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In this study, the free convection of nanofluids between a rectangular enclosure and a sinusoidal cylinder is numerically analyzed
using the finite element method (FEM). Two-phase Buongiorno’s formulation was used to model the fluid layer, and Brinkman-
Forchheimer equation was used to formulate the porous layer. The enclosure has a low temperature, while the cylinder is
maintained at a high temperature. The governing equations are expressed in PDEs and converted into weak formulations
(Galerkin FEM). In numerical simulations, the average concentration, the amplitude of undulated cylinder, the number of
undulated, and the Rayleigh number are investigated. It is observed that the homogeneous nanofluid model could be valid for
low heating intensity with higher waviness frequency and/or higher amplitude. The higher the alumina concentration, the
higher the heat transfer rate. The heat transfer rate can be boosted by up to 13% by suspending 1% alumina particles. The heat
transfer enhancement decreases with increasing the amplitude and/or increasing the waviness number.

1. Introduction

The phenomena of natural convection induced by a high
cylinder temperature inside a low enclosure temperature
are analyzed. One of the applications happens in a pipe
carrying hot fluid that passes through an enclosed space.
The enclosure has saturated porous adiabatic material to
decrease the thermal gradient from the cylinder. The flow
movement between a pipe and the environment of fluid
space induces a pattern of convection cells. In each cell, the
fluid circulates in a path and the direction of circulation is
contrary with successive vortices. Oosthuizen and Naylor
[1] studied the bottom and sides of the enclosure in insu-
lated condition, and the above wall is cold while the cylinder
is constantly heated. They found that small change in the
Nusselt number with changing the cylinder radius. Misirlio-
glu [2] investigated the active cylinder put in the middle
enclosure and conclude that the rotating cylinder enhances
the heat transfer in the square enclosure. Saleh and Hashim

[3] filled the enclosure with nanofluids. They concluded that
there is an optimum radius, below which adding its size,
increases the fluid movements and above which the cylinder
size reduces the fluid movement. Alhashash [4] concluded
that the heat transfer enhancement for the half heating and
high value of permeability is at the denser nanoparticle vol-
ume fraction. Tayebi and Chamkha [5] and Tayebi et al. [6]
reported that the convective flow circulation of nanofluid in
a horizontal elliptical porous annulus is improved as the
Darcy number and porosity increase.

Undulated surfaces are utilized in many thermal systems
as a means of enhancing the mass and heat transfers, such as
solar collectors, microelectronic devices, electric machinery,
water storage, and condensers in refrigerators. The published
works on the wavy walls have shown that this problem is
limited due to the complexness of the mesh generation and
parametric analyses of the impacts of several major variables.
Murthy et al. [7] investigated the impact of the waviness at
the horizontal wall and found that the convection intensity
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is decreased by using the wavy wall. Kumar [8] showed that
the high undulation frequency of the vertical wall enhances
the natural convection. Later, Kumar [9] reported that the
heating produces a complex oscillatory structure of period
equivalent to the wavy wall. Misirlioglu et al. [10] utilized
the sinusoidal undulation and compared their findings with
those reported in the previous result for a square enclosure
with flat walls. They investigated some values of heating
intensity, aspect ratio, and waviness factors. Later, Misirlio-
glu et al. [11] found that the convective flow was found to
be sensitive on undulation for inclination less than 45° at high
heating intensity. The waviness modified the thermal distri-
butions illustrated by Khanafer et al. [12]. Mushatet [13]
considered double undulation of the side walls having differ-
entially heated and concluded that the orientation angle, the
number, and the amplitude of corrugation and Rayleigh
number have a considerably impact on the convective flow.
Mansour et al. [14] looked at the effect of radiation when
conditions are not in equilibrium and concluded that the heat
transfer decreases by increasing the thermal conductivity
ratio. Sompong and Witayangkurn [15] found that convec-
tive flows were slightly affected by varying the corrugation
number. Sheremet et al. [16] reported the heat transfer
improvement by dispersing nanoparticle, heating intensity,
undulated number, and thermal deviation quantity. Cheong
et al. [17] analyzed the impact of trigonometrical external
heating and inner heat combustion to the wavy wall.
Hoghoughi et al. [18] studied the effect of corrugation
parameters on the free convection of nanoliquid over a circu-
lar heater under nonequilibrium state. They concluded that
when the circular heater is raised, the heat transfer is less at
smaller undulation amplitudes. Alhashash and Saleh [19]
considered the effect of undulated surfaces and nanoparticle
parameters. Alhashash [20] found that the thermal perfor-
mance of the corrugated surface is slightly enhanced under
specific conditions. Alsabery et al. [21] reported that increas-
ing the length of the heater might enhance heat transfer
within the wavy enclosure with the rotating cylinder.

