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The focus of this paper is on utilizing the spectral element method to find the numerical solution of the fractional Klein–Gordon
equation. The algorithm employs interpolating scaling functions (ISFs) that meet specific properties and satisfy the multiresolution
analysis. Using an orthonormal projection, the equation is mapped to the scaling spaces in this method. A matrix representation of
the Caputo fractional derivative of ISFs is presented using matrices representing the fractional integral and derivative operators.
Using this matrix, the spectral element method reduces the desired equation to a system of algebraic equations. To find the
solution, the generalized minimal residual method (GMRES method) and Newton’s method are used in linear and nonlinear forms
of this system, respectively. The method’s convergence is proven, and some illustrative examples confirm it. The method is
characterized by its simplicity in implementation, high efficiency, and significant accuracy.

1. Introduction

Our aim in this study is to implement and develop the Galerkin
method to approximate the solution of the fractional Klein–
Gordon equation:

∂η

∂tη
w x; tð Þ þ γ1

∂2

∂x2
w x; tð Þ þ γ2N x; t;w x; tð Þð Þ ¼ q x; tð Þ; ð1Þ

subjected to the following conditions:

w x; 0ð Þ ¼ f2 xð Þ;  w0 x; 1ð Þ ¼ f3 xð Þ;  x 2 0; 1½ �; ð2Þ

w 0; tð Þ ¼ f0 tð Þ;  w 1; tð Þ ¼ f1 tð Þ;  t 2 0; 1½ �; ð3Þ

where γ1 and γ2 are constants, qðx; tÞ is a continuous func-
tion, and N is a known function that fulfills the following
Lipschitz condition:

N x; t;w1ð Þ −N x; t;w2ð Þj j ≤ LN w1 − w2j j; ð4Þ
where LN is referred to the Lipschitz constant. The fractional
derivative is of the Caputo fractional derivative (CFD) type,
such that we shall introduce it in the sequel.

For many years, positive integer derivatives have been
used in partial differential equations (PDEs). But, in recent
years, we have noticed a trend toward using fractional deri-
vatives to model physical phenomena. It seems like there are
many advantages to this approach, including greater accu-
racy and more flexibility in the types of systems that can be
modeled. Meanwhile, some applications of these equations
can be mentioned such as colored noise [1], bioengineering
[2–4], solidmechanics [5], continuum and statistical mechan-
ics [6], earthquakes [7], anomalous transport [8], economics
[9], fluid-dynamic traffic model [10], and engineering and
natural sciences [11–13]. There are some analytical methods
to solve these types of equations [14–16]. However, when the
equations become more complicated, these methods no lon-
ger work. So, numerical approaches can address this defi-
ciency. Here, we mention some of these methods, including
finite difference method [17], collocation method [18, 19],
Galerkin method [20, 21], finite element method [22], kernel-
based pseudo-spectral method [23], nonuniform difference
schemes [24], and fractional differential transformmethod [25].

It is common knowledge that the Klein–Gordon equations,
both linear and nonlinear, are widely used when it comes to
modeling various physical phenomena. They have been used
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to model everything from solitons to condensed matter phys-
ics, as well as classical and quantum mechanics. In 1926, two
physicists named Klein [26] and Gordon [27] introduced this
equation to describe relativistic electrons. According to the
importance of these equations, studying and finding their solu-
tion can be very useful. To this end, through the utilization of
different numerical techniques, we have able to solve these
equations, such as the He’s method [28, 29], radial basis func-
tions [30], decomposition method [31], meshless method [32],
Galerkinmethod [33], Taumethod [34], differential transform
method [35], b-spline scaling function [36], and Adomians
decomposition scheme [37].

The fractional Klein–Gordon equation has been garner-
ing significant attention from scientists as of late. In fact,
fractional Klein–Gordon equation is the generalization of
fractional Klein–Gordon equation of integer order. On the
other hand, this equation describes nonlocal relationships in
space and time using power-law memory kernels. According
to the definition of fractional derivative, it is worth noting
that the fractional derivative at a point depends on all values
of the function. Thus, it is expected that the fractional deriv-
ative operation involves some sort of boundary conditions,
involving information on the function further out [38]. As
we know, when the fractional order approaches an integer,
the fractional derivative converges to the ordinary derivative.
So, we can conclude that the fractional differential equations
are close to the real modeling of phenomena and the differ-
ential equations of integer order are the limits of them. Several
numerical schemes have been developed by mathematicians
to aid in solving this equation. It is remarkable to witness
the rapid advancements being made in this field. The Sinc–
Chebyshev based collocationmethod described in Nagy’s [39]
study is an effective means of solving the nonlinear version of
this equation. I came across a fascinating article by Golman-
khaneh et al. [40] on using the homotopy perturbationmethod
to solve the problem. In Singh et al.’s [41] study, the authors
employed Chebyshev polynomials of the third kind to imple-
ment the collocation method for finding the solution to this
problem. Cubic B-spline functions are used to solve this prob-
lem by a numerical method [42]. One of the approach that has
been found to be efficient for finding numerical solutions for
equations of this type is the meshless method suggested by
Gharian et al. [43]. The problem at hand may be resolved
through the utilization of generalized polynomials, as pre-
sented in Hassani et al.’s [44] study.

