

θ w
Pr = 1

FIGURE 3: Comparison between present numerical results for the heat flux boundary condition in terms of the surface temperature θw (ξ, 0) of
Moulic and Yao [25] while Pr= 1 and the surface waviness α= 0, 0.1.

TABLE 2: Comparison of the present results in terms of the Nusselt number with the results of Heckel et al. [26] for a vertical thin cylinder with
wall heat flux while ϕ= 0.0.

ξ

Nux Grx
−1/5 Nux Grx

−1/5

Heckel et al. [26] Present

Pr= 0.1 Pr= 0.7 Pr= 7.0 Pr= 100 Pr= 0.1 Pr= 0.7 Pr= 7.0 Pr= 100

0 0.2634 0.4834 0.8699 1.5560 0.2637 0.4813 0.8711 1.5712
0.5 0.3416 0.5640 0.9533 1.6385 0.3519 0.5484 0.9941 1.6829
1.0 0.5448 0.7820 1.1809 1.8736 0.5651 0.8112 1.2391 1.9261
1.5 0.8691 1.1013 1.5135 2.2352 0.8897 1.1531 1.6013 2.2902
2.0 1.3243 1.5052 1.9828 2.6904 1.3352 1.6135 2.0012 2.7346
2.5 1.8971 2.0068 2.4967 3.2133 1.9279 2.0119 2.5732 3.2715
3.0 2.5789 2.6321 3.0592 3.8831 2.5924 2.8242 3.1321 3.9417
3.5 3.3666 3.3915 3.6970 4.6065 3.4112 3.4551 3.7519 4.6751
4.0 4.2626 4.2757 4.4554 5.4551 4.3132 4.3772 4.5203 5.5115
4.5 5.2756 5.2828 5.3785 6.3389 5.3421 5.3683 5.4133 6.3891
5.0 6.4224 6.4271 6.4791 7.3556 6.5605 6.5915 6.6410 7.4061
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fluid motion, resulting in a drop in velocity. Another impact
of raising the amplitude is a shift in temperature distribution
when the amplitude is raised, resulting in a lower spread of
temperature.

In skin friction Cf and Nusselt number Nu, we can see
that when skin friction increases due to the increasing ampli-
tude. The Nusselt number increases with the increase of
the volume fraction. That is, the channel geometry and the
boundary condition on the wall heat transfer determine the
Nusselt number in a fully developed laminar flow, which is
constant. The effects of skin friction (Cf) and Nusselt number
(Nu) on the flow fields of the thin vertical cylinder for differ-
ent amplitudes of the vertical thin cylinder (ε) are illustrated
in Figure 5. Cf and Nu in fluid dynamics can be influenced by
ε. Nu is a dimensionless number employed to characterize
the heat transmission between a fluid and a solid surface,
whereas Cf refers to the shear stress between a fluid and a
solid surface.

As the larger amplitude of sinusoidal temperature flows
tends to producemore substantial shearing pressures between
the fluid and the surface, doing so can generally increase Cf.
Moreover, the amplitude of the vertical thin cylinder can
influence the amplitude of the velocity oscillations, which
can affect theCf of the variations in amplitude. This is because
changes in fluid viscosity brought on by temperature changes
can result in buoyancy pressures that propel fluid motion.
More significant buoyancy pressures andmore ferocious fluid
movement can result from temperature changes of higher

magnitude, which can increase Cf. From Figure 5(a), it is
evident from the graph that raising the ε of the fluid flow
can result in higher amounts of heat transmission, which
leads to an increase in Cf and Nu. Initially, at ε= 0, the Cf

andNu distribution was flat; with the increase in ε, the ampli-
tude of the Cf and Nu also increased. Furthermore, adding
hybrid nanoparticles to a conventional fluid increases its heat
capacity and thermal conductivity, increasing the Cf and Nu
[27]. Convective heat transmission between the fluid and the
surface can rise if the temperature fluctuation’s amplitude
increases. This is because temperature changes may result in
more significant convective currents and improved heat
transmission. That is why the Nu can increase with an
increase in the ε, which is evident from Figure 5(b).

