Research Article

Well-Posedness and Blow-Up of Solutions for a Variable Exponent Nonlinear Petrovsky Equation

Nebi Yılmaz (i), ${ }^{1}$ Erhan Pişkin (D), ${ }^{2}$ and Ercan Çelik (iD) ${ }^{\mathbf{3}}$
${ }^{1}$ Department of Mathematics, Institute of Natural and Applied Sciences, Dicle University, Diyarbakır, Türkiye
${ }^{2}$ Department of Mathematics, Dicle University, Diyarbakır, Türkiye
${ }^{3}$ Department of Applied Mathematics and Informatics, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan

Correspondence should be addressed to Ercan Çelik; ercan.celik@manas.edu.kg
Received 9 September 2023; Revised 22 October 2023; Accepted 8 November 2023; Published 24 November 2023
Academic Editor: Jorge E. Macias-Diaz
Copyright © 2023 Nebi Yılmaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, we investigate a nonlinear Petrovsky equation with variable exponent and damping terms. First, we establish the local existence using the Faedo-Galerkin approximation method under the conditions of positive initial energy and appropriate constraints on the variable exponents $p(\cdot)$ and $q(\cdot)$. Finally, we prove a finite-time blow-up result for negative initial energy.

1. Introduction

In this work, we investigate the following initial-boundary value problem:

$$
\begin{cases}u_{t t}-\Delta u-\Delta u_{t t}+\Delta^{2} u-\Delta u_{t}+\left|u_{t}\right|^{p(x)-2} u_{t}=|u|^{q(x)-2} u, & \Omega \times(0, T), \tag{1}\\ u(x, t)=\frac{\partial}{\partial v} u(x, t)=0, & \partial \Omega \times(0, T), \\ u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), & x \in \Omega,\end{cases}
$$

where $\Omega \subset R^{n}\left(n \in N^{+}\right)$is a bounded domain with smooth boundary $\partial \Omega$:

$$
\left\{\begin{array}{l}
-\Delta u_{t t} \text { is a dissipative term, } \tag{2}\\
-\Delta u_{t} \text { is a strong damping term, } \\
\Delta u \text { is a Laplace operator, } \\
\Delta^{2} u \text { is a biharmonic operator, }
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
2<q_{1} \leq q(x) \leq q_{2}<\infty, \text { if } n \leq 4, \tag{4}\\
2<q_{1} \leq q(x) \leq q_{2}<\frac{2 n-4}{n-4}, \text { if } n>4,
\end{array}\right.
$$

where

$$
\begin{align*}
& p_{1}=e s s \inf _{x \in \Omega} p(x), p_{2}=\text { ess } \operatorname{esssup}_{x \in \Omega} p(x) \\
& q_{1}=\text { ess } \inf _{x \in \Omega} q(x), q_{2}=\text { ess } \operatorname{esssup}_{x \in \Omega} q(x) \tag{5}
\end{align*}
$$

and the log-Hölder continuity condition for $A>0,0<\delta<1$: $|p(x)-p(y)| \leq-\frac{A}{\ln |x-y|}$, for all $x, y \in \Omega$, with $|x-y|<\delta$.
(i) This kind of Equation (1) without variable exponent has its origin in the canonical model introduced by Petrovsky [1, 2]. Petrovsky [1, 2] type equation originated from the study of plate and beams, and it can also be used in many branches of science, such as ocean acoustics, geophysics, optics, and acoustics [3].
(ii) The problems with variable exponents arise in many branches in science such as the image processing, filtration processes in porous media, flow of electrorheological fluids, and nonlinear viscoelasticity [4-6].

In the study of Ouaoua and Boughamsa [7], they looked into the following equation:

$$
\begin{equation*}
u_{t t}+\Delta^{2} u-\Delta u+\left|u_{t}\right|^{m(x)-2} u_{t}=|u|^{r(x)-2} u . \tag{7}
\end{equation*}
$$

They showed the local existence and also proved that the local solution is global. Antontsev et al. [8] studied the following a nonlinear Petrovsky equation:

$$
\begin{equation*}
u_{t t}+\Delta^{2} u-\Delta u_{t}+\left|u_{t}\right|^{p(x)-2} u_{t}=|u|^{q(x)-2} u . \tag{8}
\end{equation*}
$$

Under suitable assumptions on the variable exponents and initial data, they obtain local weak solutions and established a blow-up result. Tebba et al. [9] discussed a new class of nonlinear wave equation:

$$
\begin{equation*}
u_{t t}-\Delta u-\Delta u_{t t}+a\left|u_{t}\right|^{m(x)-2} u_{t}=b|u|^{p(x)-2} u . \tag{9}
\end{equation*}
$$

Under appropriate assumptions on the variable exponents, they demonstrated the existence of a unique weak solution using the Faedo-Galerkin method. They also proved the finite time blow-up of solutions.

Moreover, numerous researchers have studied the mathematical behavior of equations using the Faedo-Galerkin and the perturbed energy method [10-14].

In this work, we are concerned the existence and blow-up of the problem (1). The obtained existence and blow-up results improve and generalize many results in the literature.

This work is composed of three sections in addition to the introduction. Part 2 presents preliminary information regarding variable exponents Lebesgue and Sobolev spaces.

Additionally, we outline significant lemmas and assumptions. Part 3 focuses on proving the local existence of solutions. In Part 4, we establish the blow-up of solutions with a positive initial energy.

2. Preliminaries

Throughout this work, we present some important facts about Lebesgue and Sobolev spaces with variable exponents (see [5, 15]).

Let $r: \Omega \longrightarrow[1, \infty]$ be a measurable function, where Ω is a domain of R^{n}. We define the variable exponent Lebesgue space by the following equation:

$$
\begin{align*}
L^{r(x)}(\Omega)= & \left\{u: \Omega \longrightarrow R ; u \text { measurable in } \Omega: \rho_{r(\cdot)}(\lambda u)\right. \\
& <\infty, \text { for some } \lambda>0\} \tag{10}
\end{align*}
$$

where $\rho_{r(\cdot)}(u)=\int_{\Omega}|u(x)|^{r(x)} d x$. Equipped with the following Luxembourg-type norm:

$$
\begin{equation*}
\|u\|_{r(\cdot)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{r(x)} d x \leq 1\right\} . \tag{11}
\end{equation*}
$$

The space $L^{r(\cdot)}(\Omega)$ is a Banach space.
The variable-exponent Sobolev space is defined as follows:

$$
\begin{align*}
W^{1, r}(\Omega)= & \left\{u \in L^{r(\cdot)}(\Omega) \text { such that } \nabla u\right. \text { exists and } \\
& \left.|\nabla u| \in L^{r(\cdot)}(\Omega)\right\} . \tag{12}
\end{align*}
$$

This is a Banach space with respect to the norm $\|u\|_{W_{0}^{1, r}(\Omega)}=$ $\|u\|_{r(\cdot)}+\|\nabla u\|_{r(\cdot)}$.