Interpolating scaling functions (ISFs) are a family of pow-
erful bases that emerge from a multiresolution analysis
(MRA). These bases are orthonormal and by dilation and
translation generate a family of nested subspaces of L2½0; 1�.
These bases are also essential for constructing Alpert’s multi-
wavelets. These bases were first introduced by Alpert et al.
[45] where PDEs were solved by an adaptive method using
these bases. ISFs have shown their adaptability and usefulness
in a wide range of mathematical problems, such as solving
ordinary differential equations [46, 47], PDEs [48], integral
equations [49], and more.

In this paper, we use the spectral element method based
on ISFs to solve the fractional Klein–Gordon equation. The

fundamental idea behind this method is to consider the
unknown solution as a linear combination of basis functions.
Then, using the operational matrix of CFD and spectral ele-
ment method, the desired equation reduces to a system of
algebraic equations. Considering the flexibility of the ISFs in
the selection of m and s parameters, the presented method
solves this type of equation with appropriate accuracy. As
you know, the main challenges in equations such as the
Klein–Gordon equation are the nonlinearity and existence
of the fractional derivative. When we use other types of
bases, these two factors cause some limitations in imple-
menting the spectral element method. However, since there
is no need to calculate the integral in using the ISFs to
approximate the functions, the problems of nonlinearity
can be easily solved. About the fractional derivatives, we
know that the equation may have a nonsmooth solution
near the boundaries, which many numerical methods fail
to overcome. The scaling functions, due to the properties
that they inherit from multiresolution analysis, by increasing
the scale parameter s can overcome this challenge.

In this article, we have organized the information into
different sections. Section 2 provides an introduction to ISFs
and their properties, as well as a matrix representation of
CFD. In Section 3, we explain and execute the proposed
method, which utilizes the spectral element method. Addi-
tionally, we present a theorem that demonstrates the conver-
gence of this method. Section 4 contains results from various
numerical experiments. Finally, we complete this work through
the inclusion of a conclusion in Section 5.

2. Interpolating Scaling Bases

Before implementing the algorithm of the proposed scheme,
it is worthwhile to give the bases’ construction briefly. To this
end, according to our knowledge of these bases, these bases
are piecewise polynomials of the degree less than a constant
number, called multiplicity parameter m [45, 50, 51]. The
main configuration of these bases is made by Lagrange poly-
nomials LlðxÞ, which are used in their construction from the
roots of Legendre polynomials PmðxÞ. Suppose that these
roots are indicated by fτl; l¼ 0; 1;⋯;m− 1g. Furthermore,
assume that the Gauss–Legendre quadrature weights ωl, l¼
0; 1;⋯;m− 1, determined by ωl : ¼ 2=ðrP0

mðτlÞPm−1ðτlÞÞ, is
given. The ISFs are specified by the following equation:

ϕl xð Þ : ¼
ffiffiffiffiffi
2
ωl

r
Ll 2x − 1ð Þ;  x 2 0; 1½ �;

0;  otherwise;

8<:  l ¼ 0; 1;⋯;m − 1:

ð5Þ

Motivated by L2-inner product, the ISFs consist of ortho-
normal bases for the finite-dimensional space:

Am
0 ¼ span ϕl : l ¼ 0; 1;⋯;m − 1

È É
⊂ L2 0; 1½ �: ð6Þ

By dividing the interval Ω : ¼ ½0; 1� into subintervals
Is; k : ¼ ½xs; k; xs; kþ1�, xs; k : ¼ 2−sk (namely Ω¼ ⋃

k2Bs

Is; k) in
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which s2N ∪ f0g is given and Bs : ¼f0; 1;⋯; 2s − 1g, we
are now ready to introduce the subspaces that generate a
MRA. Recall that MRA consists of nested subspaces that
satisfy some conditions cf [52]. Here, we designate these sub-
spaces by the following equation:

Am
s ¼ span ϕl

s;k : ¼D2sTkϕ
l;    k 2Bs;    l ¼ 0; 1;⋯;m − 1

n o
;

ð7Þ

where Tk and D2s denote 9the translation and dilation
operators, respectively, and are determined by the following
equation:

D2s f xð Þ ¼ ffiffiffiffi
2s

p
 f 2sxð Þ;  and Tkf xð Þ ¼ f x − kð Þ: ð8Þ

To approximate any function f , using an orthonormal
projection Pm

s ð f Þ : L2ðΩÞ→Am
s , it can be mapped onto Am

s
via a finite sum:

f ≈Pm
s fð Þ ¼ ∑

k2Bs

∑
m−1

l¼0
f ;ϕl

s;k

D E
ϕl
s;k;  f 2 L2 Ωð Þ; ð9Þ

where s≥ 0 is a fixed integer number and the coefficients h f ;
ϕl
s; ki can be computed by the following equation:

f ls;k ¼
Z

Is;k

f xð Þϕl
s;k xð Þdx : ¼ f ;ϕl

s;k

D E
;  k 2Bs; l ¼ 0; 1;⋯;m − 1:

ð10Þ

As you see, computing these integrals lead to high compu-
tational cost, so to avoid this, the interpolating property of the
bases could be a problem solver. This property gives rise to
calculating these coefficients without integration, i.e.:

f ls;k ≈ 2−s=2
ffiffiffiffiffi
ωl

2

r
f 2−s bτ l þ kð Þð Þ;  k 2Bs;    l ¼ 0;…;m − 1;

