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In this article, we investigate a nonlinear Petrovsky equation with variable exponent and damping terms. First, we establish the
local existence using the Faedo–Galerkin approximation method under the conditions of positive initial energy and appropriate
constraints on the variable exponents pð⋅Þ and qð⋅Þ. Finally, we prove a finite-time blow-up result for negative initial energy.

1. Introduction

In this work, we investigate the following initial-boundary
value problem:

utt − Δu − Δutt þ Δ2u − Δut þ utj jp xð Þ−2ut ¼ uj jq xð Þ−2u; Ω × 0;Tð Þ;
u x; tð Þ ¼ ∂

∂v
u x; tð Þ ¼ 0; ∂Ω × 0;Tð Þ;

u x; 0ð Þ ¼ u0 xð Þ; ut x; 0ð Þ ¼ u1 xð Þ; x 2Ω;

8>>><
>>>:

ð1Þ

where Ω ⊂Rn (n2Nþ) is a bounded domain with smooth
boundary ∂Ω:

−Δutt is a dissipative term;

−Δut is a strong damping term;

Δu is a Laplace operator;

Δ2u is a biharmonic operator;

8>>>><
>>>>:

ð2Þ

and u0ðxÞ 2H2ðΩÞ∩H4ðΩÞ; u1ðxÞ 2 L2ðΩÞ are initial condi-
tions. pð⋅Þ and qð⋅Þ are given measurable functions on Ω;
satisfying the following equations:

2<p1 ≤ p xð Þ ≤ p2<1; if n ≤ 4;

2<p1 ≤ p xð Þ ≤ p2<
2n − 4
n − 4

; if n>4;

8<
: ð3Þ

and

2<q1 ≤ q xð Þ ≤ q2<1; if n ≤ 4;

2<q1 ≤ q xð Þ ≤ q2<
2n − 4
n − 4

; if n>4;

8<
: ð4Þ
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where

p1 ¼ ess inf
x2Ω

p xð Þ; p2 ¼ ess esssup
x2Ω

 p xð Þ;
q1 ¼ ess inf

x2Ω
q xð Þ; q2 ¼ ess esssup

x2Ω
 q xð Þ; ð5Þ

and the log-Hölder continuity condition for A>0; 0<δ<1:

p xð Þ − p yð Þj j ≤ −
A

ln x − yj j ;  for all x; y 2Ω;  with  x − yj j<δ:

ð6Þ

(i) This kind of Equation (1) without variable exponent
has its origin in the canonical model introduced by
Petrovsky [1, 2]. Petrovsky [1, 2] type equation orig-
inated from the study of plate and beams, and it can
also be used in many branches of science, such as
ocean acoustics, geophysics, optics, and acoustics [3].

(ii) The problems with variable exponents arise in many
branches in science such as the image processing,
filtration processes in porous media, flow of electro-
rheological fluids, and nonlinear viscoelasticity
[4–6].

In the study of Ouaoua and Boughamsa [7], they looked
into the following equation:

utt þ Δ2u − Δuþ utj jm xð Þ−2ut ¼ uj jr xð Þ−2u: ð7Þ

They showed the local existence and also proved that the
local solution is global. Antontsev et al. [8] studied the fol-
lowing a nonlinear Petrovsky equation:

utt þ Δ2u − Δut þ utj jp xð Þ−2ut ¼ uj jq xð Þ−2u: ð8Þ

Under suitable assumptions on the variable exponents and
initial data, they obtain local weak solutions and established a
blow-up result. Tebba et al. [9] discussed a new class of
nonlinear wave equation:

utt − Δu − Δutt þ a utj jm xð Þ−2ut ¼ b uj jp xð Þ−2u: ð9Þ

Under appropriate assumptions on the variable exponents,
they demonstrated the existence of a unique weak solution
using the Faedo–Galerkin method. They also proved the
finite time blow-up of solutions.

Moreover, numerous researchers have studied the math-
ematical behavior of equations using the Faedo–Galerkin
and the perturbed energy method [10–14].

In this work, we are concerned the existence and blow-up
of the problem (1). The obtained existence and blow-up
results improve and generalize many results in the literature.

This work is composed of three sections in addition to
the introduction. Part 2 presents preliminary information
regarding variable exponents Lebesgue and Sobolev spaces.

Additionally, we outline significant lemmas and assump-
tions. Part 3 focuses on proving the local existence of solu-
tions. In Part 4, we establish the blow-up of solutions with a
positive initial energy.

2. Preliminaries

Throughout this work, we present some important facts
about Lebesgue and Sobolev spaces with variable exponents
(see [5, 15]).

Let r :ΩÀ! ½1;1� be a measurable function, where Ω is
a domain of Rn: We define the variable exponent Lebesgue
space by the following equation:

Lr xð Þ Ωð Þ¼ u :ΩÀ! R;  u measurable in Ω : ρr ⋅ð Þ λuð ÞÈ
<1;  for some λ>0g;

ð10Þ

where ρrð⋅ÞðuÞ¼
R
ΩjuðxÞjrðxÞdx: Equipped with the following

Luxembourg-type norm:

uk kr ⋅ð Þ ¼ inf λ>0 :
Z

Ω

u xð Þ
λ

����
����r xð Þ

dx ≤ 1

� �
: ð11Þ

The space Lrð⋅ÞðΩÞ is a Banach space.
The variable-exponent Sobolev space is defined as

follows:

W1;r Ωð Þ¼ u 2 Lr ⋅ð Þ Ωð Þ such thatru exists and
È
ruj j 2 Lr ⋅ð Þ Ωð ÞÉ:

ð12Þ

This is a Banach space with respect to the norm kujjW1; r
0 ðΩÞ ¼

kujjrð⋅Þ þ krujjrð⋅Þ:
Furthermore, we set W1; rð⋅Þ

0 ðΩÞ to be the closure of
C1
0 ðΩÞ in the space W1; rð⋅ÞðΩÞ. Let us note that the space

W1; rð⋅Þ
0 ðΩÞ has a differenet definition in the case of variable

exponents.
However, under the log-Hölder continuity condition,

both definitions are equivalent [5]. The space W−1; r0ð⋅ÞðΩÞ,
dual ofW1; rð⋅Þ

0 ðΩÞ, is defined in the same way as the classical
Sobolev spaces, where 1

rð⋅Þ þ 1
r0ð⋅Þ ¼ 1.

Lemma 1 (Diening et al. [5]). If:

1 ≤ r1 ¼ ess inf
x2Ω

r xð Þ ≤ r xð Þ ≤ r2 ¼ ess sup
x2Ω

r xð Þ<1;

ð13Þ

then we have:

min uk kr1r ⋅ð Þ; uk kr2r ⋅ð Þ
n o

≤ ρr ⋅ð Þ uð Þ ≤max uk kr1r ⋅ð Þ; uk kr2r ⋅ð Þ
n o

;

ð14Þ
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for any u2 Lrð⋅ÞðΩÞ:

Lemma 2 (Diening et al. [5]). Let m; r; s ≥ 1 be measurable
functions defined onΩ such that:

1
s yð Þ ¼

1
m yð Þ þ

1
r yð Þ ; for a:e: y 2Ω: ð15Þ

If v1 2 Lmð⋅ÞðΩÞ and v2 2 Lrð⋅ÞðΩÞ, then v1v2 2 Lsð⋅ÞðΩÞ, with:

v1v2k ks ⋅ð Þ ≤ 2 v1k km ⋅ð Þ v2k kr ⋅ð Þ: ð16Þ

Lemma 3 (Diening et al. [5]). If r is a measurable function
onΩ satisfying (6), then the embedding H1

0ðΩÞ↪Lrð⋅ÞðΩÞ is
continuous and compact. Then, the embedding H2

0ðΩÞ
↪LrðxÞðΩÞ is continuous and compact.

As per Lemma 3, there exists a positive constant denoted
as c∗ that fulfills the following condition:

uk kp ⋅ð Þ ≤ c∗ ruk k2; for u 2 H1
0 Ωð Þ: ð17Þ

Lemma 4 (Komornik [16]). Let F :Rþ À! Rþ be a nonin-
creasing function and assume that there are two constants
α>0 and C>0 in the following equation:

Z 1

t
Fαþ1 sð Þds ≤ CFα 0ð ÞF sð Þ; 8t 2 Rþ: ð18Þ

Then, we have the following equation:

F tð Þ ≤ F 0ð Þ C þ αt
C þ αC

� �
−1
α

;  8t ≥ C: ð19Þ

To articulate and demonstrate our outcome, we define
the subsequent functionals:

E tð Þ¼ 1
2

utk k2 þ ruk k2 þ rutk k2 þ Δuk k2ð Þ

−

Z
Ω

1
q xð Þ uj jq xð Þdx;

ð20Þ

I tð Þ ¼ ruk k2 þ Δuk k2 −
Z

Ω
uj jq xð Þdx; ð21Þ

J tð Þ ¼ 1
2

ruk k2 þ Δuk k2ð Þ −
Z

Ω

1
q xð Þ uj jq xð Þdx: ð22Þ

Lemma 5. Let u be a solution of problem (1). Then, the energy
functional satisfies the following equation:

E0 tð Þ ¼ −

Z
Ω
rutj j2dx −

Z
Ω
utj jp xð Þdx; t 2 0;T½ �; ð23Þ

and

E tð Þ ≤ E 0ð Þ: ð24Þ

Proof. Multiplying the first equation in Equation (1) by ut
and integrating over Ω yields the following equation:

d
dt

1
2

utk k2 þ ruk k2 þ Δutk k2 þ Δuk k2ð Þ −
Z

Ω

1
q xð Þ uj jq xð Þdx

� �

¼−

Z
Ω
rutj j2dx −

Z
Ω
utj jp xð Þdx;

ð25Þ

then:

E0 tð Þ ¼ −

Z
Ω
rutj j2dx −

Z
Ω
utj jp xð Þdx ≤ 0: ð26Þ

Integrating Equation (26) over ð0; tÞ, we obtain the following
equation:

E tð Þ ≤ E 0ð Þ: ð27Þ
□

Lemma 6. Under the assumptions of Theorem 5 and Eð0Þ>0
hold:

I 0ð Þ>0; ð28Þ

and

θ1 þ θ2<1; ð29Þ
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where

θ1 ¼ α cq11;∗
2q1

q1 − 2
E 0ð Þ

� �q2−2
2

; cq21;∗
2q1

q1 − 2
E 0ð Þ

� �q2−2
2

� �
;

θ2 ¼ 1 − αð Þ cq12;∗
2q1

q1 − 2
E 0ð Þ

� �q2−2
2

; cq22;∗
2q1

q1 − 2
E 0ð Þ

� �q2−2
2

� �
;

ð30Þ

with 0<α<1, c1; ∗ and c2; ∗ are the bests embedding constants
ofH2

0ðΩÞ↪LqðxÞðΩÞ and H2
0ðΩÞ↪LqðxÞðΩÞ, respectively, then

IðtÞ>0, for all t 2 ½0;T�.