Furthermore, we set $W_{0}^{1, r(\cdot)}(\Omega)$ to be the closure of $C_{0}^{\infty}(\Omega)$ in the space $W^{1, r(\cdot)}(\Omega)$. Let us note that the space $W_{0}^{1, r(\cdot)}(\Omega)$ has a differenet definition in the case of variable exponents.

However, under the log-Hölder continuity condition, both definitions are equivalent [5]. The space $W^{-1, r^{\prime}(\cdot)}(\Omega)$, dual of $W_{0}^{1, r(\cdot)}(\Omega)$, is defined in the same way as the classical Sobolev spaces, where $\frac{1}{r(\cdot)}+\frac{1}{r^{\prime}(\cdot)}=1$.

Lemma 1 (Diening et al. [5]). If:

$$
\begin{equation*}
1 \leq r_{1}=e s \inf _{x \in \Omega} r(x) \leq r(x) \leq r_{2}=e s s \sup _{x \in \Omega} r(x)<\infty \tag{13}
\end{equation*}
$$

then we have:

$$
\begin{equation*}
\min \left\{\|u\|_{r(\cdot)}^{r_{1}},\|u\|_{r(\cdot)}^{r_{2}}\right\} \leq \rho_{r(\cdot)}(u) \leq \max \left\{\|u\|_{r(\cdot)}^{r_{1}},\|u\|_{r(\cdot)}^{r_{2}}\right\}, \tag{14}
\end{equation*}
$$

for any $u \in L^{r(\cdot)}(\Omega)$.

Lemma 2 (Diening et al. [5]). Let $m, r, s \geq 1$ be measurable functions defined on Ω such that:

$$
\begin{equation*}
\frac{1}{s(y)}=\frac{1}{m(y)}+\frac{1}{r(y)}, \text { for a.e. } y \in \Omega \tag{15}
\end{equation*}
$$

If $v_{1} \in L^{m(\cdot)}(\Omega)$ and $v_{2} \in L^{r(\cdot)}(\Omega)$, then $v_{1} v_{2} \in L^{s(\cdot)}(\Omega)$, with:

$$
\begin{equation*}
\left\|v_{1} v_{2}\right\|_{s(\cdot)} \leq 2\left\|v_{1}\right\|_{m(\cdot)}\left\|v_{2}\right\|_{r(\cdot)} \tag{16}
\end{equation*}
$$

Lemma 3 (Diening et al. [5]). Ifr is a measurable function on Ω satisfying (6), then the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{r(\cdot)}(\Omega)$ is continuous and compact. Then, the embedding $H_{0}^{2}(\Omega)$ $\hookrightarrow L^{r(x)}(\Omega)$ is continuous and compact.

As per Lemma 3, there exists a positive constant denoted as c_{*} that fulfills the following condition:

$$
\begin{equation*}
\|u\|_{p(\cdot)} \leq c_{*}\|\nabla u\|_{2}, \text { for } u \in H_{0}^{1}(\Omega) \tag{17}
\end{equation*}
$$

Lemma 4 (Komornik [16]). Let $F: R^{+} \longrightarrow R^{+}$be a nonincreasing function and assume that there are two constants $\alpha>0$ and $C>0$ in the following equation:

$$
\begin{equation*}
\int_{t}^{\infty} F^{\alpha+1}(s) d s \leq C F^{\alpha}(0) F(s), \forall t \in R^{+} \tag{18}
\end{equation*}
$$

Then, we have the following equation:

$$
\begin{equation*}
F(t) \leq F(0)\left(\frac{C+\alpha t}{C+\alpha C}\right)^{\frac{-1}{\alpha}}, \forall t \geq C \tag{19}
\end{equation*}
$$

To articulate and demonstrate our outcome, we define the subsequent functionals:

$$
\begin{align*}
E(t)= & \frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|\Delta u\|^{2}\right) \\
& -\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x, \tag{20}
\end{align*}
$$

$$
\begin{equation*}
I(t)=\|\nabla u\|^{2}+\|\Delta u\|^{2}-\int_{\Omega}|u|^{q(x)} d x, \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
J(t)=\frac{1}{2}\left(\|\nabla u\|^{2}+\|\Delta u\|^{2}\right)-\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x . \tag{22}
\end{equation*}
$$

Lemma 5. Let u be a solution of problem (1). Then, the energy functional satisfies the following equation:

$$
\begin{equation*}
E^{\prime}(t)=-\int_{\Omega}\left|\nabla u_{t}\right|^{2} d x-\int_{\Omega}\left|u_{t}\right|^{p(x)} d x, t \in[0, T] \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
E(t) \leq E(0) \tag{24}
\end{equation*}
$$

Proof. Multiplying the first equation in Equation (1) by u_{t} and integrating over Ω yields the following equation:

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\Delta u_{t}\right\|^{2}+\|\Delta u\|^{2}\right)-\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x\right) \\
& \quad=-\int_{\Omega}\left|\nabla u_{t}\right|^{2} d x-\int_{\Omega}\left|u_{t}\right|^{p(x)} d x \tag{25}
\end{align*}
$$

then:

$$
\begin{equation*}
E^{\prime}(t)=-\int_{\Omega}\left|\nabla u_{t}\right|^{2} d x-\int_{\Omega}\left|u_{t}\right|^{p(x)} d x \leq 0 \tag{26}
\end{equation*}
$$

Integrating Equation (26) over ($0, t$), we obtain the following equation:

$$
\begin{equation*}
E(t) \leq E(0) \tag{27}
\end{equation*}
$$

Lemma 6. Under the assumptions of Theorem 5 and $E(0)>0$ hold:

$$
\begin{equation*}
I(0)>0 \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{1}+\theta_{2}<1 \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
& \theta_{1}=\alpha\left\{c_{1, *}^{q_{1}}\left(\frac{2 q_{1}}{q_{1}-2} E(0)\right)^{\frac{q_{2}-2}{2}}, c_{1, *}^{q_{2}}\left(\frac{2 q_{1}}{q_{1}-2} E(0)\right)^{\frac{q_{2-2}}{2}}\right\} \\
& \theta_{2}=(1-\alpha)\left\{c_{2, *}^{q_{1}}\left(\frac{2 q_{1}}{q_{1}-2} E(0)\right)^{\frac{q_{2}-2}{2}}, c_{2, *}^{q_{2}}\left(\frac{2 q_{1}}{q_{1}-2} E(0)\right)^{\frac{q_{2-2}}{2}}\right\}, \tag{30}
\end{align*}
$$

with $0<\alpha<1, c_{1, *}$ and $c_{2, *}$ are the bests embedding constants of $H_{0}^{2}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$ and $H_{0}^{2}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$, respectively, then $I(t)>0$, for all $t \in[0, T]$.

