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The main purpose of this paper is to investigate the bifurcation and traveling wave solution of the Fokas system in monomode
optical fibers by using the method of planar dynamical system. Firstly, the Fokas systems are reduced to two-dimensional
planar dynamic system by using the traveling wave transformation. Secondly, by selecting fixed parameters, the phase portraits
are drawn by using the Maple software. Finally, the Jacobi elliptic function solutions, the hyperbolic function solutions, and
trigonometric function solutions of the Fokas system are obtained.

1. Introduction

In recent years, the complex nonlinear partial differential
equations [1-4] have been widely used in nonlinear optics,
fluid mechanics, quantum mechanics, biology, communication,
control, and other fields [5-9], which mainly include the well-
known Schrodinger equation [10], the Radhakrishnan-
Kundu-Lakshmanan equation [11], the Kundu-Mukherjee-
Naskar equation [12], the Lakshmanan-Porsezian-Daniel equa-
tion [13], the Triki-Biswas equation [14], the Fokas-Lenells
equation [15], the Gerdjikov-Ivanov equation [16], the
Ginzburg-Landau equation [17], and the Biswas-Arshed equa-
tion [18]. The study of dynamic behavior and exact traveling
wave solutions of complex nonlinear partial differential equa-
tions has always been a very important hot topic.

The Fokas system first proposed by Fokas [19] is a very
important class of complex nonlinear partial differential
equations, which is a generalization of nonlinear Schrédin-
ger equation. In this paper, we consider the following Fokas
system [20, 21]:

Py + 1Py + apg =0,
(1)

s, ax(pP), =0,

where p=p(t,x,y) and g =q(t, x, y) are the complex valued
functions, which represent the propagation of nonlinear
pulse in monomode optical fibers. The parameters a,, a,,
as, and a, are the nonzero constants. In recent years, many
experts and scholars have studied the exact solution of Fokas
system, many important methods have been proposed, such
as the Jacobi elliptic function expansion method [22], the
Hirota’s bilinear method [23-26], the Painlevé analysis
method [27], the bilinear Backlund transformation method
[28], the exp (—y(k))-expansion method [29], the improved
F-expansion method [30], the extended rational sine-cosine
method [31], and the Exp-function method [32]. Although
some important methods of constructing Fokas system have
been established, the bifurcation of the dynamic system of
Fokas system and the more general traveling wave solution
have not been studied. In the paper, our main purpose is
to study the bifurcation and traveling wave solutions of the
Fokas system by using the theory of the planar dynamic sys-
tem [33, 34].

The article is organized as follows: in Section 2, the
phase portraits are drawn. Moreover, the traveling wave
solution of (1) is constructed by using the method of pla-
nar dynamic system. In Section 3, a conclusion is
presented.
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FiGure 1: The phase portraits of system (8).

2. Phase Portraits and Traveling Wave
Solution of (1)

First, let us make a traveling wave transformation as follows:

p(txy) = PE)e bR, q(t, x,y) = Q(€), E = x4y - v,
(2)

where kj, k,, and k; are real parameters and v stands for the
wave transformation.
Applying the traveling wave transformation, we obtain

(v +2a,k)iP' =k;P+a,P"" —a,k’P+a,PQ=0, (3)

a,Q" —2a,PP' =0. (4)

Integrating both sides of Equation (4) and making the
integral constant be zero, we obtain

Q) = 1P (E). (5)

as

Then, substituting Equation (5) into Equation (3) and
setting v =2a,k,, we have

P +1P- kP =0, (6)
where I = —(k; + a,k*/a,) and k = —(a,a,/a,a;).

Let dP(&)/d& =y. System (6) can be transformed into a
two-dimensional planar dynamic system:

dpP(§)
&
. 7)
2 = 3 —
JE kP’ —1p,
and the Hamiltonian system as follows:
H(P,y) = - 2—kP4+lP2—h heR (8)
(P.y) = 3V g =M :

Assume that M;(P;, 0) be the equilibrium points of sys-
tem (7). Suppose further that F(P)=kP®-IP, A,,=+
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F1GURE 2: Traveling wave solution of p,(t,x,y) with a; =-1,a, =2,a;=1,a,=1/2,k; =1,k; =3,§; =0,y = 1.

\/ F'(P), hy=H(0,0) =0, and h, = H(x\/1/k, 0) = I*/4k. If k
1> 0, system (8) has three equilibrium points M, (0,0), M,
(V/11k,0), and M, (—/1/k, 0). Similarly, if kI < 0, system (8)
has one equilibrium point M,(0,0). If F'(P,) >0, F'(P,) =
0, and F'(P;) <0, we can obtain that the equilibrium point
M;(P,;,0) is saddle point, degraded saddle point, and center

point, respectively. The phase portraits of system (8) are
drawn as shown in Figure 1.