The effect of amplitude ε= 0.0–ε= 0.3 on the flow pat-
tern with streamline and isotherms with Ha= 2 have been
presented in Figure 6 while ϕ= 0.0 (solid lines) and ϕ= 0.1
(dashed lines). It shows that the magnitude of the streamline
and isotherm increases with sinusoidal temperature ampli-
tude. For different amplitudes, the streamlines and isotherm
vary; that is, the waves increase as we increase the amplitudes
from 0.0 to 0.3. The waviness of the flow pattern also
increases as ε increases. The highest magnitude of stream
function has been found with a rise in nanoparticles. Adding
10% of hybrid nanoparticles increases the thermal conduc-
tivity of the fluid. Hence, the magnitude of the stream func-
tion is improved. Compared to the isotherm of simple fluid,
the isotherms of nanofluids lean toward the left wall. When
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FIGURE 4: (a) Velocity and (b) temperature with different amplitude, for ε= 0.0, ε= 0.1, ε= 0.2, and ε= 0.3, while ϕ= 0.05 and Ha= 2.
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the value grows, it is seen that both the thermal and momen-
tum boundary layers grow. As a result, nanoparticles have
little impact at the border layer, and their impact progres-
sively grows as the fluid inside the enclosure moves.

6.2. Effect of Hartmann Number. The intensity of the mag-
netic field in a fluid flow is expressed by the dimensionless
Hartmann number (Ha). In the event of a magnetic field, the
Ha significantly affects a conducting fluid’s velocity and tem-
perature fields. The fluid’s velocity diminishes as the Ha num-
ber rises due to the flow’s greater magnetic damping. Due to
the more substantial magnetic damping experienced by high-
conductivity fluids, this impact is more evident. In a conduc-
tive fluid, the temperature spread is also impacted by the Ha
number. Due to the magnetic field’s effect, the temperature
profile generally improves with rising Ha. In Figure 7(b), the
temperature distribution for the Ha number increases as the
Ha increases. The temperature rises when the Ha number
increases in magnitude. The velocity distribution begins at a
minimum at the wall, peaks near the heated wall, and then
declines to zero. It is evident that as Ha grows, it takes longer
to attain the temporal maximum velocity. It is observed that
when Ha increases, the magnitude of the peak velocity
decreases. In summary, when the Hartmann number rises,
the strong magnetic field restricts fluid motion, resulting in
lower velocity. The drop in kinetic energy caused by the
decrease in velocity is compensated for by an increase in
internal energy, resulting in a greater temperature.

Figure 8 represents the local and average heat transfer
rates in terms of Nusselt numbers along the hot wall. Skin
friction and Nusselt number indicate the magnitude of
convectional heat transfer. It is noted that the local heat
transfer rate increases with particle volume fractions. For
which the plot shows a single graph line. Here, the Hartmann
number is from Ha= 1 to Ha= 2. The skin friction is practi-
cally parallel to the independent axis, corresponding to the
lowest value of the number, Ha= 0. With an increase in
surface temperature, the Nusselt number similarly rises in
value. With an increase in the curvature parameter, the Nus-
selt number similarly rises in value. In summary, when the
Hartmann number grows, skin friction decreases because
magnetic forces become more prominent, resulting in the
establishment of laminar flow and a reduction in the chaotic
motion of the fluid. This reduces skin friction at the limits of
the conducting fluid.

In Figure 9, we have seen the streamline and isotherm for
different Hartmann numbers and volume fractions. Here, we
took the data for the Hartmann number from Ha= 0 to
Ha= 4. But in the plotting, we plotted for the streamline
and isotherm of the Ha= 0, Ha= 2, and Ha= 4 with volume
fraction ϕ= 0.0 and ϕ= 0.1. It has been observed that when
the Hartmann number grows, the magnetic field’s impact on
both streamlines and isotherms becomes more significant.
Following the magnetic field lines, streamlines become
more organized and laminar. At large Ha numbers, iso-
therms become substantially elongated along the magnetic
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FIGURE 5: (a) Skin friction and (b) Nusselt number with different amplitude for ε= 0.0, 0.1, 0.2, and 0.3; while ϕ= 0.05 and Ha= 2 at ξ= 2.
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field direction, reflecting the anisotropic character of heat
transport in MHD processes. Due to streamwise variations
in the surface temperature, the fluid flow may oscillate close
to the boundary line [28]. Isotherms tend to be quite homo-
geneous and do not display considerable temperature
changes in the absence of strong magnetic forces (Ha= 0).
Heat transmission is principally controlled by conduction
and convection. Magnetic influences on temperature distri-
bution become more prominent with large Hartmann num-
bers (Ha= 4). Isotherms become extremely stretched along
the magnetic field lines. The substantial inhibition of fluid
velocity perpendicular to the magnetic field causes this
elongation.