Proof. Due to continuity, there exists T_{*}, such that:

$$
\begin{equation*}
I(t) \geq 0, \text { for all } t \in\left[0, T_{*}\right] . \tag{31}
\end{equation*}
$$

Now, for all $t \in\left[0, T_{*}\right]$, we have the following equation:

$$
\begin{align*}
J(t) & =\frac{1}{2}\left(\|\nabla u\|^{2}+\|\Delta u\|^{2}\right)-\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x . \\
& \geq \frac{1}{2}\left(\|\nabla u\|^{2}+\|\Delta u\|^{2}\right)-\frac{1}{q_{1}}\left(\|\nabla u\|^{2}+\|\Delta u\|^{2}-I(t)\right) \\
& \geq \frac{q_{1}-2}{2 q_{1}}\left(\|\nabla u\|^{2}+\|\Delta u\|^{2}\right)+\frac{1}{q_{1}} I(t) . \tag{32}
\end{align*}
$$

Using Equation (31), we obtain the following equation:

$$
\begin{equation*}
\left(\|\nabla u\|^{2}+\|\Delta u\|^{2}\right) \leq \frac{2 q_{1}}{q_{1}-2} J(t), \text { for all } t \in\left[0, T_{*}\right] \tag{33}
\end{equation*}
$$

By Lemma 5, we get the following equation:

$$
\begin{equation*}
\|\nabla u\|^{2}+\|\Delta u\|^{2} \leq \frac{2 q_{1}}{q_{1}-2} E(t) \leq \frac{2 q_{1}}{q_{1}-2} E(0) . \tag{34}
\end{equation*}
$$

Moreover, according to Lemma 1, we obtain the following equation:

$$
\begin{align*}
\int_{\Omega}|u|^{q(x)} d x \leq & \max \left\{\|u\|_{q(\cdot)}^{q_{1}},\|u\|_{q(\cdot)}^{q_{2}}\right\} \\
= & \alpha \max \left\{\|u\|_{q(\cdot)}^{q_{1}},\|u\|_{q(\cdot)}^{q_{2}}\right\} \\
& +(1-\alpha) \max \left\{\|u\|_{q(\cdot)}^{q_{1}},\|u\|_{q(\cdot)}^{q_{2}}\right\} . \tag{35}
\end{align*}
$$

By the embedding of $H_{0}^{2}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega)$ and $H_{0}^{2}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega)$, we obtain the following equation:

$$
\begin{align*}
\int_{\Omega}|u|^{q(x)} d x \leq & \alpha \max \left\{c_{1, *}^{q_{1}}\|\nabla u\|_{2}^{q_{1}}, c_{1, *}^{q_{2}}\|\nabla u\|_{2}^{q_{2}}\right\} \\
& +(1-\alpha) \max \left\{c_{2, *}^{q_{1-2}}\|\Delta u\|_{2}^{q_{1}}, c_{2, *}^{q_{2-2}}\|\Delta u\|_{2}^{q_{2}}\right\} \\
\leq & \alpha \max \left\{c_{1, *}^{q_{1}}\|\nabla u\|_{2}^{q_{1}}, c_{1, *}^{q_{2}}\|\nabla u\|_{2}^{q_{2}}\right\} \times\|\nabla u\|_{2}^{2} \\
& +(1-\alpha) \max \left\{c_{2, *}^{q_{1}}\|\Delta u\|_{2}^{q_{1}}, c_{2, *}^{q_{2}}\|\Delta u\|_{2}^{q_{2}}\right\} \times\|\Delta u\|_{2}^{2} \\
\leq \alpha & \max \left\{c_{1, *}^{q_{1}}\left(\frac{2 q_{1}}{q_{1}-2} E(0)\right)^{\frac{q_{1}-2}{2}}, c_{1, *}^{q_{2}}\left(\frac{2 q_{1}}{q_{1}-2} E(0)\right)^{\frac{q_{2}-2}{2}}\right\} \times\|\nabla u\|_{2}^{2} \tag{36}\\
& +(1-\alpha) \max \left\{c_{2, *}^{q_{1}}\left(\frac{2 q_{1}}{q_{1}-2} E(0)\right)^{\frac{q_{1}-2}{2}}, c_{2, *}^{q_{2}}\left(\frac{2 q_{1}}{q_{1}-2} E(0)\right)^{\frac{q_{2}-2}{2}}\right\} \\
& \times\|\Delta u\|_{2}^{2}
\end{align*}
$$

Then, we have the following equation:

$$
\begin{equation*}
\int_{\Omega}|u|^{q(x)} d x \leq \theta_{1}\|\nabla u\|^{2}+\theta_{2}\|\Delta u\|^{2} \text { for all } t \in\left[0, T_{*}\right] \tag{38}
\end{equation*}
$$

$$
\int_{\Omega}|u|^{q(x)} d x<\|\nabla u\|^{2}+\|\Delta u\|^{2} \text { for all } t \in\left[0, T_{*}\right]
$$

This implies that:

$$
\begin{equation*}
I(t)>0, \text { for all } t \in\left[0, T_{*}\right] . \tag{39}
\end{equation*}
$$

By repeating the aforementioned process, we can extend T_{*} to T.

3. Local Existence

This section is dedicated to establishing the local existence of problem (1). We will employ the Faedo-Galerkin method approximation.

Theorem 7. Suppose that $p, q \in C(\bar{\Omega})$ and satisfies Equation (6). Then, for any $\left(u_{0}, u_{1}\right) \in H^{2}(\Omega) \cap H^{4}(\Omega) \times L^{2}(\Omega)$, problem (1) has a unique weak local solution:

$$
\begin{align*}
& u \in L^{\infty}(0, T), H_{0}^{2}(\Omega) \\
& u_{t} \in L^{\infty}(0, T), H_{0}^{2}(\Omega) \cap L^{m(\cdot)}(\Omega \times(0, T)) . \tag{40}
\end{align*}
$$

Proof. Let $\left\{v_{l}\right\}_{l=1}^{\infty}$ be a basis of $H_{0}^{2}(\Omega)$ that forms a complete orthonormal system in $L^{2}(\Omega)$. Denote $V_{k}=\operatorname{span}\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{k}\right\}$ as the subspace generated by the first k vectors from the basis $\left\{v_{l}\right\}_{l=1}^{\infty}$. Due to normalization, we have $\left\|v_{l}\right\|=1$. For a given integer k, we consider the approximated solution:

$$
\begin{equation*}
u_{k}(t)=\sum_{l=1}^{k} u_{l k}(t) v_{l} \tag{41}
\end{equation*}
$$

where $u_{k}(t)$ is the solutions to the following Cauchy problem:

$$
\begin{align*}
& \left(u_{k}^{\prime \prime}(t), v_{l}\right)-\left(\Delta u_{k}(t), v_{l}\right)-\left(\Delta u_{k}^{\prime \prime}(t), v_{l}\right)+\left(\Delta^{2} u_{k}(t), v_{l}\right)-\left(\Delta u_{k}^{\prime}(t), v_{l}\right) \\
& +\left(\left|u_{k}^{\prime}(t)\right|^{p(x)-2} u_{k}^{\prime}(t), v_{l}\right)=\left(\left|u_{k}(t)\right|^{q(x)-2} u_{k}(t), v_{l}\right), \quad l=1,2, \ldots, k \tag{42}
\end{align*}
$$

$$
\begin{equation*}
u_{k}(0)=u_{0 k}=\sum_{l=1}^{k}\left(u_{k}(0), v_{l}\right) v_{l} \longrightarrow u_{0} \text { in } H_{0}^{2}(\Omega) \cap H^{4}(\Omega) \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
u_{k}^{\prime}(0)=u_{1 k}=\sum_{l=1}^{k}\left(u_{k}^{\prime}(0), v_{l}\right) v_{l} \longrightarrow u_{1} \text { in } H_{0}^{2}(\Omega) \tag{44}
\end{equation*}
$$

It is worth noting that the systems (42)-(44) can be solved using Picard's iteration method for ordinary differential equations. As a result, a solution exists within the interval $\left[0, T_{*}\right)$ for some $T_{*}>0$, and we can extend this solution to the whole interval $[0, T)$ for any given $T>0$ by utilizing the a priori estimates provided below.