Prior research almost exclusively concentrated on con-
vection in porous enclosures with smooth walls, as opposed
to flow and heat transfer in walls with undulations. This
work analyzes the effect of undulations on the flow and
convective heat transfer properties of water alumina in an
enclosure with a sinusoidal hot cylinder. The investigated
geometry can be utilized to passively regulate heat transmis-
sion in an evacuated-tube solar absorber. Accordingly, the
main novelty of this study is the investigation of the coeffect
of waviness and nanoparticles on fluid circulation within a
porous cavity. In addition, the simultaneous influence of
the cylinder surface and the Brinkman-Forchheimer on heat
transfer characteristics is studied using the two-phase mix-
ture model. The two-phase nanofluid model was previously
adopted by Alsabery et al. [22], Alsabery et al. [23], Ghase-
mian et al. [24], and Hoseininejad et al. [25]. Arrangements
of corrugated cylinder were considered by Nabavizadeh et al.
[26], Sheikholeslami et al. [27], Hatami and Safari [28],
Hashim et al. [29], Jabbaripour et al. [30], and Tayebi and
Chamkha [31] for nonporous case and found the stream-
lines and isotherm pattern sensitive on the waviness surface.

2. Mathematical Formulation

A2D schematicmodel of an enclosure having a sinusoidal hot
cylinder is presented in Figure 1. Thefluidswithin the annulus
are water-based nanofluids having alumina nanoparticles.
The outer walls were maintained at a low temperature. When
the alumina is suspended in the water, Brownianmotion hap-
pens from the relative velocity at the interface as illustrated in
the schematic representation. When there are no turbulence
effects, it follows Buongiorno’s model. Buongiorno evaluated
the impacts of various slipmechanisms between the base fluid
and nanoparticles that are gravity, thermophoresis, Brownian
diffusion, inertia, the Magnus impact, fluid drainage, and dif-
fusiophoresis. The most influential mechanisms on nanofluid
flow and heat transmission, which can affect nanoparticle
concentration fluctuations, were proven to be thermophoresis
and Brownian diffusion. The cylinder having radius r is put in
themiddle of the enclosure. The sine wavy profile of the cylin-
der surface follows the relation:

r ηð Þ = rb + A sin Nζð Þ, ð1Þ

where rin is the base radius, parametersA andN are amplitude
and number of corrugations, respectively, and ζ is the rotation
coordinate. The thermophysical properties of the applied
materials are tabulated in Table 1 [32].

Under the effect of the buoyancy force, the cylinder sur-
face and enclosure at different levels of temperature bring a
free convection problem. The Brinkman-Forchheimer
model is assumed valid for the porous layer, and the Boussi-
nesq approximation is applied for density variation due to
differentially heated. A nanofluid with Newtonian properties
fills the pores of the porous material. Using a thermal equi-
librium model and accounting for Brownian nanoparticle
kinematics and thermophoresis factors, energy equations
for the fluid phase of a porous media are derived. Based on
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Figure 1: Diagrammatic illustration of the model.
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these considerations, the continuity, the momentum, and
the energy equations are stated as follows [33, 34]:
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ε
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where velocities are zero on the enclosure and cylinder
surface. The thermal boundary conditions are

Tnf = Tc on left, right, top, and bottomwalls,
Tnf = Th on cylinder surface,

ð7Þ

where symbol g is the gravity acceleration, Cnf is the con-
centration of nanoparticles, and Jnp is the solid nanoparticle
mass flux. Based on two phase, Buongiorno’s model nano-
particle mass flux can be stated as follows:

Jnp = Jp,B + Jp,T , ð8Þ

Jp,B = −ρnpDB∇Cnf ,DB =
kbTnf

3πμbf dnp
, ð9Þ

Jp,T = −ρnpDT∇Tnf ,DT = 0:26
kbf

2kbf + knp

μbf
ρbf Tnf

Cnf :

ð10Þ
The nanofluid heat capacitance ðρCpÞnf is given as

ρCp

À Á
nf
= 1 − ϕð Þ ρCp

À Á
bf
+ ϕ ρCp

À Á
np
: ð11Þ

The thermal diffusivity of the nanofluidsαnf is evaluated as

αnf =
knf

ρCp

À Á
nf

: ð12Þ

The density of the nanofluids ρnf can be evaluated:

ρnf = 1 − ϕð Þρbf + ϕρnp: ð13Þ

The nanofluid thermal coefficient is modelled as

ρβð Þnf = 1 − ϕð Þ ρβð Þbf + ϕ ρβð Þnp: ð14Þ

The dynamic viscosity ratio of water alumina follows
Corcione [35] model:

μnf
μbf

= 1/ 1 − 34:87 dnp/dbf
À Á−0:3ϕ1:03� �

: ð15Þ

The conductivity ratio of water alumina is calculated by
Corcione [35] as follows:

knf
kbf

= 1 + 4:4Re0:4B Pr0:66
Tnf

T f r

 !10
knp
kbf

 !0:03

ϕ0:66: ð16Þ

with parameter ReB that has a function

ReB =
ρbf uBdnp

μbf
, ð17Þ

uB =
2kbTnf

πμbf d
2
np

, ð18Þ

where constant kb is given by Boltzmann. Constant lbf = 0:17
nm is the mean path of the base fluid. dbf is the molecular size
of the host fluid given as Corcione [35].

Table 1: The materials used and their thermophysical properties [32].

Materials ρ (kg/m3) μ (N s/m2) k (W m−1 K −1) Cp (J/kg K) β (1/K) d (m)

Water 993 0.00069 0.628 4.178 0.00036 3.85e-10

Alumina 3970 — 40 765 0.00085 2.5e-9
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dbf =
6M

Nπρbf
, ð19Þ

whereM is the molecular mass of the water,N is the Avogadro
number, andρbf is the density of the base liquid at our environ-
ment temperature. Value of dbf is evaluated as

dbf =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 × 0:01801528
6:022 × 1023 × π × 998:26

3

r
: ð20Þ

Now, we introduce the following nondimensional
variables:
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:
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This, then, yields the dimensionless continuity, momen-
tum, energy, and nanoparticle equations:
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Parameters DB0 = kbTc/3πμbf dp are the reference Brow-
nian diffusion coefficient, Sc = νbf /DB0 is the Schmidt number,
DT0 = 0:26ðkbf /2kbf + knpÞðμbf /ρbf θÞϕ is the reference ther-
mophoretic diffusion coefficient, NBT = ϕDB0Tc/DT0ðTh − TcÞ
is the diffusivity ratio parameter (Brownian diffusivity/ther-
mophoretic diffusivity), Le = kbf /ðρCpÞbf ϕDB0 is the Lewis

number, Ra = gρbfβbf ðTh − TcÞH3/μbf αbf is the Rayleigh

number, Da = K/H2 is the Darcy number, and Prandtl num-
ber, Pr, is equal to νbf /αbf , Forchheimer coefficient, CF , is

equal to 1:75/
ffiffiffiffiffiffiffi
150

p
, K = ε2D2

p/150½1 − ε�2 is the permeability
of the porous medium, Dp is spherical bead diameter [33],
and km = ε + ð1 − εÞknp/kbf is the matrix porous conductivity.
The dimensionless boundary conditions are as follows:
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∂n
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The dimensionless streamfunction is obtained using the

relation ∂Ψ/∂Y =U and ∂Ψ/∂X = −V . The local Nusselt
number Nu evaluated at the sinusoidal surface is

Nu ζð Þ = −
knf
kbf

∂Θbf
∂ζ

, ð29Þ

where ζ is the rotation coordinate. The averaged Nusselt
number �Nu on the hot sinusoidal cylinder is computed by

�Nu = 1
Psin

ð360
0

Nu ζð Þdζ, ð30Þ
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where Psin is a perimeter of the sinusoidal cylinder. This
perimeter is in the function of the amplitude and number of
undulation, and here, the radius is kept at R = 0:2.