Proof. Due to continuity, there exists T∗, such that:

I tð Þ ≥ 0; for all t 2 0;T∗½ �: ð31Þ

Now, for all t 2 ½0;T∗�, we have the following equation:

J tð Þ ¼ 1
2

ruk k2 þ Δuk k2ð Þ −
Z

Ω

1
q xð Þ uj jq xð Þdx:

≥
1
2

ruk k2 þ Δuk k2ð Þ − 1
q1

ruk k2 þ Δuk k2 − I tð Þð Þ

≥
q1 − 2
2q1

ruk k2 þ Δuk k2ð Þ þ 1
q1

I tð Þ:

ð32Þ

Using Equation (31), we obtain the following equation:

ruk k2 þ Δuk k2ð Þ ≤ 2q1
q1 − 2

J tð Þ; for all t 2 0;T∗½ �: ð33Þ

By Lemma 5, we get the following equation:

ruk k2 þ Δuk k2 ≤ 2q1
q1 − 2

E tð Þ ≤ 2q1
q1 − 2

E 0ð Þ: ð34Þ

Moreover, according to Lemma 1, we obtain the following
equation:

Z
Ω
uj jq xð Þdx ≤ max uk kq1q ⋅ð Þ; uk kq2q ⋅ð Þ

n o
¼αmax uk kq1q ⋅ð Þ; uk kq2q ⋅ð Þ

n o
þ 1 − αð Þmax uk kq1q ⋅ð Þ; uk kq2q ⋅ð Þ

n o
:

ð35Þ

By the embedding ofH2
0ðΩÞ↪Lqð⋅ÞðΩÞ andH2

0ðΩÞ↪Lqð⋅ÞðΩÞ,
we obtain the following equation:

Z
Ω
uj jq xð Þdx ≤ αmax cq11;∗ ruk kq12 ; cq21;∗ ruk kq22

È É
þ 1 − αð Þmax cq1−22;∗ Δuk kq12 ; cq2−22;∗ Δuk kq22

È É
≤ αmax cq11;∗ ruk kq12 ; cq21;∗ ruk kq22

È É
× ruk k22

þ 1 − αð Þmax cq12;∗ Δuk kq12 ; cq22;∗ Δuk kq22
È É

× Δuk k22

≤ αmax cq11;∗
2q1

q1 − 2
E 0ð Þ

� �q1−2
2

; cq21;∗
2q1

q1 − 2
E 0ð Þ

� �q2−2
2

( )
× ruk k22

þ 1 − αð Þmax cq12;∗
2q1

q1 − 2
E 0ð Þ

� �q1−2
2

; cq22;∗
2q1

q1 − 2
E 0ð Þ

� �q2−2
2

( )

× Δuk k22

: ð36Þ

Then, we have the following equation:

Z
Ω
uj jq xð Þdx ≤ θ1 ruk k2 þ θ2 Δuk k2 for all t 2 0;T∗½ �:

ð37Þ

Since θ1 þ θ2<1; then, we obtain the following equation:

Z
Ω
uj jq xð Þdx< ruk k2 þ Δuk k2 for all t 2 0;T∗½ �: ð38Þ
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This implies that:

I tð Þ>0; for all t 2 0;T∗½ �: ð39Þ

By repeating the aforementioned process, we can extend T∗
to T . □

3. Local Existence

This section is dedicated to establishing the local existence of
problem (1). We will employ the Faedo–Galerkin method
approximation.

Theorem 7. Suppose that p; q2CðΩÞ and satisfies Equation
(6). Then, for any ðu0; u1Þ 2H2ðΩÞ∩H4ðΩÞ× L2ðΩÞ; prob-
lem (1) has a unique weak local solution:

u 2 L1 0;Tð Þ; H2
0 Ωð Þ;

ut 2 L1 0;Tð Þ; H2
0 Ωð Þ ∩ Lm ⋅ð Þ Ω × 0;Tð Þð Þ: ð40Þ

Proof. Let fvlg1l¼1 be a basis of H
2
0ðΩÞ that forms a complete

orthonormal system in L2ðΩÞ. Denote Vk ¼ spanfv1; v2;…;
vkg as the subspace generated by the first k vectors from the
basis fvlg1l¼1. Due to normalization, we have kvljj ¼ 1. For a
given integer k, we consider the approximated solution:

uk tð Þ ¼ ∑
k

l¼1
ulk tð Þvl; ð41Þ

where ukðtÞ is the solutions to the following Cauchy
problem:

u00k tð Þ; vl
À Á

− Δuk tð Þ; vlð Þ − Δu00k tð Þ; vl
À Áþ Δ2uk tð Þ; vlð Þ − Δu0k tð Þ; vl

À Á
þ u0k tð Þ�� ��p xð Þ−2u0k tð Þ; vl
À Á¼ uk tð Þj jq xð Þ−2uk tð Þ; vl

À Á
; l ¼ 1; 2;…; k;

ð42Þ

uk 0ð Þ ¼ u0k ¼ ∑
k

l¼1
uk 0ð Þ; vlð Þvl À! u0 inH2

0 Ωð Þ ∩H4 Ωð Þ;

ð43Þ

u0k 0ð Þ ¼ u1k ¼ ∑
k

l¼1
u0k 0ð Þ; vl
À Á

vl À! u1 inH2
0 Ωð Þ: ð44Þ

It is worth noting that the systems (42)–(44) can be solved
using Picard’s iteration method for ordinary differential
equations. As a result, a solution exists within the interval
½0;T∗Þ for some T∗ >0, and we can extend this solution to
the whole interval ½0;TÞ for any given T>0 by utilizing the a
priori estimates provided below.