The first estimate: Multiplying Equation (42) by $u_{l k}^{\prime}(t)$ and summing over l from 1 to k :

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{1}{2}\left(\left\|u_{k}^{\prime}\right\|^{2}+\left\|\nabla u_{k}\right\|^{2}+\left\|\Delta u_{k}^{\prime}\right\|^{2}+\left\|\Delta u_{k}\right\|^{2}\right)-\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x\right) \\
& \quad=-\int_{\Omega}\left|\nabla u_{k}^{\prime}\right|^{2} d x-\int_{\Omega}\left|u_{k}^{\prime}\right|^{p(x)} d x . \tag{45}
\end{align*}
$$

Then, we obtain the following equation:

$$
\begin{equation*}
E^{\prime}\left(u_{k}(t)\right)=-\int_{\Omega}\left|\nabla u_{k}^{\prime}\right|^{2} d x-\int_{\Omega}\left|u_{k}^{\prime}\right|^{p(x)} d x \leq 0 \tag{46}
\end{equation*}
$$

By integrating Equation (45) over the interval $(0, t)$, we derive the estimate the following equation:

$$
\begin{align*}
& \frac{1}{2}\left\|u_{k}^{\prime}\right\|^{2}+\frac{1}{2}\left\|\nabla u_{k}\right\|^{2}+\frac{1}{2}\left\|\Delta u_{k}^{\prime}\right\|^{2}+\frac{1}{2}\left\|\Delta u_{k}\right\|^{2} \\
& \quad-\int_{0}^{t} \int_{\Omega} \frac{1}{q(x)}\left|u_{k}\right|^{q(x)} d x \leq E(0) . \tag{47}
\end{align*}
$$

Then, from Equation (38), the inequality (47) becomes:

$$
\begin{align*}
& \frac{1}{2} \sup _{t \in(0, T)}\left\|u_{k}^{\prime}\right\|^{2}+\frac{q_{1}-2}{2 q_{1}} \sup _{t \in(0, T)}\left\|\nabla u_{k}\right\|^{2}+\frac{q_{1}-2}{2 q_{1}} \sup _{t \in(0, T)}\left\|\Delta u_{k}\right\|^{2} \\
& \quad+\frac{1}{2} \sup _{t \in(0, T)}\left\|\Delta u_{k}^{\prime}\right\|^{2}+\int_{0}^{t} \int_{\Omega}\left|u_{t}^{k}(x, s)\right|^{p(x)} d x d s \\
& \quad \leq E(0) \tag{48}
\end{align*}
$$

From Equation (48), we conclude that:

$$
\left\{\begin{array}{l}
\left\{u_{k}\right\} \text { is a bounded sequence in } L^{\infty}\left((0, T) ; H_{0}^{2}(\Omega)\right), \tag{49}\\
\left\{u_{k}^{\prime}\right\} \text { is a bounded sequence in } L^{\infty}\left((0, T) ; H_{0}^{2}(\Omega)\right) \cap L^{p(\cdot)}(\Omega \times(0, T))
\end{array}\right.
$$

Since $\left\{u_{k}^{\prime}\right\}$ is uniformly bounded in $L^{p(x)}(\Omega \times[0, T])$, then $\left\{\left|u_{k}^{\prime}\right|^{p(x)-2} u_{k}^{\prime}\right\}$ is bounded in $L^{\frac{p(x)}{p(x)-1}}(\Omega \times[0, T])$; hence, up to a subsequence, $\left|u_{k}^{\prime}\right|^{p(x)-2} u_{k}^{\prime} \triangle \Phi$ weakly in $L^{\frac{p(x)}{p(x)-1}}(\Omega \times[0, T])$. As in Messaoudi et al.'s [17] study, we have to show that $\Phi=\left|u^{\prime}\right|^{p(x)-2} u^{\prime}$.

Furthermore, from Lemma 3 and Equation (49), we obtain the following equation:
$\left\{\left|u_{k}\right|^{q(x)-2} u_{k}\right\}$ is uniformly bounded in $L^{\infty}([0, T]), L^{2}(\Omega)$.

From Equations (49) and (50), we deduce the existence of a subsequence of u_{k} (still denoted by the same symbol) and a function u such that:

$$
\left\{\begin{array}{l}
u_{k} \longrightarrow u \text { weakly star in } L^{\infty}\left([0, T] ; H_{0}^{2}(\Omega)\right) \tag{51}\\
u_{k}^{\prime} \longrightarrow u^{\prime} \text { weakly star in } L^{\infty}([0, T]) ; H_{0}^{2}(\Omega) \text { and weakly in } L^{p(\cdot)}(\Omega \times(0, T)), \\
\left|u_{k}\right|^{q(x)-2} u_{k} \rightharpoonup \psi \text { weakly } L^{\infty}([0, T]), L^{2}(\Omega)
\end{array}\right.
$$

By the Aubin-Lions compactness Lemma [18], we conclude from Equation (51) that:

$$
\begin{equation*}
u_{k} \longrightarrow u \text { strongly in } C\left([0, T] ; H_{0}^{2}(\Omega)\right), \tag{52}
\end{equation*}
$$

which implies:

$$
\begin{equation*}
u_{k} \longrightarrow u \text { everywhere in } \Omega \times[0, T] . \tag{53}
\end{equation*}
$$

It follow from Equations (51) and (53) that:

$$
\begin{equation*}
\left.\left|u_{k}\right|\right|^{q(x)-2} u_{k} \rightharpoonup|u|^{q(x)-2} u \text { weakly in } L^{\infty}([0, T]), L^{2}(\Omega) \tag{54}
\end{equation*}
$$

The second estimate: Now, we would like to get more estimates. In doing so, differentiating Equation (42) with respect to t, we get the following equation:

$$
\begin{align*}
& \left(u_{k}^{\prime \prime \prime}(t), v_{l}\right)-\left(\Delta u_{k}^{\prime}(t), v_{l}\right)-\left(\Delta u_{k}^{\prime \prime \prime}(t), v_{l}\right)+\left(\Delta^{2} u_{k}^{\prime}(t), v_{l}\right)-\left(\Delta u_{k}^{\prime \prime}(t), v_{l}\right) \\
& \quad+\left((p(x)-1)\left|u_{k}^{\prime \prime}(t)\right|^{p(x)-2} u_{k}^{\prime \prime}(t), v_{l}\right) \\
& =\left((q(x)-1)\left|u_{k}(t)\right|^{q(x)-2} u_{k}^{\prime}(t), v_{l}\right), l=1,2, \ldots, k . \tag{55}
\end{align*}
$$

