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Vague graphs (VGs), which are a family of fuzzy graphs (FGs), are a well-organized and useful tool for capturing and resolving a
range of real-world scenarios involving ambiguous data. In graph theory, a dominating set (DS) for a graph G∗ = ðX, EÞ is a subset
S of the vertices X such that every vertex not inS is adjacent to at least one member ofS. The concept of DS in FGs has received
the attention of many researchers due to its many applications in various fields such as computer science and electronic networks.
In this paper, we introduce the notion of ððϵ1, ϵ2Þ, 2Þ-Regular vague dominating set and provide some examples to explain various
concepts introduced. Also, some results were discussed. Additionally, the ððϵ1, ϵ2Þ, 2Þ-Regular strong (weak) and independent
strong (weak) domination sets for vague domination set (VDS) were presented with some theorems to support the context.

1. Introduction

Zadeh [1] introduced the subject of a fuzzy set (FS) in 1995.
Rosenfeld [2] proposed the subject of FGs. The definitions of
FGs from the Zadeh fuzzy relations in 1973 were presented
by Kaufmann [3]. Akram et al. [4–6] introduced several con-
cepts in FGs. Irregular VGs, domination in Pythagorean
FGs, and 2-domination in VGs were studied by Banitalebi
et al. [7–9]. Gau and Buehrer [10] introduced the notion of
a vague set (VS) in 1993. The concept of VGs was defined
by Ramakrishna [11]. Akram et al. [12] introduced vague
hypergraphs. Rashmanlou et al. [13–15] investigated differ-
ent subjects of VGs. Moreover, Akram et al. [16–18] devel-
oped several results on VGs. Kosari et al. [19] defined VG
structure and studied its properties. The concepts of degree,
order, and size were developed by Gani and Begum [20].
Borzooei and Rashmanlou [21] proposed the degree of ver-
tices in VGs. Manjusha and Sunitha [22] studied the paired
domination. Haynes et al. [23] expressed the fundamentals
of domination in graphs. Nagoor Gani and Prasanna Devi
[24] suggested the reduction in the domination number of

an FG and the notion of 2-domination in FGs [25] as the
extension of 2-domination in crisp graphs. The domination
number and the independence number were introduced by
Cockayne and Hedetniem [26]. In another study, A. Soma-
sundaram and S. Somasundaram [27] proposed the notion
of domination in FGs. Kosari et al. [28] studied new con-
cepts in intuitionistic FG with an application in water sup-
plier systems.

Parvathi and Thamizhendhi [29] introduced the domi-
nation in intuitionistic FGs. Domination in product FGs
and intuitionistic FGs was studied by Mahioub [30, 31]. Kar-
unambigai et al. [32] introduced the domination in bipolar
FGs. Rao et al. [33–35] expressed certain properties of dom-
ination in vague incidence graphs. Shi and Kosari [36, 37]
studied the domination of product VGs with an application
in transportation. The concept of DS in FGs, both theoreti-
cally and practically, is very valuable. A DS in FGs is used
for solving problems of different branches in applied sci-
ences such as location problems. In this way, the study of
new concepts such as DS is essential in FG. Domination in
VGs has applications in several fields. Domination emerges
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in the facility location problems, where the number of facil-
ities is fixed and one endeavors to minimize the distance that
a person needs to travel to get to the closest facility. Qiang
et al. [38] defined the novel concepts of domination in
VGs. The notions of total domination, strong domination,
and connected domination in FGs using strong arcs were
studied by Manjusha and Sunitha [39–41]. Cockayne et al.
[42] and Haynes et al. [43] investigated the independent
and irredundance domination numbers in graphs. Natarajan
and Ayyaswamy [44] introduced the notion of 2-strong
(weak) domination in FGs. New results of irregular intuitio-
nistic fuzzy graphs were presented by Talebi et al. [45, 46].
Talebi and Rashmanlou, in [47], presented the concepts of
DSs in VFGs. Narayanan and Murugesan [48] expressed
the regular domination in intuitionistic fuzzy graph. A few
researchers studied other domination variations which are
based on the above definitions such as independent domina-
tion [49], complementary nil domination [50], and efficient
domination [51]. In this paper, we introduced a new notion
of ððϵ1, ϵ2Þ, 2Þ-Regular DS in VG. Finally, an application is
given.