The first estimate: Multiplying Equation (42) by u0lkðtÞ
and summing over l from 1 to k:

d
dt

1
2

u0k


 

2 þ rukk k2 þ Δu0k



 

2 þ Δukk k2À Á
−

Z
Ω

1
q xð Þ uj jq xð Þdx

� �

¼ −

Z
Ω
ru0k
�� ��2dx − Z

Ω
u0k
�� ��p xð Þdx:

ð45Þ

Then, we obtain the following equation:

E0 uk tð Þð Þ ¼ −

Z
Ω
ru0k
�� ��2dx − Z

Ω
u0k
�� ��p xð Þdx ≤ 0: ð46Þ

By integrating Equation (45) over the interval ð0; tÞ; we
derive the estimate the following equation:

1
2

u0k


 

2 þ 1

2
rukk k2 þ 1

2
Δu0k



 

2 þ 1
2

Δukk k2

−

Z
t

0

Z
Ω

1
q xð Þ ukj jq xð Þdx ≤ E 0ð Þ:

ð47Þ

Then, from Equation (38), the inequality (47) becomes:

1
2

sup
t2 0;Tð Þ

u0k


 

2 þ q1 − 2

2q1
sup

t2 0;Tð Þ
rukk k2 þ q1 − 2

2q1
sup

t2 0;Tð Þ
Δukk k2

þ 1
2

sup
t2 0;Tð Þ

Δu0k


 

2 þ Z

t

0

Z
Ω
ukt x; sð Þ�� ��p xð Þdxds

≤ E 0ð Þ:
ð48Þ

From Equation (48), we conclude that:

ukf g is a bounded sequence in L1 0;Tð Þ;H2
0 Ωð Þð Þ;

u0k
È É

is a bounded sequence in L1 0;Tð Þ;H2
0 Ωð Þð Þ ∩ Lp ⋅ð Þ Ω × 0;Tð Þð Þ:

(
ð49Þ
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Since fu0kg is uniformly bounded in LpðxÞðΩ× ½0;T�Þ; then

fju0kjpðxÞ−2u0kg is bounded in L
pðxÞ

pðxÞ−1ðΩ× ½0;T�Þ; hence, up to a

subsequence, ju0kjpðxÞ−2u0k⇀Φ weakly in L
pðxÞ

pðxÞ−1ðΩ× ½0;T�Þ. As
in Messaoudi et al.’s [17] study, we have to show that
Φ¼ ju0jpðxÞ−2u0:

Furthermore, from Lemma 3 and Equation (49), we
obtain the following equation:

ukj jq xð Þ−2uk
È É

is uniformly bounded in L1 0;T½ �ð Þ; L2 Ωð Þ:
ð50Þ

From Equations (49) and (50), we deduce the existence of
a subsequence of uk (still denoted by the same symbol) and a
function u such that:

uk À! uweakly star in L1 0;T½ �;H2
0 Ωð Þð Þ;

u0k À! u0 weakly star in L1 0;T½ �ð Þ;H2
0 Ωð Þ andweakly in Lp ⋅ð Þ Ω × 0;Tð Þð Þ;

ukj jq xð Þ−2uk⇀ψ weakly L1 0;T½ �ð Þ; L2 Ωð Þ:

8><
>: ð51Þ

By the Aubin–Lions compactness Lemma [18], we conclude
from Equation (51) that:

uk À! u strongly inC 0;T½ �;H2
0 Ωð Þð Þ; ð52Þ

which implies:

uk À! u everywhere inΩ × 0;T½ �: ð53Þ

It follow from Equations (51) and (53) that:

ukj jq xð Þ−2uk⇀ uj jq xð Þ−2uweakly in L1 0;T½ �ð Þ; L2 Ωð Þ:
ð54Þ

The second estimate: Now, we would like to get more
estimates. In doing so, differentiating Equation (42) with
respect to t, we get the following equation:

u000k tð Þ; vl
À Á

− Δu0k tð Þ; vl
À Á

− Δu000k tð Þ; vl
À Áþ Δ2u0k tð Þ; vl

À Á
− Δu00k tð Þ; vl
À Á

þ p xð Þ − 1ð Þ u00k tð Þ�� ��p xð Þ−2u00k tð Þ; vl
À Á

¼ q xð Þ − 1ð Þ uk tð Þj jq xð Þ−2u0k tð Þ; vl
À Á

; l ¼ 1; 2;…; k:

ð55Þ

Next, multiplying Equation (55) by u00lkðtÞ and summing over
l from 1 to k, we get the following equation:

1
2
d
dt

u00k


 

2 þ ru0k



 

2 þ ru00k


 

2 þ Δu0k



 

2À Á
þ
Z

Ω
p xð Þ − 1ð Þ u0k

�� ��p xð Þ−1 u00k
�� ��2dx þ Z

Ω
ru00k
�� ��2dx

¼ −

Z
Ω
q xð Þ − 1ð Þ ukj jq xð Þ−2u0ku

00
kdx:

ð56Þ

We have the following equation from Hölder’s inequality:

Z
Ω
q xð Þ − 1ð Þ ukj jq xð Þ−2 u0k

�� �� u00k�� ��dx����
����

≤ q2 − 1ð Þ ukk kq xð Þ−2
2 q xð Þ−1ð Þ u0k



 


2 q xð Þ−1ð Þ u00k



 


2:

ð57Þ

We have, then uk 2 L1ð½0;T�;H2
0ðΩÞÞ; then the following

equation:

Z
Ω
ukj j2q xð Þ−2dx ≤

Z
Ω
ukj j2q1−2dx þ

Z
Ω
ukj j2q2−2dx< þ1;

ð58Þ

since, 2ðq1 − 1Þ≤ 2ðqðxÞ− 1Þ≤ 2ðq2 − 1Þ≤ 2 n
n−2 : The

inequality (57), becomes the equation as follows:

Z
Ω
q xð Þ − 1ð Þ ukj jq xð Þ−2 u0k

�� �� u00k�� ��dx����
���� ≤ c1 u0k



 


2 q xð Þ−1ð Þ u00k



 


2:

ð59Þ

We have the following equation from Young’s inequality and
Poincáre’s inequality:

Z
Ω
q xð Þ − 1ð Þ ukj jq xð Þ−2 u0k

�� �� u00k�� ��dx����
���� ≤ cδ ru0k



 

2 þ δ u00k


 

2:

ð60Þ

Substituting Equation (60) into Equation (56) and integrat-
ing over ð0; tÞ for all t 2 ½0;T�, we obtain the following
equation:
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Z
Ω

u00k
�� ��2 þ ru0k

�� ��2 þ ru00k
�� ��2 þ Δu0k

�� ��2 þ ru00k
�� ��2À Á

dx

≤ u00k 0ð Þ

 

2 þ ru0k 0ð Þ

 

2 þ ru00k 0ð Þ

 

2 þ Δu0k 0ð Þ

 

2À Á
þ c2

Z
t

0
ru0k



 

2 þ u00k


 

2À Á

ds:

ð61Þ

It follows from Equation (44) and the fact kru0kð0Þjj2 ≤
c3kΔu0kð0Þjj2 that:

ru0k 0ð Þ

 

2 þ Δu0k 0ð Þ

 

2 ≤ c4; ð62Þ

where c4 is a positive constant independent of k.
By multiplying both sides of Equation (42) by u00lkðtÞ,

summing over l from 1 to k and setting t¼ 0, we obtain the
following equation:

u00k 0ð Þ

 

2 − Δuk 0ð Þ; u00k 0ð ÞÀ Á
− Δu00k 0ð Þ; u00k 0ð ÞÀ Áþ Δ2uk 0ð Þ; u00k 0ð ÞÀ Á

− Δu0k 0ð Þ; u00k 0ð ÞÀ Á
þ u0k 0ð Þ�� ��p xð Þ−2u0k 0ð Þ; u00k 0ð ÞÀ Á¼ uk 0ð Þj jq xð Þ−2uk 0ð Þ; u00k 0ð ÞÀ Á

; l ¼ 1; 2;…; k:
ð63Þ

Utilizing Young’s inequality along with Equations (43) and
(44), we have:

u00k 0ð Þ

 

2 ≤ c5; ð64Þ

where c5 is a positive constant independent of k.
By Equations (62) and (64), Equation (61) becomes:

Z
Ω
u00k
�� ��2dx þ Z

Ω
ru0k
�� ��2dx þ Z

Ω
ru00k
�� ��2dx þ Z

Ω
Δu0k
�� ��2dx þ Z

Ω
ru00k
�� ��2dx

≤ c6 þ c7

Z
t

0
u00k
�� ��2 þ ru0k

�� ��2 þ ru00k
�� ��2 þ Δu0k

�� ��2 þ ru00k
�� ��2À Á

ds:
ð65Þ

We deduce from Equation (65) and Gronwall’s lemma that:

u00k


 

2 þ ru0k



 

2 þ ru00k


 

2 þ Δu0k



 

2 þ ru00k


 

2 ≤ c8;

ð66Þ

for all t 2 ½0;T�, where c8 is a positive constant independent
of k.

We can infer from Equation (66) that:

u0k
È É

is uniformly bounded in L1 0;T½ �;H2
0 Ωð Þð Þ;

u00k
È É

is uniformly bounded in L1 0;T½ �;H1
0 Ωð Þð Þ:

(

ð67Þ

Similarly, we have the following equation:

u0k is uniformly bounded in L1 0;T½ �;H2
0 Ωð Þð Þ;

u00k is uniformly bounded in L1 0;T½ �;H1
0 Ωð Þð Þ:

(
ð68Þ

Setting up kÀ!1 and passing to the limit in Equation (42),
we obtain the following equation:

u00 tð Þ; vlð Þ − Δu tð Þ; vlð Þ − Δu00 tð Þ; vlð Þ þ Δ2u tð Þ; vlð Þ − Δu0 tð Þ; vlð Þ
þ u0 tð Þj jp xð Þ−2u0 tð Þ; vl
À Á¼ u tð Þj jq xð Þ−2u tð Þ; vl

À Á
; l ¼ 1; 2;…; k:

ð69Þ

Given that fvlg1l¼1 is a basis of H
2
0ðΩÞ, we can deduce that u

satisfies Equation (1). From Equation (51), Equation (68)
and Lemma 3.1.7 in Zheng’s [19] study with B¼ H2

0ðΩÞ and
L2ðΩÞ, respectively, we infer that:
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u0k is uniformly bounded inH2
0 Ωð Þ;

u00k is uniformly bounded inH1
0 Ωð Þ:

(
ð70Þ

We get from Equations (43), (44), and (70) that uð0Þ ¼ u0,
uð0Þ¼ u1.

Consequently, the proof of existence is now concluded.
Uniqueness of the solution: Now it remains to prove

uniqueness. Let y and z be two solutions in the class
described in the statement of this theorem, and w¼ y− z.