Next, multiplying Equation (55) by $u_{l k}^{\prime \prime}(t)$ and summing over l from 1 to k, we get the following equation:

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\left\|u_{k}^{\prime \prime}\right\|^{2}+\left\|\nabla u_{k}^{\prime}\right\|^{2}+\left\|\nabla u_{k}^{\prime \prime}\right\|^{2}+\left\|\Delta u_{k}^{\prime}\right\|^{2}\right) \\
& +\int_{\Omega}(p(x)-1)\left|u_{k}^{\prime}\right|^{p(x)-1}\left|u_{k}^{\prime \prime}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k}^{\prime \prime}\right|^{2} d x \\
= & -\int_{\Omega}(q(x)-1)\left|u_{k}\right|^{q(x)-2} u_{k}^{\prime} u_{k}^{\prime \prime} d x . \tag{56}
\end{align*}
$$

We have the following equation from Hölder's inequality:

$$
\begin{align*}
& \left.\left|\int_{\Omega}(q(x)-1)\right| u_{k}\right|^{q(x)-2}\left|u_{k}^{\prime} \| u_{k}^{\prime \prime}\right| d x \mid \tag{57}\\
& \leq\left(q_{2}-1\right)\left\|u_{k}\right\|_{2(q(x)-1)}^{q(x)-2}\left\|u_{k}^{\prime}\right\|_{2(q(x)-1)}\left\|u_{k}^{\prime \prime}\right\|_{2}
\end{align*}
$$

We have, then $u_{k} \in L^{\infty}\left([0, T], H_{0}^{2}(\Omega)\right)$, then the following equation:

$$
\begin{equation*}
\int_{\Omega}\left|u_{k}\right|^{2 q(x)-2} d x \leq \int_{\Omega}\left|u_{k}\right|^{2 q_{1}-2} d x+\int_{\Omega}\left|u_{k}\right|^{2 q_{2}-2} d x<+\infty \tag{58}
\end{equation*}
$$

since, $\quad 2\left(q_{1}-1\right) \leq 2(q(x)-1) \leq 2\left(q_{2}-1\right) \leq 2 \frac{n}{n-2}$. The inequality (57), becomes the equation as follows:

$$
\begin{equation*}
\left|\int_{\Omega}(q(x)-1)\right| u_{k}\left|q^{q(x)-2}\right| u_{k}^{\prime}| | u_{k}^{\prime \prime}|d x| \leq c_{1}\left\|u_{k}^{\prime}\right\|_{2(q(x)-1)}\left\|u_{k}^{\prime \prime}\right\|_{2} . \tag{59}
\end{equation*}
$$

We have the following equation from Young's inequality and Poincáre's inequality:

$$
\begin{equation*}
\left|\int_{\Omega}(q(x)-1)\right| u_{k}\left|q^{q(x)-2}\right| u_{k}^{\prime}| | u_{k}^{\prime \prime}|d x| \leq c_{\delta}\left\|\nabla u_{k}^{\prime}\right\|^{2}+\delta\left\|u_{k}^{\prime \prime}\right\|^{2} \tag{60}
\end{equation*}
$$

Substituting Equation (60) into Equation (56) and integrating over $(0, t)$ for all $t \in[0, T]$, we obtain the following equation:

$$
\begin{align*}
& \int_{\Omega}\left(\left|u_{k}^{\prime \prime}\right|^{2}+\left|\nabla u_{k}^{\prime}\right|^{2}+\left|\nabla u_{k}^{\prime \prime}\right|^{2}+\left|\Delta u_{k}^{\prime}\right|^{2}+\left|\nabla u_{k}^{\prime \prime}\right|^{2}\right) d x \\
& \leq\left(\left\|u_{k}^{\prime \prime}(0)\right\|^{2}+\left\|\nabla u_{k}^{\prime}(0)\right\|^{2}+\left\|\nabla u_{k}^{\prime \prime}(0)\right\|^{2}+\left\|\Delta u_{k}^{\prime}(0)\right\|^{2}\right) \\
& \quad+c_{2} \int_{0}^{t}\left(\left\|\nabla u_{k}^{\prime}\right\|^{2}+\left\|u_{k}^{\prime \prime}\right\|^{2}\right) d s \tag{61}
\end{align*}
$$

$$
\begin{equation*}
\left\|\nabla u_{k}^{\prime}(0)\right\|^{2}+\left\|\Delta u_{k}^{\prime}(0)\right\|^{2} \leq c_{4} \tag{62}
\end{equation*}
$$

where c_{4} is a positive constant independent of k.
By multiplying both sides of Equation (42) by $u_{l k}^{\prime \prime}(t)$, summing over l from 1 to k and setting $t=0$, we obtain the following equation:

It follows from Equation (44) and the fact $\left\|\nabla u_{k}^{\prime}(0)\right\|^{2} \leq$ $c_{3}\left\|\Delta u_{k}^{\prime}(0)\right\|^{2}$ that:

$$
\begin{align*}
& \left\|u_{k}^{\prime \prime}(0)\right\|^{2}-\left(\Delta u_{k}(0), u_{k}^{\prime \prime}(0)\right)-\left(\Delta u_{k}^{\prime \prime}(0), u_{k}^{\prime \prime}(0)\right)+\left(\Delta^{2} u_{k}(0), u_{k}^{\prime \prime}(0)\right)-\left(\Delta u_{k}^{\prime}(0), u_{k}^{\prime \prime}(0)\right) \tag{63}\\
& +\left(\left|u_{k}^{\prime}(0)\right|^{p(x)-2} u_{k}^{\prime}(0), u_{k}^{\prime \prime}(0)\right)=\left(\left|u_{k}(0)\right|^{q(x)-2} u_{k}(0), u_{k}^{\prime \prime}(0)\right), \quad l=1,2, \ldots, k .
\end{align*}
$$

Utilizing Young's inequality along with Equations (43) and (44), we have:

$$
\begin{equation*}
\left\|u_{k}^{\prime \prime}(0)\right\|^{2} \leq c_{5} \tag{64}
\end{equation*}
$$

where c_{5} is a positive constant independent of k.
By Equations (62) and (64), Equation (61) becomes:

$$
\begin{align*}
& \int_{\Omega}\left|u_{k}^{\prime \prime}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k}^{\prime}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k}^{\prime \prime}\right|^{2} d x+\int_{\Omega}\left|\Delta u_{k}^{\prime}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k}^{\prime \prime}\right|^{2} d x \tag{65}\\
& \leq c_{6}+c_{7} \int_{0}^{t}\left(\left|u_{k}^{\prime \prime}\right|^{2}+\left|\nabla u_{k}^{\prime}\right|^{2}+\left|\nabla u_{k}^{\prime \prime}\right|^{2}+\left|\Delta u_{k}^{\prime}\right|^{2}+\left|\nabla u_{k}^{\prime \prime}\right|^{2}\right) d s
\end{align*}
$$

We deduce from Equation (65) and Gronwall's lemma that:

$$
\begin{equation*}
\left\|u_{k}^{\prime \prime}\right\|^{2}+\left\|\nabla u_{k}^{\prime}\right\|^{2}+\left\|\nabla u_{k}^{\prime \prime}\right\|^{2}+\left\|\Delta u_{k}^{\prime}\right\|^{2}+\left\|\nabla u_{k}^{\prime \prime}\right\|^{2} \leq c_{8} \tag{66}
\end{equation*}
$$

for all $t \in[0, T]$, where c_{8} is a positive constant independent of k.