3. Computational Methodology

The Galerkin FEM method is used to solve numerically the
mathematical equations in the form of PDEs to determine
the fluid flows and thermal distribution inside the annulus.
First, a strong formulation of the governing equation is
established by discarding the pressure element using a pen-
alty parameter λ and the continuity as the following

P = −λ
∂U
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+ ∂V
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� �
: ð31Þ

Strong formulation of the X momentum is stated as
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Strong formulation of the Y momentum is stated as
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If the multielement technique is used, the strong formu-
lation must take the second derivative, which is a drawback.

Second, by multiplying the equations by a test function,
weak formulations of the momentum equations are
obtained. The adjusted momentum equations are then inte-
grated over the domain. The weak form provides advantages
in terms of computation flexibility. Third, the unknown
function is estimated. Finally, expand the U , V , Θnf , and
Φnf using basis function Φ as
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The nonlinear residual equations for the X momentum
equation were generated from the Galerkin-weighted resid-
ual FEM at nodes of internal domain Ω that is
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The nonlinear residual equations for the Y momentum
equation is
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For both the test and basic functions, the Galerkin FEM
employs the same function.

The residual integrations of the momentum and heat
transfer, nanoparticle equations in X and Y directions are
employed by using Gauss’s method. A Newton-Raphson
method is employed to solve the system nonlinear algebraic
equations expressed in a matrix. The iteration of the current
work is assumed to be a convergence solution when the cor-
responding error of each variable is equals or less than 10−6.
In heterogeneous distribution, triangular mesh element is
selected to mesh all domains.

To get the optimal grid size, the mesh independency test
is performed for Ra = 105, ϕ = 0:03, A = 0:2, and N = 5 as
tabulated in Table 2. The mesh sizes, i.e., M1, M2, M3,
M4, and M5 are labelled for identification. The numbers
inside the table are observed to be consistent by increasing
the number of elements. Considering both time computa-
tion and the error, the M4 grid size was chosen for all the
computations done in this paper. As a comparison, stream-
line results are validated with that reported by Kumar [8]

for the sinusoidal undulated surface at Da = 10−5, ϕ = 0:0,
Ra = 5 × 106, A = 0:05, and N = 4, 3 as presented in Figure 2.

4. Results and Discussion

The analysis in this simulation is performed in the following
domain of the related dimensionless quantities: the average
alumina volume fraction, 0:0 ≤ ϕ ≤ 0:04; the amplitude of
corrugated surface, 0 ≤ A ≤ 0:3; the number of corrugated
surface, 3 ≤N ≤ 6; and the Rayleigh number, 103 ≤ Ra ≤ 106
. The base radius is 0.2, the porosity is 0.7, the Darcy number
is 0.02, the Prandtl number is 4.62, the Lewis number is
3.5E5, the normalized temperature is 155, the Schmidt num-
ber is 3.5E4, and the ratio of Brownian to thermophoretic
diffusivity is 1.1. The alumina concentrations are varied in
0 ≤ ϕ ≤ 0:04 to avoid clogging in the system.

Figures 3 and 4 present the effects of various values of
Rayleigh numbers and corrugated surface on streamlines
and isotherms for N = 4 and ϕ = 0:03. The heat transfer is
majority by the conduction at the small Rayleigh number.

Table 2: Grid sensitivity check at Ra = 105, ϕ = 0:03, A = 0:2, and N = 5.

Mesh size Domain elements Ψmin �Nu CPU time (s)