Then, w satisfies the following equation:

wtt − Δw − Δwtt þ Δ2w − Δwt þ ytj jp xð Þ−2yt − ztj jp xð Þ−2zt
¼ yj jq xð Þ−2y − zj jq xð Þ−2z;

ð71Þ

and

w x; 0ð Þ ¼ w0 xð Þ; wt x; 0ð Þ ¼ w1 xð Þ: ð72Þ

Multiplying Equation (71) by wt , then integrating with
respect to x, we get the following equation:

1
2

Z
Ω

wtj j2 þ rwj j2 þ rwtj j2 þ Δwj j2ð Þdx

þ
Z

t

0

Z
Ω
Δwj j2dx þ

Z
t

0

Z
Ω

ytj jp xð Þ−2yt − ztj jp xð Þ−2zt
À Á

wtdxds

¼
Z

t

0

Z
Ω

yj jq xð Þ−2y − zj jq xð Þ−2z
À Á

wtdxds:

ð73Þ

By using the inequality:

aj jp xð Þ−2a − bj jp xð Þ−2b
À Á

a − bð Þ ≥ 0; ð74Þ

for all a; b2R and a.e. x2 Ω.
This implies:

wtk k2 þ rwk k2 þ rwtk k2 þ Δwk k2

≤ C
Z

t

0

Z
Ω

yj jq xð Þ−2y − zj jq xð Þ−2z
À Á

wtdxds:
ð75Þ

By repeating the estimate as in Messaoudi’s [20] study, we
arrive the following equation:

Z
Ω

wtj j2 þ rwj j2 þ rwtj j2 þ Δwj j2ð Þdx

≤ C
Z

t

0

Z
Ω

wtj j2 þ rwj j2ð Þdxds:
ð76Þ

Then: Z
Ω

wtj j2 þ rwj j2 þ rwtj j2 þ Δwj j2ð Þdx

≤ C
Z

t

0

Z
Ω

wtj j2 þ Δwj j2 þ rwj j2 þ Δwj j2ð Þdxds:
ð77Þ

Gronwall’s inequality yields the following equation:

wtk k2 þ rwk k2 þ rwtk k2 þ Δwk k2 ¼ 0: ð78Þ

Thus, w¼ 0. The shows the uniqueness. □

4. Blow-Up

In this section, we examine the blow-up of the solution to
problem (1). To begin, we introduce the following [20].

Lemma 8. If q :ΩÀ! ½1;1Þ is a measurable function and

2 ≤ q1 ≤ q xð Þ ≤ q2<1 for n ≤ 4;

2 ≤ q1 ≤ q xð Þ ≤ q2<
2n

n − 4
for n>4;

8<
: ð79Þ

holds. Then, we have the following inequalities:

ρ
s
q1
q xð Þ uð Þ ≤ C Δuk k2 þ ρq ⋅ð Þ uð ÞÀ Á

: ð80Þ

Lemma 9. Suppose the conditions of Lemma 8 hold and let u
be the solution of Equation (1). Then:

(i)

uk ksq1 ≤ C Δuk k2 þ uk kq1q1
À Á

; ð81Þ

(ii)

ρ
s
q1
q ⋅ð Þ uð Þ ≤ C H tð Þ þ utk k2 þ rutk k2 þ ρq ⋅ð Þ uð ÞÀ Á

; ð82Þ

(iii)

uk ksq1 ≤ C H tð Þ þ utk k2 þ rutk k2 þ uk kq1q1
À Á

; ð83Þ
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(iv)

uk kq1q1 ≤ Cρq ⋅ð Þ uð Þ; ð84Þ

for any u2H2
0ðΩÞ and 2≤ s≤ q1: Where ρqð⋅ÞðuÞ¼R

Ωjujqð⋅Þdx and C>1 a positive constant and HðtÞ¼ −

EðtÞ:
Then, functions HðtÞ and EðtÞ will be defined later.

Now, we state and prove our blow-up result.

Theorem 10. Under the conditions of Lemma 9. Also, let
initial energy satisfy EðtÞ<0 and the exponents pð⋅Þ and qð⋅Þ
satisfy the following equation:

2 ≤ p1 ≤ p xð Þ ≤ p2 ≤ q1 ≤ q xð Þ ≤ q2<2
n − 2ð Þ
n − 4

; n>4:

ð85Þ

Then, the solution of Equation (1) blows up in finite time T∗,
in the following sense:

Ψ tð Þ À!1 as t À! T∗ ≤
1 − α

ξαΨ−
α

1−α 0ð Þ ; ð86Þ

here ξ2 ð0; 1Þ, ΨðtÞ and σ will given later in Equations (91)
and (94), respectively.

Proof.When we multiply both sides by ut and integrate over
the domain Ω, the result is as follows:

d
dt

1
2

utk k2 þ ruk k2 þ rutk k2 þ Δuk k2ð Þ −
Z

Ω

1
q xð Þ uj jq xð Þdx

� �

¼ −

Z
Ω
rutj j2dx −

Z
Ω
utj jp xð Þdx;

ð87Þ

E0 tð Þ ¼ −

Z
Ω
rutj j2dx −

Z
Ω
utj jp xð Þdx; ð88Þ

where

E tð Þ¼ 1
2

utk k2 þ ruk k2 þ rutk k2 þ Δuk k2ð Þ

−

Z
Ω

1
q xð Þ uj jq xð Þdx:

ð89Þ

By setting HðtÞ¼ − EðtÞ, we establish that EðtÞ<0: Refer-
ring to Equation (88), it follows that HðtÞ≥Hð0Þ>0 :