2. Preliminaries

In this section, we present some preliminary results which
will be used throughout the paper.

Definition 1. A graph G∗ is a pair ðX, EÞ, where X is called
the vertex set and E ⊆ X × X is called the edge set.

Definition 2. A pair C = ðψ, ζÞ is an FG on a graph G∗ =
ðX, EÞ, where ψ is an FS on X and ζ is an FS on E, such that

ζ svð Þ ≤min ψ sð Þ, ψ vð Þf g, ð1Þ

for all sv ∈ E:

Definition 3 (see [10]). A vague set (VS) M is a pair ðtM,
fMÞ on set X, where tM and fM are real-valued functions
which can be defined on X⟶ ½0, 1� so that tMðsÞ + fMðsÞ ≤
1, ∀s ∈ X.

Definition 4 (see [11]). A pair C = ðM,ZÞ is called a VG on
graph G∗ = ðX, EÞ, where M = ðtM, fMÞ is a VS on X and
Z = ðtZ, f ZÞ is a VS on E such that

tZ svð Þ ≤min tM sð Þ, tM vð Þf g,
f Z svð Þ ≥max fM sð Þ, fM vð Þf g,

ð2Þ

for all s, v ∈ X. Note that Z is called vague relation on M. A
VG G is named strong if

tZ svð Þ =min tM sð Þ, tM vð Þf g,
f Z svð Þ =max fM sð Þ, fM vð Þf g,

ð3Þ

for all sv ∈ E:

Definition 5. Assume C = ðM,ZÞ is a VG on G∗, the degree
of a vertex s is denoted as dðvÞ = ðdtðsÞ, df ðsÞÞ, where

dt sð Þ = 〠
s≠v,v∈X

tZ svð Þ,

df sð Þ = 〠
s≠v,v∈X

f Z svð Þ:
ð4Þ

The order of C is defined as

O Cð Þ = 〠
s∈X

tM sð Þ,〠
s∈X

fM sð Þ
 !

: ð5Þ

Definition 6. Let C = ðM,ZÞ be a VG on G∗. A vertex s is
called to dominate a vertex v if tZðsvÞ =min ftMðsÞ, tMðvÞg
and f ZðsvÞ =max f fMðsÞ, fMðvÞg:

Definition 7. Let C = ðM,ZÞ be a VG on G∗. A subset S of
X is called to be VDS if there are some elements of S that
dominate every vertex v ∈ X −S.

Definition 8. Let C = ðM,ZÞ be a VG on G∗.

(i) The vertex cardinality of C is defined by

Xj j =〠
s∈X

1 + tM sð Þ − fM sð Þ
2

����
����: ð6Þ

(ii) The edge cardinality of C is defined by

Ej j = 〠
sv∈E

1 + tZ svð Þ − f Z svð Þ
2

����
����: ð7Þ

Definition 9. Let C = ðM,ZÞ be a VG on G∗.
The vertex cardinality ofS ⊆ X of VG on G∗ is defined by

Sj j = 〠
s∈S

1 + tM sð Þ − fM sð Þ
2

����
����: ð8Þ

Definition 10. Let C = ðM,ZÞ be a VG on G∗. The neighbor-
hood of a vertex s ∈ X is defined by

N sð Þ = v ∈ X : tZ svð Þ = tM sð Þ∧tM sð Þ and f Z svð Þ = fM sð Þ∨fM sð ÞÈ É
:

ð9Þ

The neighborhood degree (ND) is denoted by dNðsÞ and
defined by

dN sð Þ = 〠
v∈N sð Þ

1 + tZ svð Þ − f Z svð Þ
2

����
����: ð10Þ

The minimum ND is δNðCÞ = ∧fdNðsÞ: s ∈ Xg:
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The maximum ND is ΔNðCÞ = ∨fdNðsÞ: s ∈ Xg:

Definition 11 (see [48]). Let C = ðM,ZÞ be a VG on G∗. Sup-
pose s and v are any two vertices in C. Then, v is called to
strongly dominate s (s weakly dominate v) if

(i) v dominate s

(ii) dNðvÞ ≥ dNðsÞ

Definition 12 (see [48]). Let C = ðM,ZÞ be a VG on G∗.
XδN

= fs ∈ X : dNðvÞ = δNðCÞg and XΔN
= fs ∈ X : dNðvÞ =

ΔNðCÞg.

In Table 1, we show the essential notations.

3. ððϵ1, ϵ2Þ, 2Þ-Regular Domination in Vague
Graph

In this section, we define the notions of ððϵ1, ϵ2Þ, 2Þ-Regular
DS, independent DS, and strong (weak) DS of VG.

Definition 13. Let C = ðM,ZÞ be a VG on G∗. A subset S of
X is called to be ððϵ1, ϵ2Þ, 2Þ-Regular VDS if

(i) every s ∈ X −S is dominated by two vertices in S

(ii) every vertex in S has degree ðϵ1, ϵ2Þ
The minimum vague cardinality of ððϵ1, ϵ2Þ, 2Þ-Regular

VDS is named ððϵ1, ϵ2Þ, 2Þ-Regular vague domination num-
ber (VDN) and denoted by ηrvðCÞ.

Example 1. Consider a VG on G∗.

In Figure 1, we have S = fb, e, g, kg and X −S = fa, c,
d, f , hg. The vertices fe, b, kg dominate fa, c, dg, and also,
vertices fe, gg dominate f f , hg. We have dS = ð0:4,0:8Þ.
Therefore, S is ðð0:4,0:8Þ, 2Þ-Regular VDS. Thus, ηrv = 1:9.

Definition 14. Let C = ðM,ZÞ be a VG on G∗. A setS ⊆ X is
called to be ððϵ1, ϵ2Þ, 2Þ-Regular vague strong dominating
set (VSDS) if every vertex s in V −S is strongly dominated
by two vertices of S and each vertex in S has degree
ðϵ1, ϵ2Þ:

The minimum vague cardinality of ððϵ1, ϵ2Þ, 2Þ-Regular
VSDS is named ððϵ1, ϵ2Þ, 2Þ-Regular vague strong domina-
tion number and denoted by ηrvsðCÞ.

Example 2. Consider a VG on G∗.
In Figure 2, we haveS = fk, pg which is a minimum size

of VSDS, and each vertex inS has dS = ð0:8,0:6Þ. Therefore,
S is ðð0:8,0:6Þ, 2Þ-Regular VSDS. Thus, ηrvs = 1:15.

Definition 15. Let C = ðM,ZÞ be a VG on G∗. A setS ⊆ X is
called to be ððϵ1, ϵ2Þ, 2Þ-Regular vague weak dominating set
(VWDS) if every vertex s in V −S is weakly dominated by
two vertices of S and each vertex in S has degree ðϵ1, ϵ2Þ:

The minimum vague cardinality of ððϵ1, ϵ2Þ, 2Þ-Regular
VWDS is named ððϵ1, ϵ2Þ, 2Þ-Regular vague weak domina-
tion number and is denoted by ηrvwðCÞ.

Example 3. Consider a VG on G∗.
In Figure 3, S = fa, e, k, c, gg have a minimum size of

VWDS, and each vertex in S has dS = ð0:4,0:5Þ. Therefore,
S is ðð0:4,0:5Þ, 2Þ-Regular VSDS. Thus, ηrvw = 2:55.