Case 1 k>0,1>0.

(i) If h e (0, */4k), Equation (8) can be rewritten as

k k
Y=o P =IP 2h= 2 (P =) (P - ), (9)
where p, = \/ (I+ VI* — 4kh)/k and p, = \/ (I - VI* — 4kh) k.

Substituting (9) into dP()/d& = y, we can obtain

dP

" k

Integrating Equation (10) and combining Equation (2),
we can obtain the Jacobi elliptic function solutions of
Equation (1).

2

5 2
aH sn \/E(x +y—2akt— &), “ eitkixrkoyekstk;)
as 2 Hy

(11)

k ik, x
pi(6:%,y) =2usn (l‘z \/;(x +y=2arkt - &), %) eflkirkayskstky)

q,(6%y) =
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F1GURE 3: Traveling wave solution of p,(t,x,y) with a, =1,a,=2,a;=1,a,=1/2,k; =-1,k;=1,{, =0,y =1.

(i) If h=P/4k, we obtain U, =4, =tV I/k. Then, we
obtain the hyperbolic function solution of Equation

(1).

) l ,
py(tsxy) = i\/% tanh (\/;(x +y—2akt- Eo)) elkixtkoythsteky)

2
4 (txy) = ail [tanh (\/z(x +y—2akt- EQ))} ei(kixtkoy+hst+ky)
ask 2
(12)
When a,=-1,a,=2,a;=1,a,=1/2,k; =1,k;=3,&, =
0,y =1, the modulus of solution p,(t,x,y) is plotted as
shown in Figure 2.

Case 2 k<0,1<0.

(i) If h € (=(I*/4k), 0), Equation (8) can be rewritten as

(13)

N =

k
Y= EP“ —IP* +2h=—2 (P’ -q}) (g5 - P*),

where @, = \/ (I + VI* - 4kh)/k and @, = \/ (I - VI* — 4kh)/k.

Substituting (9) into dP(&)/d& = y, we can obtain

Q dP .y /_]_( B

JP V(P - (@ -P) B
g dp [k
JQZ JE-d)@-P) B

Integrating Equation (14) and Equation (15), we can



Advances in Mathematical Physics

obtain the Jacobi elliptic function solutions of Equation (1).

k 72\ |
ps(t,%,y) = +Q,dn <sz /- Sty =2kt - &) 7VQ2Q1> elllaroyrytk,)

2

2
a,0? k V3 -} i(kx
gy(txy) =12 {dn<92\/—5<x+y—2a1k1r—£o>, vea Qm ellhstirrisinhy).
3

(16)

(i) If h=0, we obtain @, =0 and @, = v/2l/k. Then, we
obtain the solution of Equation (1).

py(tx,y) = J_r\/% sech (\/jl(x +y—2akt- EO)> eikithaytkstiks)
2la 2 ik

qy(tx%,y) = H; [sech (\/—_l(x+y— 2a.kt - EO))] eilhixikoythstek,)

(17)

When a,=1,a,=2,a;=1,a,=1/2,k; =-1,k; =1,§, =

0,y =1, the modulus of solution p,(t,x,y) is plotted as

shown in Figure 3.

(iii) If 0 < h < +00, Equation (8) can be rewritten as

y2=§P4—lP2+2h:—

N

(@+P)(e;-P),  (18)

o=y~ VESaK  and o

\/ (1= VI? - 4kh)/k.
Substituting (18) into dP(&)/d& = y, we can obtain

’ dp k
L J@ P @) R RS

Integrating Equation (19), we can obtain the Jacobi ellip-
tic function solutions of Equation (1).

where

ps(t%.y)
k(@2 +¢@?
=*Q;cn (Qz _¥("+J’_ 2a,k,t - &), R -

eilkixtyykstk,)
2. o2 ?
Vo3t

45(t%,y)

2 k(o2 + 02
=48 |:cn (QZ —7(932 Q4)(x +y—2akt-§), %

2
ez(kl xtkyytksttky) .
a V& +ei
(20)

3. Conclusion

In this paper, we study the bifurcation and traveling wave
solution of the Fokas system in monomode optical fibers
by using the method of planar dynamical system. By select-

ing fixed parameters, the phase portraits, three-dimensional
graphs, two-dimensional graphs, and contour plot are drawn
by using the Maple software, which explains the propagation
of optical solitons in nonlinear optical fibers from different
angles. Compared with the published literature [20, 21],
the solutions obtained in this paper are more abundant; we
also get the Jacobi elliptic function solutions, the hyperbolic
function solutions, and trigonometric function solutions of
the Fokas system.
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