ð11Þ

where bτ l : ¼ðτl þ 1Þ=2. Let us determine by Φm
s a vector

function Φm
s : ¼ ½Φm; 0

s
T
; Φm; 1

s
T
; ⋯; Φm; 2s−1

s
T �T , consisting

of all scaling functions in Am
s . According to this presentation,

Equation (9) may be rewritten as follows:

f ≈Pm
s fð Þ ¼ FsTΦm

s ; ð12Þ

where the elements of N-dimensional vector Fs are deter-
mined by ½ Fs�kmþlþ1 ¼ f ls; k, in which N ¼m; 2s. The super-
script “T” in this text indicates the meaning of “transpose.”

There is an error in this approximation. In order to
determine an estimate for the maximum error, we can refer
to the Lemma 1, [50].

Lemma 1. Given m2N, assume that f : ½0; 1�→R be of class
Cm, m times continuously differentiable function. The error of
approximation (9) is estimated by the following equation:

Pm
s fð Þ − fk k ≤ 2−sm

2
4mm!

sup
x2 0;1½ �

f mð Þ xð Þ�� ��: ð13Þ

To extend the approximation to the 2D space
Am; 2
s ⊂ L2ðΩÞ2, which is generated by fϕl

s; kðxÞϕl0
s; k0 ðtÞ : l;

l0 ¼ 0;…m− 1; k; k0 2Bsg, the projection Pm
s can be uti-

lized to approximate the 2D function f ðx; tÞ, viz.:

f x; tð Þ ≈Pm
s fð Þ x; tð Þ

¼ ∑
k2Bs

∑
m−1

l¼0
∑

k02Bs

∑
m−1

l0¼0
Fmkþ lþ1ð Þ;mk0þ l0þ1ð Þϕl

s;k xð Þϕl0
s;k0 tð Þ;

ð14Þ

in which the coefficients Fmkþðlþ1Þ;mk0þðl0þ1Þ and l; l0 ¼ 0;
…m− 1, k; k0 2Bs are computed by the following equation:

Fmkþ lþ1ð Þ;mk0þ l0þ1ð Þ ¼
Z

Ω

Z
Ω
f x; tð Þϕl

s;k xð Þϕl0
s;k0 tð Þdxdt:

ð15Þ

But, similar to the 1D case, to avoid calculating these
integrals, they can be found using the following equation:

Fmkþ lþ1ð Þ;mk0þ l0þ1ð Þ ≈ 2−s
ffiffiffiffiffi
ωl

2

r ffiffiffiffiffiffi
ωl0

2

r
f 2−s bτ l þ kð Þ; 2−s bτ l0 þ k0ð Þð Þ;

ð16Þ

l; l0 ¼ 0;…m − 1;  k; k0 2Bs: ð17Þ

Lemma 2 (cf Theorem 1, Saray et al. [53]). Given m2N,
assume that f :Ω×Ω→ R be a sufficiently smooth function.
The approximation error (14) can be limited by the following
equation:

Pm
s f − fk k ≤Cf

21−ms

4mm!
2þ 21−ms

4mm!

� �
; ð18Þ

where:

Cf ¼max sup
ξ2½ 0;1 Þ

∂m

∂xm
f ξ; tð Þ

���� ����; sup
η2½ 0;1 Þ

∂m

∂tm
f x; ηð Þ

���� ����; sup
ξ0;η02½ 0;1 Þ

∂2m

∂xm∂ym
f ξ0; η0ð Þ

���� ����
( )

: ð19Þ
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2.1. Matrix Representation of CFD. Before introducing a
matrix representation of CFD ( CDη

0), it is necessary to deter-
mine some preliminaries about fractional calculus. Addition-
ally, since the matrix representation of the CFD is derived
from the matrix representation of the fractional integral (FI),
it is necessary to incorporate this matrix.

Definition 1. Given η2Rþ, the FI operator Iη
0 of order η is

specified by the following equation:

Iη
0 wð Þ xð Þ : ¼ 1

Γ ηð Þ
Z

x

0
x − zð Þη−1w zð Þdz;  x 2 0; 1½ �;

ð20Þ

where ΓðηÞ indicates the Gamma function.

Given the power function, its fractional integration is
also a power function, that is:

Iη
0 xαð Þ ¼ Γ αþ 1ð Þ

Γ ηþ αþ 1ð Þ x
ηþα: ð21Þ

The norm of the FI operator is bounded, as motivated by
Kilbas et al. [54].

Lemma 3. There is an estimation of the bound of the frac-
tional integral operator Iη

0 in Lqð½0; 1�Þ, viz.:

Iη
0 wð Þk kq ≤

1
Γ ηþ 1ð Þ wk kq;  1 ≤ q ≤1: ð22Þ

The matrix representation of the fractional integral oper-
ator is denoted by Iη. In order to determine Iη, it is necessary
to once again estimate the fractional integral of the vector
function Φm

s ðxÞ using ISFs, viz.:

Iη
0 Φm

s xð Þð Þ ≈ IηΦm
s xð Þ;  x 2 0; 1ð Þ; ð23Þ

where Iη is a N ×N square matrix. The objective is to identify
the elements present in this matrix. To proceed, we have to
take help from the following lemma.