Theorem 16. For a VG M, we have

(i) ηrvðCÞ ≤ ηrvsðCÞ
(ii) ηrvðCÞ ≤ ηrvwðCÞ

Proof. Since every ððϵ1, ϵ2Þ, 2Þ-Regular VSDS is a ððϵ1, ϵ2Þ,
2Þ-Regular VDS, we have ηrvðCÞ ≤ ηrvsðCÞ. Further, since
every ððϵ1, ϵ2Þ, 2Þ-Regular VWDS is a ððϵ1, ϵ2Þ, 2Þ-Regular
VDS, we have ηrvðCÞ ≤ ηrvwðCÞ.

Definition 17. Let C = ðM,ZÞ be a VG on G∗. A subset S of
X is called to be ððϵ1, ϵ2Þ, 2Þ-Regular independent VDS if

(i) S is ððϵ1, ϵ2Þ, 2Þ-Regular VDS
(ii) tZðsvÞ < tMðsÞ∧tMðsÞ and f ZðsvÞ > fMðsÞ∨fMðsÞ,

for all s, v ∈S.

The minimum vague cardinality of ððϵ1, ϵ2Þ, 2Þ-Regular
independent VDS is denoted by ιrvðCÞ.

Example 4. Consider a VG on G∗.
In Figure 4, we haveS = fy, tg that is ðð0:5,0:9Þ, 2Þ-Reg-

ular independent VDS. Therefore, ιrv = 1.

Definition 18. Let C = ðM,ZÞ be a VG on G∗. A ððϵ1, ϵ2Þ, 2Þ
-Regular VSDS is called to be ððϵ1, ϵ2Þ, 2Þ-Regular indepen-
dent VSDS if S is independent.

The minimum vague cardinality of ððϵ1, ϵ2Þ, 2Þ-Regular
independent VSDS is named ððϵ1, ϵ2Þ, 2Þ-Regular indepen-
dent vague strong domination number and is denoted by
ιrvsðCÞ.

Table 1: Some essential notations.

Notation Meaning

FS Fuzzy set

FG Fuzzy graph

VS Vague set

VG Vague graph

ND Neighborhood degree

VDS Vague domination set

VSDS Vague strong dominating set

VWDS Vague weak dominating set

TDS Total dominating set

VDN Vague domination number
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Example 5. Consider a VG on G∗.
In Figure 5, we haveS = fp, s, k, qg of ðð0:3,0:6Þ, 2Þ-Regu-

lar independent VDS which is a minimum size. Thus, ιrvs = 1:8.

Definition 19. Let C = ðM,ZÞ be a VG on G∗. A ððϵ1, ϵ2Þ, 2Þ
-Regular VWDS is called to be ððϵ1, ϵ2Þ, 2Þ-Regular indepen-
dent VWDS if S is independent.

The minimum vague cardinality of ððϵ1, ϵ2Þ, 2Þ-Regular
independent VWDS is named ððϵ1, ϵ2Þ, 2Þ-Regular indepen-
dent vague weak domination number and is denoted by
ιrvwðCÞ.

Example 6. Consider a VG on G∗. In Figure 6, we have six DS

S1 = k,w, c, xf g,
S2 = w, c, x, pf g,
S3 = c, x, p, tf g,
S4 = x, p, t, kf g,
S5 = p, t, k,wf g,
S6 = t, k,w, cf g:

ð11Þ

We have S1 = 1:85,S2 = 1:8,S3 = 1:65,S4 = 1:65,
S5 = 1:8, and S6 = 1:85.

Here, we see that S3 = fc, x, p, tg and S4 = fx, p, t, kg
have minimum size of ðð0:2,0:6Þ, 2Þ-Regular independent
VDS. Thus, ιrvw = 1:65.

Theorem 20. Let C = ðM,ZÞ be a VG on G∗. If S is ððϵ1,
ϵ2Þ, 2Þ-Regular independent VWDS of C, then S ∩ XδN

≠∅.