M1 6329 -3.3058 6.7280 37

M2 9063 -3.2863 6.7210 60

M3 14127 -3.2716 6.7026 169

M4 31000 -3.2673 6.7249 214

M5 38498 -3.2673 6.7229 351

– 0.250
– 0.500
– 0.750
– 1.000

– 1.250
– 1.500
– 1.750
– 2.000

Figure 2: Validation of current streamlines with published [8] results for the sinusoidal undulated surface at Da = 10−5, ϕ = 0:0, Ra = 5 × 106,
A = 0:05, and N = 4, 3.
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Hence, as seen in Figure 4 ðA = 0:05Þ, the thermal structures
lay over each other circularly with minimum distortions.
This figure exhibits almost a conduction mode of tempera-
ture from the hot sinusoidal cylinder to the cold enclosure.
The plot of the streamlines exhibits a pair of rotating cells,
which follows the pattern and location of the isotherm mag-
nitude. By increasing the Rayleigh number, the convective
flow becomes stronger where the hot fluid from the sinu-
soidal surface moves upward and keeps reaching the top
wall and then moves along the left cold and right surfaces.
At the upper part, the fluid losses its heat to the cold wall
and then circulates down next to the left and right wall.
Due to the fluid movement transporting mass transfer,
the isotherms have deflected along with the fluid flow,
and the isotherm magnitude has shifted toward the top.
Increasing the heating intensity leads to a higher flow circu-
lation. The movement of the fluid follows how the heating

changes and meets up with how its enthalpy changes. The
streamlines show a pair circulation surrounding the undu-
lated circle with the vortices moving upward. When the
flows rotated as cells in the clockwise direction, the maxi-
mum value of the flow circulation is attributed by Ψmin.
The streamline magnitude is stagnant by adjusting the
undulated amplitude. This indicates that the undulated wall
seems unsensitive to the velocities. At Ra = 105 and Ra = 1
06, single vortices developed on the left and right sides of
the annulus. Later, at larger amplitudes, double vortices
formed at Ra = 105 occupy the annulus’s left and right
halves. The vortices have the form of a vertical ellipse. This
is due to the inner heat circulation in the free space
between the cylinder and the left and right walls being
modified by the amplitude especially at moderate heating
intensity. The local decreasing of temperature gradient
brings to the upwelling plume.

Figure 3: Streamlines for the combination of Rayleigh numbers and varying the amplitude corrugation, A at N = 4 and ϕ = 0:03.
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Figures 5 and 6 show the influence of several values of
Rayleigh numbers and corrugated surface on streamlines
and isotherms for A = 0:2 and ϕ = 0:03. Single vortices
appeared at the left and right part of the annulus at N = 3.
Later at higher undulation number, double vortices gener-
ated by gravitational acceleration occupy the left and right
part of the annulus. The shape of the vortices is a vertical
ellipse. At Ra = 106, both flow circulations shift to the top
wall and change to an almost like elliptical shape which
denser lines with high intensity at the upper part of the
annulus. The value of the flow circulation decreases by the
rise of undulated number, and the same circulations tend
to grow vertically because of modifying the hot zone. The
hot nanofluids were transferred via conduction at N = 3
and the small Rayleigh number. At N = 4, the isotherms very
near to cylinder surface tend to take a circular-parallel shape

which is at a small Rayleigh number. Taking Ra higher, the
thermal distributions shift to the top wall with raising the
density at the upper part. At Ra = 106, the generating force
for starting the heat transfer is more strong and apparent,
the isotherm pattern transfers to the curved shape. Very
dense isotherm distributes above the wavy cylinder. This
indicates the large temperature gradient near the top center-
line. The mushroom shapes were obtained. The isotherm
expands due to the great circulation that hits the top wall.
This circulation was boosted by rising maximum heat trans-
port because of increasing the hot surface from adding an
undulated number. The streamlines and isotherms are sym-
metric along the geometric centerline.

Figure 7 shows the influence of combination values of
Rayleigh numbers and varying the corrugation amplitude,
A, and number, N , at ϕ = 0:03. It observes that the alumina

Figure 4: Isotherms for the combination of Rayleigh numbers and varying the amplitude corrugation, A at N = 4 and ϕ = 0:03.
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concentration near the isothermal surfaces is higher than the
concentration in the middle. The number of lines with high
concentration below the corrugated cylinder increases when
the amplitude or number of the corrugation takes higher. This
figure shows that the aluminas are distributed uniformly at
small Rayleigh number for various combinations of the ampli-
tude and number undulations. Low heating intensity distrib-
utes the alumina in a large part of the annulus and
homogenizes the solution. Here, the homogeneous nanofluid
model could be valid since the insignificant effect of thermo-
phoretic. When the cylinder heat is intensified, the thermal
agitation and the circulation are great power at the lower part
of the annulus. Furthermore, at a higher Rayleigh number,
there is a small concentration gradient below the corrugated
cylinder. Thus, the thermophoretic action that causes the dis-
persing of alumina has a low impact, and the agitation is not
great in this area. It also observed denser nanoparticle distri-
bution at this region. When the amplitude is higher at N = 5,

the agitation of the alumina is improved. The enhancement
of agitation causes a greater uniform alumina dispersion in
the whole annulus. The improved agitation is a consequence
of the increase in the length of heated surface. In the domains
of convective cells, there are extensive uniform regions,
whereas the nonuniform regions becomemore limited as they
approach the corrugated surface.