Lemma 4 (cf, Asadzadeh and Saray [55]). The Lagrange
polynomials Ll for nodes fτlgl¼0; 1;…;m−1 may be written as
follows:

Ll xð Þ ¼ ∑
m−1

n¼0
βl;nxm−n−1;  l ¼ 0; 1;⋯;m − 1; ð24Þ

where βl; 0 ¼ 1=ð∏m−1
n0¼0; n0≠lðτl − τn0 ÞÞ and

βl;n ¼
−1ð Þn

∏m−1
n0¼0;n0≠l τl − τn0ð Þ ∑

m−1

ln¼ln−1þ1
⋯ ∑

m−n−2

l1¼0
∏
n

i0¼1
τli0 ;  

n¼ 1;⋯;m − 1;
l ≠ l1 ≠⋯ ≠ ln:

ð25Þ

Based on Equation (11), it is possible to compute the
elements of matrix Iη using the following equation:

Iη½ �i;j ¼ 2
−s
2

ffiffiffiffiffiffi
ωl0

2

r
Iη ϕm

s;k

� �
2−s bτ l0 þ k0ð Þð Þ

¼ 2
−s
2

Γ ηð Þ
ffiffiffiffiffiffi
ωl0

2

r Z
2−s bτ l0 þk0ð Þ
0

2−s bτ l0 þ k0ð Þ − tð Þη−1ϕm
s;k tð Þdt;

ð26Þ

where j¼ k0mþ l0 þ 1 and i¼ kmþ lþ 1, l; l0 2R, k; k0 2
Bs. The elements of matrix Iη is previously obtained by
Asadzadeh and Saray [55]. They proved this matrix is an
upper triangular matrix in which entries can be computed
by considering the three following cases.

(1) Given k0<k, we can easily prove that:

Iη
Â Ã

i;j ¼ 0;  i¼ 1; 2;⋯;N;  j¼ i − 1;…; 1: ð27Þ

(2) Considering k0 ¼ k, setting λ : ¼bτk0 þ k0 − k, by the
change of variable x¼ 2st − k, Equation (26) leads to
the following equation:

Iη
Â Ã

i;j ¼
2−sη

Γ ηð Þ
ffiffiffiffiffiffi
ωl0

2

r Z
λ

0
λ − xð Þη−1ϕm xð Þdx: ð28Þ

According to the closed form ISFs and Lemma 4, we can
obtaine the following equation:

Iη
Â Ã

i;j ¼
2−sη

Γ ηð Þ
ffiffiffiffiffiffi
ωl0

ωl

r
∑
m−1

n¼0
βl;n

Z
λ

0
λ − xð Þη−1 2x − 1ð Þm−1−ndx:

ð29Þ

Now, the elements situated on the diagonal Iη are speci-
fied by the following equation:

Iη
Â Ã

i;j ¼
2−sλð Þη
Γ ηð Þ

ffiffiffiffiffiffi
ωl0

ωl

r
B 1; ηð Þ ∑

m−1

n¼0
βl;n −1ð Þm−n−1

2F1

nþ 1 −m; 1; ηþ 1; 2λð Þ;
ð30Þ

where 2F1ðnþ 1−m; 1; ηþ 1; 2λÞ states the following
hypergeometric function:
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2F1 nþ 1 −m; 1; ηþ 1; 2λð Þ

¼ ∑
m−n−1

i¼0
−1ð Þi m − n − 1

i

 !
1ð Þi

ηþ 1ð Þi
2λð Þi: ð31Þ

Furthermore, the beta function is denoted by B, and λ :
¼bτ l0 þ k0 − k.
(3) Given k0>k, we have bτ l0 þ k0>kþ 1. So, it can be

show that:

Iη
Â Ã

i;j ¼
2
−s
2

Γ ηð Þ
ffiffiffiffiffiffi
ωl0

2

r Z
2−s kþ1ð Þ

2−sk
2−s bτ l0 þ k0ð Þ − tð Þη−1ϕm

s;k tð Þdt:

ð32Þ

Using the same argument as in Case (2), we get the
following equation:

Iη
Â Ã

i;j ¼
2−sλð Þη
Γ ηð Þ

ffiffiffiffiffiffi
ωl0

ωl

r
∑
m−1

n¼0
βl;n

Z
1=λ

0
1 − yð Þη−1 2λy − 1ð Þm−1−ndy:

ð33Þ

Applying the binomial expansion of ð2λy − 1Þm−1−n as
follows:

2λy − 1ð Þm−1−n ¼ ∑
m−1−n

i¼0

m − 1 − n

i

 !
yð Þm−1−n−i

−1ð Þi;

ð34Þ

the entries of Iη above the main diagonal can be specified the
following equation:

Iη
Â Ã

i;j ¼
2−sλð Þη
Γ ηð Þ

ffiffiffiffiffiffi
ωl0

ωl

r
∑
m−1

n¼0
βl;n ∑

m−1−n

i¼0

m − 1 − n

i

 !
2λð Þm−1−n−i

−1ð Þi

×
1=λð Þσ
σ 2F1 σ; 1 − η; σ þ 1; 1=λð Þ;

ð35Þ

in which σ : ¼m− n− i, i¼ 0; 1;…;m− 1− n.