We can infer from Equation (66) that:

$$
\left\{\begin{array}{l}
\left\{u_{k}^{\prime}\right\} \text { is uniformly bounded in } L^{\infty}\left([0, T], H_{0}^{2}(\Omega)\right), \tag{67}\\
\left\{u_{k}^{\prime \prime}\right\} \text { is uniformly bounded in } L^{\infty}\left([0, T], H_{0}^{1}(\Omega)\right) .
\end{array}\right.
$$

Similarly, we have the following equation:

$$
\left\{\begin{array}{l}
u_{k}^{\prime} \text { is uniformly bounded in } L^{\infty}\left([0, T], H_{0}^{2}(\Omega)\right), \tag{68}\\
u_{k}^{\prime \prime} \text { is uniformly bounded in } L^{\infty}\left([0, T], H_{0}^{1}(\Omega)\right)
\end{array}\right.
$$

Setting up $k \longrightarrow \infty$ and passing to the limit in Equation (42), we obtain the following equation:

$$
\begin{align*}
& \left(u^{\prime \prime}(t), v_{l}\right)-\left(\Delta u(t), v_{l}\right)-\left(\Delta u^{\prime \prime}(t), v_{l}\right)+\left(\Delta^{2} u(t), v_{l}\right)-\left(\Delta u^{\prime}(t), v_{l}\right) \tag{69}\\
& +\left(\left|u^{\prime}(t)\right|^{p(x)-2} u^{\prime}(t), v_{l}\right)=\left(|u(t)|^{q(x)-2} u(t), v_{l}\right), \quad l=1,2, \ldots, k
\end{align*}
$$

Given that $\left\{v_{l}\right\}_{l=1}^{\infty}$ is a basis of $H_{0}^{2}(\Omega)$, we can deduce that u satisfies Equation (1). From Equation (51), Equation (68)
and Lemma 3.1.7 in Zheng's [19] study with $B=H_{0}^{2}(\Omega)$ and $L^{2}(\Omega)$, respectively, we infer that:

$$
\left\{\begin{array}{l}
u_{k}^{\prime} \text { is uniformly bounded in } H_{0}^{2}(\Omega), \tag{70}\\
u_{k}^{\prime \prime} \text { is uniformly bounded in } H_{0}^{1}(\Omega) .
\end{array}\right.
$$

We get from Equations (43), (44), and (70) that $u(0)=u_{0}$, $u(0)=u_{1}$.

Consequently, the proof of existence is now concluded.
Uniqueness of the solution: Now it remains to prove uniqueness. Let y and z be two solutions in the class described in the statement of this theorem, and $w=y-z$.

Then, w satisfies the following equation:
$w_{t t}-\Delta w-\Delta w_{t t}+\Delta^{2} w-\Delta w_{t}+\left|y_{t}\right|^{p(x)-2} y_{t}-\left|z_{t}\right|^{p(x)-2} z_{t}$ $=|y|^{q(x)-2} y-|z|^{q(x)-2} z$,
and

$$
\begin{equation*}
w(x, 0)=w_{0}(x), w_{t}(x, 0)=w_{1}(x) \tag{72}
\end{equation*}
$$

Multiplying Equation (71) by w_{t}, then integrating with respect to x, we get the following equation:

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega}\left(\left|w_{t}\right|^{2}+|\nabla w|^{2}+\left|\nabla w_{t}\right|^{2}+|\Delta w|^{2}\right) d x \\
& +\int_{0}^{t} \int_{\Omega}|\Delta w|^{2} d x+\int_{0}^{t} \int_{\Omega}\left(\left|y_{t}\right|^{p(x)-2} y_{t}-\left|z_{t}\right|^{p(x)-2} z_{t}\right) w_{t} d x d s \\
= & \int_{0}^{t} \int_{\Omega}\left(|y|^{q(x)-2} y-|z|^{q(x)-2} z\right) w_{t} d x d s . \tag{73}
\end{align*}
$$

By using the inequality:

$$
\begin{equation*}
\left(|a|^{p(x)-2} a-|b|^{p(x)-2} b\right)(a-b) \geq 0 \tag{74}
\end{equation*}
$$

for all $a, b \in R$ and a.e. $x \in \Omega$.
This implies:

$$
\begin{align*}
&\left\|w_{t}\right\|^{2}+\|\nabla w\|^{2}+\left\|\nabla w_{t}\right\|^{2}+\|\Delta w\|^{2} \\
& \leq C \int_{0}^{t} \int_{\Omega}\left(|y|^{q(x)-2} y-|z|^{q(x)-2} z\right) w_{t} d x d s \tag{75}
\end{align*}
$$

By repeating the estimate as in Messaoudi's [20] study, we arrive the following equation:

$$
\begin{aligned}
& \int_{\Omega}\left(\left|w_{t}\right|^{2}+|\nabla w|^{2}+\left|\nabla w_{t}\right|^{2}+|\Delta w|^{2}\right) d x \\
& \leq C \int_{0}^{t} \int_{\Omega}\left(\left|w_{t}\right|^{2}+|\nabla w|^{2}\right) d x d s
\end{aligned}
$$

Then:

$$
\begin{gather*}
\int_{\Omega}\left(\left|w_{t}\right|^{2}+|\nabla w|^{2}+\left|\nabla w_{t}\right|^{2}+|\Delta w|^{2}\right) d x \\
\leq C \int_{0}^{t} \int_{\Omega}\left(\left|w_{t}\right|^{2}+|\Delta w|^{2}+|\nabla w|^{2}+|\Delta w|^{2}\right) d x d s \tag{77}
\end{gather*}
$$

Gronwall's inequality yields the following equation:

$$
\begin{equation*}
\left\|w_{t}\right\|^{2}+\|\nabla w\|^{2}+\left\|\nabla w_{t}\right\|^{2}+\|\Delta w\|^{2}=0 \tag{78}
\end{equation*}
$$

Thus, $w=0$. The shows the uniqueness.

4. Blow-Up

In this section, we examine the blow-up of the solution to problem (1). To begin, we introduce the following [20].