H tð Þ ¼−
1
2

utk k2 þ ruk k2 þ rutk k2 þ Δuk k2ð Þ þ
Z

Ω

1
q xð Þ uj jq xð Þdx:

≤
Z

Ω

1
q xð Þ uj jq xð Þdx

≤
1
q1

ρq ⋅ð Þ uð Þ:

ð90Þ

We then define the following equation:

Ψ tð Þ ¼H1−α tð Þ þ ε

Z
Ω
uutdx þ

ε

2
ruk k2; ð91Þ

for small ε that will be selected later, and

0<α ≤min
q1 − 2
q1

;
q1 − p1

q1 p1 − 1ð Þ
� �

: ð92Þ

By deriving Equation (91) and applying Equation (1), we
acquire the following equation:

Ψ 0 tð Þ ¼ 1 − αð ÞH−α tð ÞH0 tð Þ þ ε

Z
Ω
u2t dx þ ε

Z
Ω
uuttdx;

ð93Þ

Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
¼ 1 − αð ÞH−α tð ÞH0 tð Þ

þ ε

Z
Ω
u2t − ruj j2 þ rutj j2 − Δuj j2ð Þdx

þ ε

Z
Ω
uj jq xð Þdx − ε

Z
Ω
u utj jp xð Þ−2utdx:

ð94Þ

Advances in Mathematical Physics 9



We subsequently utilize Young’s inequality for all, for all
δ>0; 1

s þ 1
t ¼ 1:

XY ≤
δs

s
Xs þ δ−t

t
Yt ; X;Y ≥ 0; ð95Þ

to estimate the last term in Equation (94) as follows:Z
Ω
u utj jp xð Þdx ≤

Z
Ω

1
p xð Þ δ

p xð Þ uj jp xð Þdx

þ
Z

Ω

p xð Þ − 1
p xð Þ δ

p xð Þ
p xð Þ−1 utj jp xð Þutdx;

ð96Þ

which yields, by substitution in Equation (94):

Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
≥ 1 − αð ÞH−α tð ÞH0 tð Þ

þ ε

Z
Ω
u2t − ruj j2 þ rutj j2 − Δuj j2ð Þdx

þ ε

Z
Ω
uj jq xð Þdx −

Z
Ω

1
p xð Þ δ

p xð Þ uj jp xð Þdx

−

Z
Ω

p xð Þ − 1
p xð Þ δ

p xð Þ
p xð Þ−1 utj jp xð Þutdx:

ð97Þ

Therefore, by taking δ so that δ−pðxÞ=pðxÞ−1 ¼ kH−αðtÞ; for
large k to be specified later, and substituting in Equation (97),
we arrive at the following equation:

Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
≥ 1 − αð Þ − εk

p2 − 1
p2

� �
H−α tð ÞH0 tð Þ

þ ε

Z
Ω
u2t − ruj j2 − rutj j2 − Δuj j2ð Þdx

þ ε

Z
Ω
uj jq xð Þ−1udx −

k1−p1

p1
Hp2−1 tð Þ

Z
Ω
uj jp xð Þdx:

ð98Þ

Adding and subtracting εq1HðtÞ from the right-hand side of
Equation (98), we obtain the following equation:

Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
≥ 1 − αð Þ − εk

p2 − 1
p2

� �
H−α tð ÞH0 tð Þ

þ ε 1þ q1
2

� �Z
Ω
u2t dx þ ε

q1
2
− 1

� �Z
Ω
ruj j2dx

þ ε
q1
2
− 1

� �Z
Ω
rutj j2dx þ ε

q1
2
− 1

� �Z
Ω
Δuj j2dx

þ εq1H tð Þ − ε
k1−p1

p1
Hα p2−1ð Þ tð Þ

Z
Ω
uj jp xð Þdx:

ð99Þ
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By exploiting Equation (99) and the inequality Lemma 9, we
obtain the following equation:

Hα p2−1ð Þ tð Þ
Z

Ω
uj jp xð Þdx ≤Hα p2−1ð Þ tð ÞC ϱ uð Þp1q1 þ ϱ uð Þp2q1

� �
≤

1
q1

� �
α p2−1ð Þ

C uk kp1þαq1 p2−1ð Þ
q1 þ uk kp2þαq1 p2−1ð Þ

q1

� � ; ð100Þ

hence, Equation (100) yields the following equation:

Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
≥ 1 − αð Þ − εk

p2 − 1
p2

� �
H−α tð ÞH0 tð Þ

þ ε 1þ q1
2

� �Z
Ω
u2t dx þ ε

q1
2
− 1

� �Z
Ω
ruj j2dx

þ ε
q1
2
− 1

� �Z
Ω
rutj j2dx þ ε

q1
2
− 1

� �Z
Ω
Δuj j2dx

þ εq1H tð Þ − ε
k1−p1

p1

1
q1

� �
α p2−1ð Þ

× C uk kp1þαq1 p2−1ð Þ
q1 þ uk kp2þαq1 p2−1ð Þ

q1

� �
:

ð101Þ

We then use Lemma 8 and Equation (92), for s¼ p1 þ
αq1ðp2 − 1Þ≤ q1 and s¼ p2 þ αq1ðp2 − 1Þ≤ q1, to deduce
from Equation (101):

Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
≥ 1 − αð Þ − εk

p2 − 1
p2

� �
H−α tð ÞH0 tð Þ

þ ε 1þ q1
2

� �Z
Ω
u2t dx þ ε

q1
2
− 1

� �Z
Ω
ruj j2dx

þ ε
q1
2
− 1

� �Z
Ω
rutj j2dx þ ε

q1
2
− 1

� �Z
Ω
Δuj j2dx

þ ε q1H tð Þ − k1−p1C1 H tð Þ þ utk k2 þ rutk k2 þ uk kq1q1
À ÁÂ Ã

;

ð102Þ

where C1 ¼ 2C
p1
ð 1q1Þαðp2−1Þ: By noting that:

H tð Þ ¼ 1
q1

utk kq1q1 −
1
2

utk k2 þ ruk k2 þ rutk k2 þ Δuk k2ð Þ;

ð103Þ

and writing q1 ¼ðq1 þ 2Þ=2þðq1 − 2Þ=2 yields the following
equation:

N tð Þ ≥ 1 − αð Þ − εk
p2 − 1
p2

� �
H−α tð ÞH0 tð Þ

þ ε
6þ q1

4

� �
− k1−p1C1

� �
utk k2 þ ε

q1 − 2
4

� �
ruk k2

þ ε
q1 − 2
4

− k1−p1C1

� �
rutk k2 þ ε

q1 − 2
4

� �
Δuk k2

ε
q1 þ 2

2
− k1−p1C1

� �
H tð Þ þ ε

q1 − 2
2q1

− k1−p1C1

� �
uk kq1q1 ;

ð104Þ
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where

N tð Þ ¼ Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
: ð105Þ

At this point, we choose k large enough so that the coeffi-
cients ofHðtÞ;  kutjj2; krutjj2, and kujjq1q1 in Equation (104)
are strictly positive; hence, we get the following equation:

Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
≥ 1 − αð Þ − εk

p2 − 1
p2

� �
H−α tð ÞH0 tð Þ

þ ε
H tð Þ þ utk k2 þ ruk k2 þ rutk k2

þ Δuk k2 þ uk kq1q1

" # ; ð106Þ

where γ>0 is the minimum of these coefficients. Once k is
fixed (hence γ), we pick ε small enough so that ð1− αÞ−
εkðp2 − 1Þ=p2 ≥ 0 and

Ψ 0ð Þ ¼H1−α 0ð Þ þ ε

Z
Ω
u0u1dx þ

ε

2
ru0k k2>0: ð107Þ

Therefore, Equation (106) takes the following form:

Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
≥ εγ H tð Þ þ utk k2 þ ruk k2 þ rutk k2 þ Δuk k2 þ uk kq1q1

Â Ã
:

ð108Þ

Consequently, we have the following equation:

Ψ tð Þ ≥ Ψ 0ð Þ>0; for all t ≥ 0: ð109Þ

Next, we would like to show the following equation:

Ψ 0 tð Þ þ d
dt

ε

Z
Ω
rurutdx

� �
≥ ΓΨ 1= 1−αð Þ tð Þ; for all t ≥ 0;

ð110Þ

where Γ is a positive constant depending on εγ and C (the
constant of Equation (81)). Once Equation (110) is estab-
lished, we obtain in a standard way the finite time blow-up of
Ψ ðtÞ, hence of u (see Batle et al. [21] for instance).

To prove Equation (110), we first estimate the following
equation:

Z
Ω
uut x; tð Þdx

����
���� ≤ uk k2 þ utk k2
≤C uk kq1 þ utk k2

� �
;

ð111Þ

which implies:

Z
Ω
uut x; tð Þdx

����
����1= 1−αð Þ

≤ C uk k1= 1−αð Þ
q1 utk k1= 1−αð Þ

2 : ð112Þ

Again Young’s inequality gives the following equation:

Z
Ω
uut x; tð Þdx

����
����1= 1−αð Þ

≤ C uk kμ= 1−αð Þ
q1 þ utk kθ= 1−αð Þ

2

h i
;

ð113Þ

for 1
θ þ 1

μ ¼ 1: We take θ¼ 2
1−α ; to get μ

1−α ¼ 2
1−2α ≤ q1 by

Equation (92). Therefore, Equation (113) becomes:

Z
Ω
uut x; tð Þdx

����
����1= 1−αð Þ

≤ C uk ksq1 þ utk k22
h i

; ð114Þ

where s¼ 2
1−2α ≤ q1. By using Equation (83), we obtain for

all t ≥ 0:

Z
Ω
uut x; tð Þdx

����
����1= 1−αð Þ

≤ C H tð Þ þ utk k2 þ rutk k2 þ uk kq1q1
Â Ã

:

ð115Þ

Finally, by noting the following equation:

Ψ 1= 1−αð Þ tð Þ ≤C H1= 1−αð Þ tð Þ þ ε

Z
Ω
uut x; tð Þdx

� �
1= 1−αð Þ

≤ 21= 1−αð ÞC H1= 1−αð Þ tð Þ þ
Z

Ω
uut x; tð Þdx

����
����1= 1−αð Þ� �

;

ð116Þ

and combining it with Equations (108) and (115), the
inequality (110) is established. A simple integration of
Equation (110) over ð0; tÞ, then yields the following
equation:
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Ψ 1= 1−αð Þ tð Þ ≥ 1

Ψ−α= 1−αð Þ tð Þ − Γtα= 1 − αð Þ : ð117Þ

Therefore, Equation (117) shows that Ψ ðtÞ blows up in finite
time:

Ψ ∗ ≥
1 − α

Γα Ψ 0ð Þ½ �α= 1−αð Þ ; ð118Þ

where Γ and α are positive constant with α<1 and Ψ is given
by Equation (91). This completes the proof. □
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