Assume that ACηð½0; 1�Þ is a space of functions such that:

ACη 0; 1½ � ¼ w : 0; 1½ �→ C;  and D η−1ð Þ wð Þ 2 AC 0; 1½ �È É
:

ð36Þ

As we know, if wðxÞ 2ACη½0; 1�, then the CFD:

cDη
0wð Þ xð Þ ¼ 1

Γ κ − ηð Þ
Z

x

0

w κð Þ tð Þdt
x − tð Þη−κþ1 ¼ : Iκ−η

0 Dκ wð Þ xð Þ;

ð37Þ

exists for almost every x2 ½0; 1�.

Now, our objective is to find an operational matrix Dη for
the operator cDη

0 such that it satisfies the following equation:

cDη
0 Φ xð Þð Þ ≈ DηΦ xð Þ: ð38Þ

To find this matrix, motivated by Equation (37), the
operational matrix Iη can be utilized as follows:

cDη
0 Φ xð Þð Þ ¼Iκ−η

0 Dκ Φ xð Þð Þ ≈ Dκ Iκ−η
À Á

Φ xð Þ; ð39Þ

where the matrix D is used to represent the derivative oper-
ation, as explained in Alpert et al.’s [45] study. Consequently,
the matrix Dη can be determined by the following equation:

Dη : ¼Dκ Iκ−η
À Á

: ð40Þ

3. Methods Description

Recall that our objective is to introduce and implement an
effective numerical algorithm for Equation (1). The approach
used in this numerical algorithm involves implementing the
Galerkin method. The method begins by expanding the
unknown solution wðx; tÞ based on ISFs, viz.:

w x; tð Þ ≈Pm
s wð Þ x; tð Þ

¼ ∑
k2Bs

∑
m−1

l¼0
∑

k02Bs

∑
m−1

l0¼0
Wmkþ lþ1ð Þ;mk0þ l0þ1ð Þϕl

s;k xð Þϕl0
s;k0 tð Þ;

ð41Þ
or equivalently:

w x; tð Þ ≈Pm
s wð Þ x; tð Þ ¼ Φm

s
T xð ÞWΦm

s tð Þ : ¼wm
s x; tð Þ;

ð42Þ
in which we have a square matrix, W, of order N , with
coefficients that are currently unknown.

Substituting Equation (42) into Equation (1) leads to the
following equation:

∂η

∂tη
wm

s x; tð Þ þ γ1
∂2

∂x2
wm

s x; tð Þ þ γ2N x; t;wm
s x; tð Þð Þ ¼ q x; tð Þ:

ð43Þ

Using Equation (42) and applying the operational matri-
ces D and Dη, we can approximate all terms of Equation (43),
as follows.

(i) Taking CFD from Equation (41), and using the
matrix Dη, one can write the following equation:

∂η

∂tη
wm

s x; tð Þ ¼ Φm
s
T xð ÞDη

TWΦm
s tð Þ: ð44Þ

(ii) For the second one, namely, ∂2
∂x2 w

m
s ðx; tÞ, we use the

matrix D, as follows:
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∂2

∂x2
wm

s x; tð Þ ¼ Φm
s
T xð ÞWD2Φm

s tð Þ: ð45Þ

(iii) Given Nm : ¼Nðx; t;wm
s ðx; tÞÞ, let us imagine a

matrix F that has N ×N dimensions and meets the
following condition:

Nm x; tð Þ ≈ Φm
s
T xð ÞFΦm

s tð Þ: ð46Þ

Note that the entries of the matrix F consist of the linear
or nonlinear equations of the unknowns Wi; j.
(iv) Using the operator Pm

s , the given function qðx; tÞ
can also map into the space Am

s , viz.:

q x; tð Þ ≈Pm
s qð Þ x; tð Þ ¼ Φm

s
T xð ÞQΦm

s tð Þ; ð47Þ

in which Q is an N-dimensional square matrix.

Putting Equations (44)–(47) back into Equation (43)
gives rise to introducing the residual:

r x; tð Þ ¼ Φm
s
T xð ÞΥΦm

s tð Þ; ð48Þ

where Υ ¼Dη
TWþ μ1WD2 þ μ2F −Q. Applying the Galer-

kin method requires fulfilling the following equation:

r x; tð Þ;ϕl
s;k xð Þϕl0

s;k0 tð Þ
D E

¼ 0;  l; l0 ¼ 0;…m − 1; k; k0 2Bs;

ð49Þ

or equivalent to the following equation:

r x; tð Þ;Φm
s xð ÞΦm

s tð Þh i ¼ 0: ð50Þ

Because the ISFs are orthonormal bases, the aforemen-
tioned equation leads to a linear or nonlinear system:

R Wð Þ ¼ Q; ð51Þ

Now, the functions f0, f1, f2, and f3 must be mapped to
space Am

s to apply the boundary and initial conditions. So, we
have the following equation:

fi ≈Pm
s fð Þ ¼ FT

i Φ
m
s ;  i¼ 0; 1; 2; 3: ð52Þ

By rewriting Equation (51) using the following equation:

R Wð Þ1;i : ¼ Φm
s
T 0ð ÞWð Þ1;i;  R Wð ÞN;i : ¼ Φm

s
T 1ð ÞWð ÞN;i;

R Wð Þi;1 : ¼ WΦm
s 0ð Þð Þi;1;  R Wð Þi;N : ¼ WDΦm

s 0ð Þð Þi;N ;
Qð Þ1;i : ¼ F0Tð Þ1;i;   Qð ÞN;i : ¼ F1Tð ÞN;i;
Qð Þi;1 : ¼ F2ð Þi;1;   Qð Þi;N : ¼ F3ð Þi;N ;  i¼ 1;…;N;

ð53Þ

we have a new system:

eR Wð Þ ¼ eQ: ð54Þ

To gain the unknown matrixW, the generalized minimal
residual method (GMRESmethod) [56] andNewton’s method
are used to determine the unknown vector W for the linear
and nonlinear forms, respectively.

3.1. Convergence Verification
Theorem 1. Assume that the functions w and f are suffi-
ciently smooth. Furthermore, if f satisfies the Lipschitz condi-
tion (4), thus the presented method for Equation (1) is
convergent when the parameters m or s tend to infinity.

Proof. Subtracting Equation (1) from the following equation:

∂η

∂tη
wm

s x; tð Þ þ γ1
∂2

∂x2
wm

s x; tð Þ þ γ2Pm
s Nmð Þ x; tð Þ

¼Pm
s qð Þ x; tð Þ;

ð55Þ

the residual is determined by the following equation:

r x; tð Þ ¼ ∂η

∂tη
w − wm

sð Þ x; tð Þ þ γ1
∂2

∂x2
w − wm

sð Þ x; tð Þ
þ γ2 N x; t;w x; tð Þð Þ −Pm

s Nmð Þ x; tð Þð Þ
− q x; tð Þ −Pm

s qð Þ x; tð Þð Þ:
ð56Þ

Taking the norm from both sides and using the triangle
inequality, we get the following equation:

r x; tð Þk k2 ≤
∂η

∂tη
w − wm

sð Þ x; tð Þ
 

2
þ γ1j j ∂2

∂x2
w − wm

sð Þ x; tð Þ
 

2

þ γ2j j N x; t;w x; tð Þð Þ −N x; t;wm
s x; tð Þð Þk k2 þ N x; t;wm

s x; tð Þð Þ −Pm
s Nmð Þ x; tð Þk k2ð Þ

− q x; tð Þ −Pm
s qð Þ x; tð Þk k2:

ð57Þ

Given e¼w−wm
s . By utilizing Lemmas 2, 3 and

Equation (37), it can be verified that all expressions (57) have
bounds, viz.:

(i) For expression k ∂η
∂tη ðw − wm

s Þðx; tÞjj2, we have the
following equation:
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∂η

∂tη
w − wm

sð Þ x; tð Þ
 

2
≤

1
Γ κ − ηð Þ κ − ηþ 1ð Þ

∂κ

∂tκ
e x; tð Þ

 
2
≤

C∂κw
∂tκ

21−ms

4mm! 2þ 21−ms

4mm!

À Á
Γ κ − ηð Þ κ − ηþ 1ð Þ ;

ð58Þ

where C∂κw
∂tκ

is a constant and can be obtained by replacing f
with ∂κw

∂tκ in Lemma 2.
(ii) Employing Lemma 2 and the Lipschitz condition (4)

gives rise to the following equation:

N x; t;w x; tð Þð Þ −N x; t;wm
s x; tð Þð Þk k2 ≤ LN e x; tð Þk k2 ≤CwLN

21−ms

4mm!
2þ 21−ms

4mm!

� �
; ð59Þ

where Cw is constant. (iii) For other expressions, using Lemma 2, it is straight-
forward to establish the following equation:

∂2

∂x2
e x; tð Þ

 
2
≤C∂2w

∂x2

21−ms

4mm!
2þ 21−ms

4mm!

� �
;

N x; t;wm
s x; tð Þð Þ −Pm

s Nmð Þ x; tð Þk k2 ≤CNm

21−ms

4mm!
2þ 21−ms

4mm!

� �
;

q x; tð Þ −Pm
s qð Þ x; tð Þk k2 ≤Cq

21−ms

4mm!
2þ 21−ms

4mm!

� �
:

ð60Þ

To proceed, by substituting Equations (58)–(60) in
Equation (57), we obtain the following equation:

r x; tð Þk k2 ≤Mmax
21−ms

4mm!
2þ 21−ms

4mm!

� �
; ð61Þ

in which Mmax ¼maxfC∂κw
∂tκ
;CwLN;C∂2w

∂x2
;CNm

;Cqg. There-
fore:

r x; tð Þk k2 → 0;  as m; s→1: ð62Þ
□

4. Illustrative Numerical Examples

This section includes some examples to showcase the effec-
tiveness of the proposed method. To illustrate the results and
make a global view of the present method and its efficiency,
sometimes, the absolute errors:

e¼ w xi; tj
À Á

− wm
s xi; tj
À Á�� ��;  i:j¼ 1;…; n; ð63Þ

and L2 error:

L2 − error¼
Z

1

0

Z
1

0
w x; tð Þ − wm

s x; tð Þj j2dxdt
� �

1=2
;

ð64Þ

are reported in tables or plotted in figures.