Lemma 8. If $q: \Omega \longrightarrow[1, \infty)$ is a measurable function and

$$
\left\{\begin{array}{c}
2 \leq q_{1} \leq q(x) \leq q_{2}<\infty \text { for } n \leq 4 \tag{79}\\
2 \leq q_{1} \leq q(x) \leq q_{2}<\frac{2 n}{n-4} \text { for } n>4
\end{array}\right.
$$

holds. Then, we have the following inequalities:

$$
\begin{equation*}
\rho_{q(x)}^{\frac{s}{q_{1}}}(u) \leq C\left(\|\Delta u\|^{2}+\rho_{q(\cdot)}(u)\right) . \tag{80}
\end{equation*}
$$

Lemma 9. Suppose the conditions of Lemma 8 hold and let u be the solution of Equation (1). Then:
(i)

$$
\begin{equation*}
\|u\|_{q_{1}}^{s} \leq C\left(\|\Delta u\|^{2}+\|u\|_{q_{1}}^{q_{1}}\right) \tag{81}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\rho_{q(\cdot)}^{\frac{s}{q_{1}}}(u) \leq C\left(\mathscr{H}(t)+\left\|u_{t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\rho_{q(\cdot)}(u)\right) \tag{82}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\|u\|_{q_{1}}^{s} \leq C\left(\mathscr{H}(t)+\left\|u_{t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|u\|_{q_{1}}^{q_{1}}\right) \tag{83}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\|u\|_{q_{1}}^{q_{1}} \leq C \rho_{q(\cdot)}(u) \tag{84}
\end{equation*}
$$

for any $u \in H_{0}^{2}(\Omega)$ and $2 \leq s \leq q_{1}$. Where $\rho_{q(\cdot)}(u)=$ $\int_{\Omega}|u|^{q(\cdot)} d x$ and $C>1$ a positive constant and $\mathscr{H}(t)=-$ $E(t)$.

Then, functions $\mathscr{H}(t)$ and $E(t)$ will be defined later. Now, we state and prove our blow-up result.

Theorem 10. Under the conditions of Lemma 9. Also, let initial energy satisfy $E(t)<0$ and the exponents $p(\cdot)$ and $q(\cdot)$ satisfy the following equation:

$$
\begin{equation*}
2 \leq p_{1} \leq p(x) \leq p_{2} \leq q_{1} \leq q(x) \leq q_{2}<2 \frac{(n-2)}{n-4}, n>4 \tag{85}
\end{equation*}
$$

Then, the solution of Equation (1) blows up in finite time T*, in the following sense:

$$
\begin{equation*}
\Psi(t) \longrightarrow \infty \text { as } t \longrightarrow T^{*} \leq \frac{1-\alpha}{\xi \alpha \Psi^{-\frac{\alpha}{1-\alpha}}(0)} \tag{86}
\end{equation*}
$$

here $\xi \in(0,1), \Psi(t)$ and σ will given later in Equations (91) and (94), respectively.

Proof. When we multiply both sides by u_{t} and integrate over the domain Ω, the result is as follows:

$$
\begin{align*}
\frac{d}{d t} & {\left[\frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|\Delta u\|^{2}\right)-\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x\right] } \\
& =-\int_{\Omega}\left|\nabla u_{t}\right|^{2} d x-\int_{\Omega}\left|u_{t}\right|^{p(x)} d x \tag{87}
\end{align*}
$$

$$
\begin{equation*}
E^{\prime}(t)=-\int_{\Omega}\left|\nabla u_{t}\right|^{2} d x-\int_{\Omega}\left|u_{t}\right|^{p(x)} d x \tag{88}
\end{equation*}
$$

where

$$
\begin{align*}
E(t)= & \frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|\Delta u\|^{2}\right) \\
& -\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x \tag{89}
\end{align*}
$$

By setting $\mathscr{H}(t)=-E(t)$, we establish that $E(t)<0$. Referring to Equation (88), it follows that $\mathscr{H}(t) \geq \mathscr{H}(0)>0$:

$$
\begin{align*}
\mathscr{H}(t) & =-\frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|\Delta u\|^{2}\right)+\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x . \\
& \leq \int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x \tag{90}\\
& \leq \frac{1}{q_{1}} \rho_{q(\cdot)(u)} .
\end{align*}
$$

We then define the following equation:

$$
\begin{equation*}
\Psi(t)=\mathscr{H}^{1-\alpha}(t)+\varepsilon \int_{\Omega} u u_{t} d x+\frac{\varepsilon}{2}\|\nabla u\|^{2} \tag{91}
\end{equation*}
$$

for small ε that will be selected later, and
By deriving Equation (91) and applying Equation (1), we acquire the following equation:

$$
\Psi^{\prime}(t)=(1-\alpha) \mathscr{H}^{-\alpha}(t) \mathscr{H}^{\prime}(t)+\varepsilon \int_{\Omega} u_{t}^{2} d x+\varepsilon \int_{\Omega} u u_{t t} d x
$$

$$
\begin{equation*}
0<\alpha \leq \min \left\{\frac{q_{1}-2}{q_{1}}, \frac{q_{1}-p_{1}}{q_{1}\left(p_{1}-1\right)}\right\} . \tag{93}
\end{equation*}
$$

$$
\begin{align*}
\Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right)= & (1-\alpha) \mathscr{H}^{-\alpha}(t) \mathscr{H}^{\prime}(t) \\
& +\varepsilon \int_{\Omega}\left(u_{t}^{2}-|\nabla u|^{2}+\left|\nabla u_{t}\right|^{2}-|\Delta u|^{2}\right) d x \tag{94}\\
& +\varepsilon \int_{\Omega}|u|^{q(x)} d x-\varepsilon \int_{\Omega} u\left|u_{t}\right|^{p(x)-2} u_{t} d x .
\end{align*}
$$

We subsequently utilize Young's inequality for all, for all $\delta>0, \frac{1}{s}+\frac{1}{t}=1$:

$$
\begin{equation*}
X Y \leq \frac{\delta^{s}}{s} X^{s}+\frac{\delta^{-t}}{t} Y^{t}, X, Y \geq 0 \tag{95}
\end{equation*}
$$

to estimate the last term in Equation (94) as follows:

$$
\begin{align*}
& \int_{\Omega} u\left|u_{t}\right|^{p(x)} d x \leq \int_{\Omega} \frac{1}{p(x)} \delta^{p(x)}|u|^{p(x)} d x \\
& +\int_{\Omega} \frac{p(x)-1}{p(x)} \delta^{\delta^{p(x)-1}}\left|u_{t}\right|^{p(x)} u_{t} d x, \tag{96}
\end{align*}
$$

which yields, by substitution in Equation (94):

$$
\begin{align*}
\Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right) \geq & (1-\alpha) \mathscr{H}^{-\alpha}(t) \mathscr{H}^{\prime}(t) \\
& +\varepsilon \int_{\Omega^{\prime}}\left(u_{t}^{2}-|\nabla u|^{2}+\left|\nabla u_{t}\right|^{2}-|\Delta u|^{2}\right) d x \\
& +\varepsilon \int_{\Omega}|u|^{q(x)} d x-\int_{\Omega} \frac{1}{p(x)} \delta^{p(x)}|u|^{p(x)} d x \tag{97}\\
& -\int_{\Omega} \frac{p(x)-1}{p(x)} \delta^{\frac{p(x)}{p(x)-1}}\left|u_{t}\right|^{p(x)} u_{t} d x
\end{align*}
$$