In Figure 10, it can be shown that as the parameter
increases, the volume fraction distribution of temperature
and nanoparticles rise while those of velocity within the
boundary layer decline. In Figure 10, the velocity decreases

at the beginning due to a certain amount of temperature, and
the viscosity is higher in the beginning. The volume fraction’s
velocity increases, and the fluid’s viscosity decreases as the
temperature increases. However, the average heat transfer
rate increases slowly with volume fractions but increases sig-
nificantly with increasing Nusselt’s number. Similar results
have been found by Chamkha et al. [29], which stated that
adding nanoparticles to the fluid enhances the velocity, tem-
perature, and skin friction, as well as the rate of heat transfer.
It is observed that the velocity profiles begin at zero at the wall,
reach their maximum at the hot wall, and then monotonically
drop to zero. It is evident that as Ha grows, so does the time
required to attain the temporal maximum of velocity. It is
seen that the magnitude of the peak velocity decreases as
Ha increases. It is evident from the preceding explanation
that ignoring the temperature-dependent fluctuation of Ha
creates a significant mistake.
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In Figure 11, the volume fraction (ϕ= 0.0, ϕ= 0.02,
ϕ=0.05, ϕ=0.08, and ϕ= 0.1) for skin friction and Nusselt
number varies. For higher values, the increases and approaches
its maximum value at the upper part of the cylinder as the fluid
motion is clockwise. It is shown that the velocity distribution of
nanofluid increases with volume fractions near the left wall, as
predicted by a thin layer of hydrodynamic velocity boundary
layers. Nanoparticles accelerate the flow phenomenon; as a
result, the heat transfer process also increases. Higher velocity
and temperature lead to lower skin friction and a higher rate of
heat transfer. According to Figure 11(a), the skin friction
decreases when nanoparticles are included. This is because the
presence of the nanoparticles causes the fluid to thicken and
become more challenging to move. The Nusselt number, which
has nomeasurements, determines howmuch heat is transmitted
across a surface via convection instead of conduction. By

incorporating nanoparticles into a stream, one can increase
the Nusselt number by enhancing convective heat transfer.
This is because the nano-materials can increase the fluid’s ther-
mal conductivity, increasing convective heat transfer. As a
result, in Figure 11(b) it is seen that the Nusselt number
increases as well. In conclusion, we can say that improved
heat transfer reduces the skin friction.

Figure 12 shows the effect of ε andϕ on the heat transfer rate
Nu. The heat transfer has been plotted for different ε for different
ϕ. Due to the unique thermal characteristics of hybrid nano-
fluids, the effectiveness of heat transfer improves. The thermo-
physical characteristics of the base fluid are enhanced by the
inclusion of nanoparticles. The existence of hybrid nanofluids
can affect the heat transfer properties in a situation of natural
convection over a thin vertical cylinder. Hybrid nanofluids’
improved thermal conductivity can facilitate heat transfer by
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enhancing fluid conduction. A greater Nusselt number results
from this improved heat conductivity. The figure shows thatNu
increases by 24.72% as ϕ increases from 0 to 0.1 while ε= 0.3.
From Figure 12, it is also seen that the convective heat transmis-
sion between the fluid and the surface can rise if the temperature
fluctuation’s amplitude increases. Data show that Nu increases
27.66% while ε increases from 0.0 to 0.3 at 5% hybrid nanopar-
ticles. This is due to the temperature changes resulting in
improved heat transmission. That is why the Nu can increase
with an increase in the ε.