Example 1. We dedicate the first example to the following
equation:

∂η

∂tη
w x; tð Þ − ∂2

∂x2
w x; tð Þ þ sin w x; tð Þð Þ ¼ q x; tð Þ; ð65Þ

subjected to the following conditions:

w 0; tð Þ ¼ 0;  w 1; tð Þ ¼ t2sin 1ð Þ;  t 2 0; 1½ �; ð66Þ

w x; 0ð Þ ¼ 0;  w0 x; 1ð Þ ¼ 0;  x 2 0; 1½ �: ð67Þ

in which:

q x; tð Þ ¼ sin t2sin xð Þð Þ þ 2t2−η

Γ 2 − ηð Þ þ t2
� �

sin xð Þ: ð68Þ

wðx; tÞ¼ t2sinðxÞ provides the precise solution for this
equation [57].

The approximate solution and corresponding absolute
error for different choices of m, taking s¼ 2 and η¼ 1:5, are
plotted in Figure 1. Figure 2 illustrates the accuracy of the
presented method with m¼ 8, s¼ 2, and η¼ 1:5. The L2-
error is also tabulated in Table 1 with different choices of
m, taking η¼ 1:5 and s¼ 2. From our observation, the results
clearly showcase the effectiveness and precision of the
method that was presented. To compare the present method
with the method presented in Dehghan et al.’s [57] study and
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FIGURE 1: The obtained solution takingm¼ 8, s¼ 2, and absolute error with various m, taking s¼ 2, for Example 1: (a) approximate solution,
(b) m= 8, (c) m= 5, and (d) m= 3.
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FIGURE 2: The plots of absolute error, taking m¼ 8, s¼ 2, and η¼ 1:5, for Example 1.
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show the efficiency and accuracy of the method, Table 2 is
reported.

Example 2.We devote this example to the following equation:

∂η

∂tη
w x; tð Þ − ∂2

∂x2
w x; tð Þ þ w x; tð Þ ¼ 2t2−α e − exð Þsin  xð Þ

2 − αð ÞΓ  2 − αð Þ
þ t2 2 e − exð Þsin  xð Þ þ 2t2excos  xð Þ;

ð69Þ

with the following boundary and initial conditions:

w x; 0ð Þ ¼ 0; w0 x; 0ð Þ ¼ 0; w 0; tð Þ ¼ 0; w 1; tð Þ ¼ 0: ð70Þ

The precise solution for this equation is assigned by wðx;
tÞ¼ t2ðe− exÞsinðxÞ [58].

To provide evidence of the method’s accuracy, Table 3 is
tabulated. According to our analysis, when the parameter m
increases, the error must be reduced. Table 4 is reported to
show the accuracy at different points. To this end, we can
find the absolute error in this table. Compared to other exist-
ing methods, it is worth mentioning that the proposed
scheme provides better accuracy than the high-order differ-
ence method [58]. This superiority is reported in Table 5
with different eta. The approximate solution and absolute
error are illustrated in Figure 3 for different m.

Example 3. The third example is dedicated to the nonlinear
fractional Klein–Gordon equation:

∂η

∂tη
w x; tð Þ − ∂2

∂x2
w x; tð Þ þ w2 x; tð Þ ¼ −6x t3 þ x6t6 þ 6x3t3−α

Γ  4 − αð Þ ;

ð71Þ

TABLE 1: In Example 1, the L2 errors were calculated at various times using different values of m, with η set to 1:5 and s set to 2.

tnm 3 4 5 6 7 8

0:1 7:83e− 07 7:62e− 08 1:73e− 10 3:09e− 11 2:42e− 14 3:16e− 15
0:3 7:81e− 06 1:82e− 06 4:24e− 09 8:08e− 10 5:95e− 13 8:12e− 14
0:5 2:74e− 05 6:80e− 06 1:96e− 08 2:96e− 09 2:63e− 12 3:15e− 13
0:7 5:84e− 05 1:49e− 05 5:02e− 08 6:36e− 09 6:70e− 12 7:16e− 13
0:9 1:04e− 04 2:62e− 05 9:70e− 08 1:10e− 08 1:29e− 11 1:30e− 12
CPU time 5:500 24:406 94:750 273:469 882:781 1; 995:437

TABLE 2: The proposed method with the implicit RBF meshless method are compared in Example 1.

Proposed method ðm¼ 5; s¼ 2Þ Dehghan et al.’s [57] study
ðτ¼ 1=160; h¼ 1=50Þ

η¼ 1:15 η¼ 1:85 η¼ 1:15 η¼ 1:85

Maximum absolute error 1:89× 10−7 1:73× 10−7 8:66× 10−4 5:52× 10−4

TABLE 3: The L2 errors at various times with different choices of m, taking η¼ 1:75 and s¼ 2 for Example 2.

tnm 3 4 5 6 7 8

0:1 4:77e− 06 4:85e− 07 5:09e− 09 3:62e− 10 4:41e− 13 5:32e− 14
0:3 5:83e− 05 1:45e− 05 7:96e− 08 1:25e− 08 1:26e− 11 1:71e− 12
0:5 2:30e− 04 6:71e− 05 3:43e− 07 5:78e− 08 5:97e− 11 8:02e− 12
0:7 5:67e− 04 1:59e− 04 9:14e− 07 1:35e− 07 1:64e− 10 1:97e− 11
0:9 1:04e− 03 2:85e− 04 1:87e− 06 2:38e− 07 3:41e− 10 3:69e− 11
CPU time 1:282 6:547 25:375 104:578 466:640 967:594

TABLE 4: The results obtained by present method compared with the high-order difference method for Example 2.