Figure 8 shows a relationship between the mean Nusselt
number, �Nu, and the Rayleigh number, Ra, at various ϕ
when N = 3 and A = 0:2. Heat transfer rate increases with
increasing the alumina volume fraction. The increasing
more pronounced at a high and small Rayleigh number.
This fact due to alumina thermal conductivity has a signif-
icant effect on increasing the thermal gradient at moderate
buoyancy force, but the viscosity and agitation suppress
the fluid movement. At the high Rayleigh number, inten-
sity of the upper convective cells enhances considerably,
and the sizes of regions with dense concentration decrease.

Figure 5: Streamlines for several Rayleigh numbers and varying the undulation number, N at A = 0:2 and ϕ = 0:03.
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Figure 6: Isotherms for different Rayleigh numbers and varying the undulation number, N at A = 0:2 and ϕ = 0:03.
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Figure 7: Alumina distribution for combination values of Rayleigh numbers and corrugation amplitude, A, and number, N , at ϕ = 0:03.
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The viscosity action and agitation are to suppress the flow
circulation. The cumulative impact is to increase the Nus-
selt number considerably.

Figure 9 summarizes the variations of the average
Nusselt number versus the Rayleigh number for different
undulation amplitude at N = 4 and ϕ = 0:03. The heat trans-
fer rate decreases by increasing the amplitude, and it is being
significant at a high heating intensity. The temperature gra-
dient of the active wall reduces as the corrugation amplitude
increases. The thermal performance follows the flow inhibi-
tion near the corrugated region where the flat wall is the best
option. Isotherm changed (see Figure 4) because the Brow-
nian motion parameter went up, which led to an unneces-
sary drop in the average Nusselt number.

Figure 10 summarizes the variations of average Nus-
selt number versus the Rayleigh number from 103 to
106 for various undulation number at A = 0:2 and ϕ =
0:03. The Nusselt number is reduced by applying the
undulated cylinder at any heating condition. Increasing
undulated number decreases the heat transfer rate con-
stantly from low to moderate Rayleigh number. The heat
transfer rate decreases by increasing the waviness, and it is
being significant at a high heating intensity. Increasing the
waviness frequency to the thermal performance is equivalent
with increasing the amplitude as mentioned in the previous
case. At higher buoyancy force, increasing the undulation
number decreases the thermal gradient, but the free space
becomes larger. It is also supported by the fact that the
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Figure 8: Plots of the average Nusselt number against Rayleigh number for the values of ϕ labelled on the figure at N = 3 and A = 0:2.
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Figure 9: Influence of Rayleigh number and the corrugation amplitude on the average Nusselt number at N = 4 and ϕ = 0:03.
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nanoparticle isoconcentrations are distributed heteroge-
neously at a relative large buoyancy force.

Differences in the average Nusselt number and Ray-
leigh number are shown in Table 3 for different values
of the controlling parameters, ϕ, A, and N . The average
Nusselt number increases significantly as the solid volume
fraction increases. As can be seen from the table, the
amplitude goes up, and the average rate of heat transfer

goes down. The maximum rate of heat transfer takes
place at Ra = 106, A = 0:005, and N = 5. The heat transfer
rate varies almost linearly with the solid volume percent-
age. Increasing the solid concentration from 0 to 0.01
results in a 13% improvement in heat transfer rate at R
a = 103 and Ra = 104. Increasing the solid concentration
from 0 to 0.01 results in a 9% improvement in heat trans-
fer rate at Ra = 105 and Ra = 106.
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Figure 10: Impact of Rayleigh number and the undulation number on the average Nusselt number at A = 0:2 and ϕ = 0:03.