Proof. Assume s ∈ XδN
. Since S is ððϵ1, ϵ2Þ, 2Þ-Regular inde-

pendent VWDS, either s ∈S or there exists a vertex v ∈S
such that tZðsvÞ = tMðsÞ∧tMðsÞ and f ZðsvÞ = fMðsÞ∨fMðsÞ,
for which dNðvÞ ≤ dNðsÞ. If s ∈S, then clearly S ∩ XδN

≠∅:

On the other hand, ifdNðvÞ ≤ dNðsÞ, thendNðsÞ = δNðCÞ.
Therefore, S ∩ XδN

≠∅.

Theorem 21. Let C = ðM,ZÞ be a VG on G∗. If S is ððϵ1,
ϵ2Þ, 2Þ-Regular independent VSDS of C, then S ∩ XΔN

≠∅.

Proof. Assume s ∈ XΔN
. Since S is ððϵ1, ϵ2Þ, 2Þ-Regular inde-

pendent VSDS, either s ∈S or there exists a vertex v ∈S
such that tZðsvÞ = tMðsÞ∧tMðsÞ and f ZðsvÞ = fMðsÞ∨fMðsÞ,
for which dNðvÞ ≥ dNðsÞ. If s ∈S, then clearly S ∩ XΔN

≠∅:

On the other hand, if there exists a vertex v ∈S, then v ∈
XΔN

ðMÞ, because dNðsÞ = ΔNðCÞ. Therefore, S ∩ XΔN
≠∅.

Theorem 22. Let C = ðM,ZÞ be a VG on G∗ of order P.
Then, ιrvsðCÞ ≤P − ΔNðCÞ.

Proof. Let S be ððϵ1, ϵ2Þ, 2Þ-Regular independent VSDS.
Then, S ∩ XΔN

≠∅. Suppose s ∈S ∩ XΔN
. Since S is inde-

pendent, S ∩NðsÞ =∅. So, S ⊆ X −NðsÞ, then, jSj ≤ jX −
NðsÞj. Thus, ιrvsðCÞ ≤P − ΔNðCÞ.

Theorem 23. Let C = ðM,ZÞ be a VG on G∗. Then, ιrvw
ðCÞ ≤P − δNðCÞ.
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Figure 1: ððϵ1, ϵ2Þ, 2Þ-Regular VDS of VG.
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Figure 2: ððϵ1, ϵ2Þ, 2Þ-Regular VSDS of VG.
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Proof. Suppose S is ððϵ1, ϵ2Þ, 2Þ-Regular independent
VWDS. Then, S ∩ XδN

≠∅. Suppose s ∈S ∩ XδN
. Since S

is independent, S ∩NðsÞ =∅. So, S ⊆ X −NðsÞ, then, jSj ≤
jX −NðsÞj. Thus, ιrvwðCÞ ≤P − δNðCÞ.

Theorem 24. Let C = ðM,ZÞ be a complete VG on G∗ with
X = fs1, s2,⋯, sng such that tMðs1Þ = tMðs2Þ ≤⋯ ≤ tMðsn−1Þ
≤ tMðsnÞ and f Zðs1Þ = f Zðs2Þ ≥⋯≥ f Zðsn−1Þ ≥ f ZðsnÞ, and
then,

ηrvw Cð Þ = 1 + tM s1ð Þ − fM s1ð Þ: ð12Þ

Proof. Suppose C is a complete VG. Then, all edges are
strong. By hypothesis, dNðs1Þ = dNðs2Þ ≤⋯≤ dNðsn−1Þ = dN
ðsnÞ: Then, we get that fs1, s2g is a ððϵ1, ϵ2Þ, 2Þ-Regular
VWDS with the minimum vague cardinality. Therefore,

ηrvw Cð Þ = s1, s2f gj j = 1 + tM s1ð Þ − fM s1ð Þ: ð13Þ

Definition 25. A ððϵ1, ϵ2Þ, 2Þ-Regular VDS of a graph C is
called to be minimal ððϵ1, ϵ2Þ, 2Þ-Regular VDS if it contains
no ððϵ1, ϵ2Þ, 2Þ-Regular VDS as a proper subset. The maxi-

mum size of minimal ððϵ1, ϵ2Þ, 2Þ-Regular VDS is denoted
by YrvðCÞ:

Theorem 26. If C is ðϵ1, ϵ2Þ-Regular VG and S is minimal
ððϵ1, ϵ2Þ, 2Þ-Regular VDS, then X −S is ðϵ1, ϵ2Þ-Regular
VDS.