7. Conclusions

In the present article, a numerical analysis of MHD natural
convection in a thin vertical cylinder with a uniform wall
heat flux condition filled with copper (Cu) and aluminum-
oxide (Al2O3), which are hybrid nanofluids, has been studied
here. Numerical simulations have been performed for a wide
range of governing parameters: Hartmann number from
Ha= 0 to Ha= 4, nanoparticle volume fraction ϕ= 0.0,
ϕ= 0.05, ϕ= 0.1; amplitude ε= 0.0–ε= 0.3 and Prandtl
number, Pr= 6.2. The effects of different physical factors
on heat transfer and fluid flow have been demonstrated in
terms of streamlines and isotherms, skin friction and Nusselt
number, as well as velocity and temperature distribution.
The following outcomes of the results are summarized below:

(i) The heat transfer rate in terms of Nusselt number
and skin friction increased with particle volume
fractions.

(ii) It can be seen from the obtained result that ampli-
tude enhances the velocity and temperature distri-
bution along the cylinder.

(iii) The variation of velocity and temperature distribu-
tion has shown almost similar trends for all values
of particle volume fractions, velocity, and temper-
ature increases with the effect of hybrid nanofluids.

(iv) Skin friction slightly decreases as the effect of hybrid
nanofluid increases, while Nu increases with nano-
particle volume fractions. That means improved
heat transfer reduces the skin friction.

(v) It shows that the magnitude of the streamline and
isotherm increases with the amplitude increase,
and for different amplitudes, the isotherm varies;
that is, the waves increase as we increase the ampli-
tudes from 0.0 to 0.3.

(vi) The maximum Nu number has been found at the
maximum amplitude (ε) with maximum ϕ. Nu
number retards the fluid flow; hence, Nu number
decreases as Ha increases.

(vii) Nu increases 24.72% as ϕ increases from 0 to 0.1
while ε= 0.3, and 27.66% while ε increases from
0.0 to 0.3 at 5% hybrid nanoparticles.

(viii) The velocity and magnitude of the streamline and
isotherm also decrease as theHa number increases.
On the other hand, temperature increases as Ha
number increases.

(ix) Hybrid nanoparticles increase the thermal conduc-
tivity of the fluid; as a result, the heat transfer rate
increases in all cases with the effect ϕ.

Nomenclature

English Symbols

A: Area of the cylinder
Al2O3: Aluminum oxide (commonly called as “Alu-mina”)
Bo: Magnetic force kg s−1A−1

Cu: Copper
Cp: Specific heat J kg−1K−1

g: Gravitational acceleration ms−2

Gr: Grashof number
Ha: Hartmann number
k: Thermal conductivity Jm−1s−1K−1

Pr: Prandlt number
qw: Heat flux of the wall kg s−3

R: Dimensionless radius of the cylinder
r; θ: Cylindrical coordinates
s: Entropy generations Jm−3s−1K−1

T : Temperature or wall temperature K
T1: Surrounding or ambient temperature K
u; v: Dimensionless velocity coordinates
x; y: Dimensionless Cartesian coordinates

Greek Symbols

α: Thermal diffusivity m2s−1

β: Thermal expansion coefficient K−1

ϵ: Amplitude
μ: Dynamic viscosity kg m−1s−1

η: Coefficient of viscosity N m−2s
ρ: Fluid density kg m−3

ν: Kinematic viscosity m2s−1
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FIGURE 12: Maximum heat transfer rate at various ϕ (0, 0.05, 0.1)
and ε (0, 0.1, 0.2, 0.3), while Ha= 2.
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σ: Electrical conductivity A m−2

ϕ: Volume fraction
ψ : Dimensionless stream fraction
ξ: Spatial coordinate m

Subscripts

f : Base fluid
np: Nanoparticle
hnf : Hybrid nanofluid
w: Wall of cylinder

Appendix

A. Calculation of Partial Derivatives

To calculate heat transfer in terms of the local and average
Nusselt numbers, the equations expressed below, respec-
tively, for natural convection. The calculations for the trans-
formation of heat flux along a thin vertical cylinder are as
follows:
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T1 þ qwx
kf