Table 3: Differences in the average Nusselt number and Rayleigh number for different values of the controlling parameters, ϕ, A, and N .

Ra ϕ
N = 3 N = 5

A = 0:005 A = 0:2 A = 0:005 A = 0:2

103

0 2.5109 2.4121 2.5155 2.1995

0.01 2.8325 2.7211 2.8377 2.4812

0.02 3.0191 2.9003 3.0246 2.6446

0.03 3.1750 3.0501 3.1808 2.7812

0.04 3.3138 3.1835 3.3199 2.9029

104

0 2.5262 2.4269 2.5304 2.2105

0.01 2.8457 2.7338 2.8506 2.4907

0.02 3.0312 2.9120 3.0364 2.6533

0.03 3.1862 3.0609 3.1918 2.7892

0.04 3.3244 3.1936 3.3302 2.9104

105

0 3.4154 3.2253 3.4215 2.8980

0.01 3.7049 3.5090 3.7108 3.1528

0.02 3.8652 3.6672 3.8710 3.2949

0.03 3.9962 3.7967 4.0019 3.4115

0.04 4.1109 3.9103 4.1165 3.5139

106

0 6.7172 6.2814 6.7380 5.7093

0.01 7.3218 6.8445 7.3447 6.2170

0.02 7.6542 7.1536 7.6784 6.4956

0.03 7.9232 7.4034 7.9487 6.7210

0.04 8.1567 7.6200 8.1833 6.9165
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5. Conclusions

Free convection of nanofluids induced by different tempera-
ture levels between cold walls and a hot sinusoidal cylinder
was studied numerically. The continuity, Brinkman-
Forchheimer flow, and energy equation inside the annulus
are formulated in the dimensionless form. Two-phase Buon-
giorno nanofluid model was applied for the nanofluid layer.
These equations were solved by the Galerkin FEM. Com-
puted results of the flow fields and temperature distributions,
as well as the heat transfer rate, are depicted graphically. The
undulation frequencies, alumina volume fraction, and Ray-
leigh number affected the shape of streamlines, isotherms,
isoconcentrations, and Nusselt number plots. Some impor-
tant points from the study are given below:

(1) The intensity of the flow movement reduces as the
undulated number increases but is stagnant with
varying the undulated amplitude

(2) Shape, position, and number of the vortices depend on
the waviness frequency and Rayleigh number. The
nanoparticle isoconcentrations are not symmetric
along the geometric centerline while the streamlines
and isotherms are symmetric along the centerline

(3) Homogeneous nanofluid model could be valid for
low heating intensity with higher amplitude and
number of corrugation conditions

(4) The higher the alumina concentration, the higher the
heat transfer rate. The heat transfer rate can be boosted
by up to 13% by suspending 1% alumina particles. The
heat transfer enhancement decreases with increasing
the amplitude and/or increasing the waviness number

Abbreviations

Nomenclature

A: Undulation amplitude (m)
Cp: Heat capacity (J kg-1 K-1)
CF : Forchheimer constant
Da: Darcy number
DB: Brownian diffusion coefficient (kg m−1 s−1)
dp: Diameter of the nanoparticle (nm)
DT : Thermophoretic diffusivity coefficient (kgm−1 s−1))
g: Gravitational force (m s−2)
k: Thermal conductivity (W m−1 K-1)
K : Permeability (m2)
H: Length of enclosure (m)
N : Undulation number
p: Pressure (Pa)
P: Perimeter (m)
Pr: Prandtl number
r: Cylinder radius (m)
Ra: Rayleigh number or heating intensity
T : Temperature (K)
u, v: Velocity components in the x- and y-directions

(m/s)

x, y, X, Y : Space coordinates (m) and dimensionless space
coordinates.

Greek Symbols

α: Thermal diffusivity (m2/s)
β: Thermal expansion coefficient (1/K)
ε: Porosity
Θ: Dimensionless temperature
ν: Kinematic viscosity (m2/s)
ρ: Density (kg/m3)
ϕ: Solid volume fraction
ψ: Stream function (m2/s)
μ: Dynamic viscosity (kg m−1 s−1).

Subscript

c: Cold
bf : Base fluid
h: Hot
nf : Nanofluid
np: Alumina nanoparticles
sin: Sinusoidal cylinder.
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