Proof. Suppose S is a minimal ððϵ1, ϵ2Þ, 2Þ-Regular VDS.
Suppose X −S is not ðϵ1, ϵ2Þ-Regular VDS. Then, there is
v ∈S that is not dominated by a vertex in X −S. Since C

is a ðϵ1, ϵ2Þ-Regular VG, v must be dominated by two verti-
ces in S − fvg. Then, S − fvg is ððϵ1, ϵ2Þ, 2Þ-Regular VDS
which is a contradiction. Hence, every vertex in S is domi-
nated by two vertices in X −S. Therefore, X −S is ðϵ1, ϵ2Þ-
Regular VDS.

Definition 27. Let C = ðM,ZÞ be a VG on G∗. A set S ⊆ X is
named to be minimal ððϵ1, ϵ2Þ, 2Þ-Regular VSDS (VWDS) if
S − fsg is not a VSDS (VWDS).

Theorem 28. A ððϵ1, ϵ2Þ, 2Þ-Regular VDS C of a VG C is
minimal if and only if for each s ∈S, one of the following
two conditions holds:

(i) jNðsÞ ∩Sj ≤ 1

(ii) There exists a vertex v ∈ X −S such that NðvÞ ∩
S = fs, tg, for a t ∈S

Proof. Suppose S is a minimal ððϵ1, ϵ2Þ, 2Þ-Regular domi-
nating set. Then, for every vertex s ∈S,S − fsg is not a
ððϵ1, ϵ2Þ, 2Þ-Regular VDS. This means that some vertex v ∈
X − ðS − fsgÞ is not dominated by two vertices in S − fsg.
Then, either s = v or v ∈ X −S. If s = v, then jNðsÞ ∩Sj ≤ 1.
If s ≠ v, then v ∈ X −S. Since v is not dominated by S − fsg,
v is dominated by two vertices of s and t ofS. Then, the vertex
v is adjacent to s, t in S. Therefore, NðvÞ ∩S = fs, tg. Con-
versely, let S be ððϵ1, ϵ2Þ, 2Þ-Regular VDS, and for every s ∈
S, one of the two conditions holds. SupposeS is not a minimal
dominating set. Then, there exists s ∈S such that S − fsg is
ððϵ1, ϵ2Þ, 2Þ-Regular VDS. Hence, s is dominated by at least
two vertices in S − fsg. Therefore, condition (i) does not
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Figure 3: ððϵ1, ϵ2Þ, 2Þ-Regular VWDS of VG.
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hold. Also, if S − fsg is ððϵ1, ϵ2Þ, 2Þ-Regular VDS, then
every vertex v in X − ðS − fsgÞ is dominated by at least
two vertices in S − fsg. Therefore, condition (ii) does not
hold. This leads to a contradiction. Thus, S must be mini-
mal ððϵ1, ϵ2Þ, 2Þ-Regular VDS.

Similarly, we have the following theorem.

Theorem 29. Suppose S is minimal ððϵ1, ϵ2Þ, 2Þ-Regular
VWDS. Then, for every s ∈S, one of the following two condi-
tions holds:

(i) There is no vertex other than s ∈S

(ii) There exists vertex v ∈ X −S such that s and other
vertex t are the only vertices in S that weakly domi-
nate v

Definition 30. A ððϵ1, ϵ2Þ, 2Þ-Regular VDS of a graph C is
called to be minimum ððϵ1, ϵ2Þ, 2Þ-Regular VDS if it is DS
of minimum size.

Definition 31. A ððϵ1, ϵ2Þ, 2Þ-Regular independent VDS is
called to be maximal ððϵ1, ϵ2Þ, 2Þ-Regular independent
VDS, if every proper subset of S is not independent VDS.