Proposed method ðm¼ 5; s¼ 2Þ Mohebbi et al.’s [58] study ðτ¼ 1=320;
h¼ 1=20Þ

η¼ 1:25 η¼ 1:75 η¼ 1:25 η¼ 1:75

Maximum absolute error 5:40× 10−7 5:21× 10−7 1:34× 10−6 4:45× 10−5
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TABLE 5: The absolute errors at different points, taking η¼ 1:5, m¼ 7, and s¼ 2 for Example 2.

tnx 0.1 0.3 0.5 0.7 0.9

0:1 1:13e− 12 1:91e− 11 6:59e− 11 1:50e− 11 2:73e− 10
0:3 1:57e− 13 1:05e− 11 5:90e− 11 1:67e− 10 3:36e− 10
0:5 2:22e− 13 1:10e− 11 7:14e− 11 2:02e− 10 4:07e− 10
0:7 7:78e− 13 2:55e− 11 1:11e− 10 2:76e− 10 5:21e− 10
0:9 3:79e− 13 1:53e− 11 6:12e− 11 1:44e− 10 5:64e− 10
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FIGURE 3: The obtained solution takingm¼ 8, s¼ 2, and absolute error with various m, taking s¼ 2, for Example 2: (a) approximate solution,
(b) m= 3, (c) m= 5, and (d) m= 8.

TABLE 6: The L2-errors and maximum absolute error at different times for Example 1.

t 0.1 0:3 0:5 0:7 0:9

L2-error 9:36× 10−41 2:89× 10−39 3:55× 10−39 6:60× 10−39 1:47× 10−38

Maximum absolute error 1:31× 10−40 4:73× 10−39 6:65× 10−39 1:20× 10−38 2:64× 10−38

TABLE 7: The results obtained by present method compared with other methods at time t¼ 1, taking m¼ 4 and η¼ 2 for Example 3.

Proposed
method

Ganji et al.’s [59]
study

Rashidinia and Mohammadi’s [60]
study

Dehghan and Shokri’s [30]
study

L2-error 7:81× 10−39 2:16× 10−14 5:76× 10−8 5:50× 10−5

Maximum absolute
error

2:80× 10−38 1:49× 10−14 1:13× 10−8 1:10× 10−5
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with the following boundary and initial conditions:

w x; 0ð Þ ¼ 0; w0 x; 0ð Þ ¼ 0; w 0; tð Þ ¼ 0; w 1; tð Þ ¼ t3:

ð72Þ

The precise solution for this equation is assigned by wðx;
tÞ¼ x3t3 [59].

By setting η¼ 1:5, m¼ 4, and s¼ 2, the L2-errors and
maximum absolute error are reported in Table 6 at different
times. To compare the presented method with others, Table 7
is reported. Compared to other methods including clique
polynomials [59], tension spline approach [60] and radial
basis functions [30], the presented method gives better accu-
racy. Figure 4 is provided to demonstrate the approximate
solution and corresponding absolute error using the pre-
sented method with m¼ 4, s¼ 2, and η¼ 1:8.

5. Conclusion

Due to the use of fractional derivatives and nonlinearity,
solving the fractional Klein–Gordon equation is a challeng-
ing task. This work uses the spectral element method to solve
the problem by mapping it to an approximation subspace of
L2½0; 1� through an orthonormal projection. The ISFs that
possess specific properties and satisfy the MRA are made use
in this method. To this end, a matrix representation of the
CFD of ISFs is presented. We prove the method is conver-
gent, and several examples have been prepared to verify the
findings of this investigation. The results speak for them-
selves, and it is evident that this method presents the effective
scheme that solve the problem in the accuracy manner.
Additionally, when compared to other methods, it outper-
forms them in terms of accuracy and speed. These findings
are truly remarkable and show the immense potential of this
approach. The method proposed here has the potential to
solve both fractional and nonfractional equations with ease.
Its simplicity in implementation, combined with its high

efficiency and significant accuracy, make it a strong candi-
date for solving the same equations.

To summarize, the following key points can be mentioned:

(i) The method has a simple and practical structure,
making it easy to extend for solving various frac-
tional equations.

(ii) The presentedmethod can solve any kind of equation
due to its flexibility in choosing scale andmultiplicity
parameters.

(iii) The speed of calculations increases because there is
no need for integration due to the properties of the
bases used.

(iv) Increasing the value of the scale parameter can lead
to more appropriate accuracy for problems with
nonsmooth solutions at the beginning and end
points of the solution interval.

In the future, we plan to extend our numerical approaches
for solving generalized fractional models, including the time-
fractional diffusion equation [61], the time-fractional mobile–
immobile advection–dispersion equation [62], the time-
fractional mobile/immobile transport model [63], and mul-
titerm boundary value problem of variable order [64], etc.
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