Gr−1=5x θ

" #

¼ qw
kf

x

Gr1=5x

∂θ
∂ξ

∂ξ
∂x

þ ∂θ
∂η

∂η
∂x

� �
þ θ

5

x−4=5gβf qw
5kf ν2f

" #

¼ qw
kf

x

Gr1=5x

∂θ
∂ξ

1
5x

ξ − θ0
1
5x

η

� �
þ θ

1

5Gr1=5x

� �

¼ qw
kf

x

Gr1=5x

x
1
5x

ξ
∂θ
∂ξ

− ηθ0
� �

þ θ
1
5

� �

¼ qw
5kf

x

Gr1=5x

ξ
∂θ
∂ξ

− ηθ0 þ θ

� �
ðA:6Þ
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∂T
∂r

¼ ∂
∂r

T1 þ qwx
kf

Gr−1=5x θ

" #

¼ qwx
kf

Gr−1=5x
∂θ
∂ξ

∂ξ
∂r

þ ∂θ
∂η

∂η
∂r

� �

¼ qwx
kf

Gr−1=5x
∂θ
∂ξ

0þ θ0
2r
2Rx

Gr1=5x

� �

¼ r
R

� � qw
kf

θ0

ðA:7Þ

∂
∂r

r
∂T
∂r

� �
¼ r

∂2T
∂r2

þ ∂T
∂r

¼r
∂
∂r

r
R

� � qw
kf

θ0
" #

þ ∂T
∂r

¼ r
R

� � qw
kf

r
∂θ0

∂ξ
∂ξ
∂r

þ ∂θ0

∂η
∂η
∂r

� �
þ θ0

� �
þ ∂T

∂r

¼ r
R

� � qw
kf

r
∂θ0

∂ξ
0þ θ00

2r
2Rx

Gr1=5x

� �
þ θ0

� �
þ ∂T

∂r

¼ r3

R2

� �
qw
kf x

Gr1=5x θ00 þ r
R

� � qw
kf

θ0 þ r
R

� � qw
kf

θ0

¼ r3

R2

� �
qw
kf x

Gr1=5x θ00 þ 2
r
R

� � qw
kf

θ0

ðA:8Þ

B. Code Implementation Using FORTRAN

Here, we will give some part of the FORTRAN code for the momentum equation as follows:
Here, NX=maximum number x points, N=maximum number y points
!==================================================

SW= 0.5
Do II= 2, NX
DO 50 I= 2, N-1

N1= (1.+ x(ii) ∗eta(i)) ∗(viscosity/rho)
N2= x(ii) ∗(viscosity/rho)
N3= beata
P4= (Ha ∗Ha) ∗sigma/rho

dvdx= (v(i, 3)-v(i, 1))/DX
T1=H/2.0 ∗(N2+ 4 ∗V(I, 3)+ x(ii) ∗dvdx)
A(I)=N1−T1
C(I)=N1+T1
B(I)=−2. ∗N1–3. ∗U(I, 3) ∗H2–N4 ∗H2-U(I, 3) ∗H2 ∗X(II)/DX

50 D(I)=−H2 ∗(N3 ∗T(I, 3)+X(II)/DX ∗U(I, 3) ∗U(I, 1))
B(1)= 1.
C(1)= 0.0
D(1)= 0.0
D(N)= 0.0
BC= 0.0
CALL THOMSON(0, BC, N, NETA, A, B, C, D)
DO 60 I= 1, N

60 U(I, 3)=D(I) ∗(1.0-SW)+ SW ∗U(I, 3)

ENDOO
!===================================================
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!! SUBROUTINE THOMSON(NBC, BC, N, M, A, B, C, D)
! A(I) ∗W(I− 1)+B(I) ∗W(I)+C(I) ∗W(I+ 1)=D(I)
! CONSTANT TW NEEDS NBC= 0
! CONSTANT QW NEEDS NBC= 1
IMPLICIT REAL ∗8 (A–H, O–Z)
DIMENSION A(M), B(M), C(M), D(M)
IF(NBC.NE.0) GO TO 50

D(1)=BC
B(N)= 1.0
D(N)= 0.0

DO 10 K= 2, N-1
TEMP=A(K)/B(K− 1)

B(K)=B(K)-TEMP ∗C(K− 1)
10 D(K)=D(K)-TEMP ∗D(K− 1)
D(N)=D(N)/B(N)
DO 20 K= 2, N
KK=N–K+ 1
IF(ABS(B(KK)).LE.1.0E-50) GO TO 50

20 D(KK)= (D(KK)-C(KK) ∗D(KK+ 1))/B(KK)
RETURN

50 WRITE (6,200) K
200 FORMAT (//’ ∗∗∗BOUNDARY CONDITIONS ARE

INCORRECT ∗∗∗’,1 I6/)
RETURN
END
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