Theorem 32. A ððϵ1, ϵ2Þ, 2Þ-Regular independent VDS is
maximal if and only if it is independent and ððϵ1, ϵ2Þ, 2Þ-Reg-
ular VDS.

Proof. Suppose S is maximal ððϵ1, ϵ2Þ, 2Þ-Regular indepen-
dent VDS. It is trivial that S is ððϵ1, ϵ2Þ, 2Þ-Regular VDS
and S is independent. Conversely, consider that S is inde-
pendent and ððϵ1, ϵ2Þ, 2Þ-Regular VDS. Suppose S is not
maximal; then, there exists v ∈ X −S such that S ∪ fvg is
independent. Then, v ∈ X −S is not adjacent to any vertex
in S which is a contradiction. Therefore, S is maximal.

Theorem 33. In any VG C, ηrv ≤ ιrv ≤ Yrv.

Proof. Since each minimum ððϵ1, ϵ2Þ, 2Þ-Regular indepen-
dent VDS is ððϵ1, ϵ2Þ, 2Þ-Regular VDS, we have ηrv ≤ ιrv:
Since each minimum ððϵ1, ϵ2Þ, 2Þ-Regular VDS is a minimal
ððϵ1, ϵ2Þ, 2Þ-Regular VDS, we have ιrv ≤ Yrv.
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Figure 5: ððϵ1, ϵ2Þ, 2Þ-Regular independent VSDS of VG.
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Figure 6: ððϵ1, ϵ2Þ, 2Þ-Regular independent VWDS of VG.
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4. Application

4.1. Application of a ððϵ1, ϵ2Þ, 2Þ-Regular Independent VDS.
The extensive activities of many countries in the world to
produce electricity from wind energy have become an exam-
ple for other countries. The economic exploitation of wind
energy in electricity production is one of the new production
methods in the world’s electricity industry. The trend of
wind power plant expansion shows a significant increase to
reduce the cost of produced electricity. A wind turbine is a
turbine that is used to convert the kinetic energy of the wind
into mechanical or electrical energy, which is called wind
power. It is made in two types: a horizontal axis and a verti-
cal axis.

Small wind turbines are used for applications such as
charging batteries or auxiliary power in yachts, while larger
wind turbines are used as a source of electrical energy by
turning a generator and converting mechanical energy into
electrical energy. In Iran, this capacity is also used to pro-
duce electricity. Wind power turbines have been installed
and operated in the cities of Zabul, Mahshahr, Shiraz, Isfa-
han, Tabriz, Manjil, Binaloud, Khaf, Qazvin vineyards, and
Ardebil.

The problem is how can we increase the amount of elec-
tricity produced with minimal wind turbines and have lower
fuel costs. Which turbines are better to activate to reach the
answer to the problem? To solve this problem, we first need
to model the graph. The terms “amount of electricity pro-
duced” and “fuel cost reduction” are ambiguous in nature.
Therefore, we need fuzzy graph modeling. Consider the ver-
tices where the wind turbine is located and the edges denote
the amount of energy production between them.

In Figure 7, the VG model shows the turbine installation
locations and the amount of energy production between
them. Consider T = fMahshahr, Zabul, Shiraz, Isfahan,
Tabriz, Manjil, Binaloud, Khaf , Qazvin, Ardabilg as a set of

(0.2, 0.1)

(0.2, 0.1)

(0.2, 0.1)

(0.1, 0.2)

(0.1, 0.3)

(0.1, 0.2)

(0.1, 0.3)

(0.5, 0.3)

(0.3, 0.3)

(0.2, 0.3)

(0.2, 0.3)

(0.1, 0.3)

(0.1, 0.3)

(0.1, 0.3)

(0.3, 0.3)
(0.3, 0.3)

(0.4, 0.3)

(0.2, 0.3)

(0.2, 0.1) (0.2, 0.3)

(0.2, 0.3)

(0.2, 0.3)

(0.2, 0.3)

(0.2, 0.3)
Binaloud

Manjil

Mahshahr

Khaf

Tabriz

Shiraz

Zabul

Qazvin

Isfahan

Ardabil

Figure 7: VG of wind turbines.

Table 2: The weights of vertices.

Zabul Mahshahr Shiraz Isfahan Tabriz

tw 0.3 0.1 0.1 0.2 0.3

f w 0.3 0.2 0.3 0.1 0.3

Manjil Binaloud Khaf Qazvin Ardebil

tw 0.2 0.2 0.5 0.4 0.2

f w 0.1 0.1 0.3 0.3 0.3

Table 3: The weights of edges.

tZ , f Zð Þ
Ardebil-Binaloud 0:2, 0:3ð Þ
Manjil-Mahshahr 0:1, 0:2ð Þ
Khaf-Tabriz 0:3, 0:3ð Þ
Shiraz-Zabul 0:1, 0:3ð Þ
Qazvin-Isfahan 0:2, 0:3ð Þ
Khaf-Isfahan 0:2, 0:3ð Þ
Zabul-Isfahan 0:2, 0:3ð Þ
Manjil-Shiraz 0:1, 0:3ð Þ
Binaloud-Manjil 0:2, 0:1ð Þ
Mahshahr-Khaf 0:1, 0:3ð Þ
Tabriz-Shiraz 0:1, 0:3ð Þ
Zabul-Qazvin 0:3, 0:3ð Þ
Isfahan-Ardebil 0:2, 0:3ð Þ
Tabriz-Ardebil 0:2, 0:3ð Þ
Manjil-Qazvin 0:2, 0:3ð Þ
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cities where the turbine is installed. The weights of the verti-
ces and edges are given in Tables 2 and 3.

In this VG, a DS S can be interpreted as a set of wind
turbines that have more electricity production.

We have S = fManjil, Ardebil, Zabul, Khafg that is a
minimum size of ðð0:6,0:9Þ, 2Þ-Regular independent VDS.
Thus, ιrvs = 2:15.

In this example, by activating at least wind turbines
installed in the cities of Manjil, Ardebil, Zabul, and Khaf,
the amount of electricity production can be increased, and
the cost of fuel can be reduced.

4.2. Application of a ððϵ1, ϵ2Þ, 2Þ-Regular VWDS. In graph
theory, the DS is an important issue in graphs. In this sec-
tion, we explain the application of weak domination set in
VG, and we present this concept in the form of an example.
Suppose C is a VG (see Figure 8). In this example, we con-
sidered seven proposed points of a region for the construc-
tion of a clinic. From these seven suggested points, we are
going to choose the minimum place for this work that meets
the following conditions: good geographical location, facili-
ties of the area, easy access to other places, and the possibil-
ity of development and expansion of the desired place.
Suppose that X = fL1, L2, L3, L4, L5, L6, L7g are vertices and
E = fL1L2, L2L3, L3L4, L2L4, L4L5, L5L6, L4L6, L6L7g are the
edges of graph C.

In this VG, a DS S can be interpreted as a set of loca-
tions that have the best conditions. We have S = fL1, L3,
L5, L7g that is a minimum size of ðð0:3,0:4Þ, 2Þ-Regular
VWDS. Thus, ηrvw = 2:05.

In this example, we can build clinics by choosing places
that have the best conditions.

5. Conclusion

A VG is suitable for modeling problems with uncertainty
which necessitates human knowledge and human evalua-
tion. Moreover, dominations have a wide range of applica-
tions in VGs for the analysis of vague information and also
serve as one of the most widely used topics in VGs in various
sciences. In this research, we described a new concept of
domination in VG called ððϵ1, ϵ2Þ, 2Þ-Regular VDS. We also
defined an independent strong (weak) DS in VG. Finally, an
application of ððϵ1, ϵ2Þ, 2Þ-Regular VDS was presented. In
future work, we will define a VG structure and study new
types of domination, such as ððϵ1, ϵ2Þ, 2Þ-Regular DS and
ððϵ1, ϵ2Þ, 2Þ-Regular independent DS on VG structure.
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