Therefore, by taking δ so that $\delta^{-p(x) / p(x)-1}=k \mathscr{H}^{-\alpha}(t)$, for large k to be specified later, and substituting in Equation (97), we arrive at the following equation:

$$
\begin{align*}
\Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right) \geq & {\left[(1-\alpha)-\varepsilon k \frac{p_{2}-1}{p_{2}}\right] \mathscr{H}^{-\alpha}(t) \mathscr{H}^{\prime}(t) } \\
& +\varepsilon \int_{\Omega}\left(u_{t}^{2}-|\nabla u|^{2}-\left|\nabla u_{t}\right|^{2}-|\Delta u|^{2}\right) d x \tag{98}\\
& +\varepsilon \int_{\Omega}|u|^{q(x)-1} u d x-\frac{k^{1-p_{1}}}{p_{1}} \mathscr{H}^{p_{2}-1}(t) \int_{\Omega}|u|^{p(x)} d x .
\end{align*}
$$

Adding and subtracting $\varepsilon q_{1} H(t)$ from the right-hand side of Equation (98), we obtain the following equation:

$$
\begin{align*}
\Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right) \geq & {\left[(1-\alpha)-\varepsilon k \frac{p_{2}-1}{p_{2}}\right] \mathscr{H}^{-\alpha}(t) \mathscr{H}^{\prime}(t) } \\
& +\varepsilon\left(1+\frac{q_{1}}{2}\right) \int_{\Omega} u_{t}^{2} d x+\varepsilon\left(\frac{q_{1}}{2}-1\right) \int_{\Omega}|\nabla u|^{2} d x \\
& +\varepsilon\left(\frac{q_{1}}{2}-1\right) \int_{\Omega}\left|\nabla u_{t}\right|^{2} d x+\varepsilon\left(\frac{q_{1}}{2}-1\right) \int_{\Omega}|\Delta u|^{2} d x \tag{99}\\
& +\varepsilon q_{1} \mathscr{H}(t)-\varepsilon \frac{k^{1-p_{1}}}{p_{1}} \mathscr{H}^{\alpha\left(p_{2}-1\right)}(t) \int_{\Omega}|u|^{p(x)} d x .
\end{align*}
$$

By exploiting Equation (99) and the inequality Lemma 9, we obtain the following equation:

$$
\begin{align*}
\mathscr{H}^{\alpha\left(p_{2}-1\right)}(t) \int_{\Omega}|u|^{p(x)} d x & \leq \mathscr{H}^{\alpha\left(p_{2}-1\right)}(t) C\left(\varrho(u)^{\frac{p_{1}}{q_{1}}}+\varrho(u)^{\frac{p_{2}}{q_{1}}}\right) \\
& \leq\left(\frac{1}{q_{1}}\right)^{\alpha\left(p_{2}-1\right)} C\left(\|u\|_{q_{1}}^{p_{1}+\alpha q_{1}\left(p_{2}-1\right)}+\|u\|_{q_{1}}^{p_{2}+\alpha q_{1}\left(p_{2}-1\right)}\right) \tag{100}
\end{align*}
$$

hence, Equation (100) yields the following equation:

$$
\begin{align*}
\Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right) \geq & {\left[(1-\alpha)-\varepsilon k \frac{p_{2}-1}{p_{2}}\right] \mathscr{H}^{-\alpha}(t) \mathscr{H}^{\prime}(t) } \\
& +\varepsilon\left(1+\frac{q_{1}}{2}\right) \int_{\Omega} u_{t}^{2} d x+\varepsilon\left(\frac{q_{1}}{2}-1\right) \int_{\Omega}|\nabla u|^{2} d x \\
& +\varepsilon\left(\frac{q_{1}}{2}-1\right) \int_{\Omega}\left|\nabla u_{t}\right|^{2} d x+\varepsilon\left(\frac{q_{1}}{2}-1\right) \int_{\Omega}|\Delta u|^{2} d x \tag{101}\\
& +\varepsilon q_{1} H(t)-\varepsilon \frac{k^{1-p_{1}}}{p_{1}}\left(\frac{1}{q_{1}}\right)^{\alpha\left(p_{2}-1\right)} \\
& \times C\left(\|u\|_{q_{1}}^{p_{1}+\alpha q_{1}\left(p_{2}-1\right)}+\|u\|_{q_{1}}^{p_{2}+\alpha q_{1}\left(p_{2}-1\right)}\right) .
\end{align*}
$$

We then use Lemma 8 and Equation (92), for $s=p_{1}+$ $\alpha q_{1}\left(p_{2}-1\right) \leq q_{1}$ and $s=p_{2}+\alpha q_{1}\left(p_{2}-1\right) \leq q_{1}$, to deduce from Equation (101):

$$
\begin{align*}
\Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right) \geq & {\left[(1-\alpha)-\varepsilon k \frac{p_{2}-1}{p_{2}}\right] \mathscr{H}^{-\alpha}(t) \mathscr{H}^{\prime}(t) } \\
& +\varepsilon\left(1+\frac{q_{1}}{2}\right) \int_{\Omega_{1}} u_{t}^{2} d x+\varepsilon\left(\frac{q_{1}}{2}-1\right) \int_{\Omega}|\nabla u|^{2} d x \tag{102}\\
& +\varepsilon\left(\frac{q_{1}}{2}-1\right) \int_{\Omega}\left|\nabla u_{t}\right|^{2} d x+\varepsilon\left(\frac{q_{1}}{2}-1\right) \int_{\Omega}|\Delta u|^{2} d x \\
& +\varepsilon\left[q_{1} \mathscr{H}(t)-k^{1-p_{1}} C_{1}\left(\mathscr{H}(t)+\left\|u_{t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|u\|_{q_{1}}^{q_{1}}\right)\right],
\end{align*}
$$

where $C_{1}=\frac{2 C}{p_{1}}\left(\frac{1}{q_{1}}\right)^{\alpha\left(p_{2}-1\right)}$. By noting that:
$\mathscr{H}(t)=\frac{1}{q_{1}}\left\|u_{t}\right\|_{q_{1}}^{q_{1}}-\frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|\Delta u\|^{2}\right)$,
and writing $q_{1}=\left(q_{1}+2\right) / 2+\left(q_{1}-2\right) / 2$ yields the following

$$
\begin{align*}
N(t) \geq & {\left[(1-\alpha)-\varepsilon k \frac{p_{2}-1}{p_{2}}\right] \mathscr{H}^{-\alpha}(t) \mathscr{H}^{\prime}(t) } \\
& +\varepsilon\left(\left(\frac{6+q_{1}}{4}\right)-k^{1-p_{1}} C_{1}\right)\left\|u_{t}\right\|^{2}+\varepsilon\left(\frac{q_{1}-2}{4}\right)\|\nabla u\|^{2} \\
& +\varepsilon\left(\frac{q_{1}-2}{4}-k^{1-p_{1}} C_{1}\right)\left\|\nabla u_{t}\right\|^{2}+\varepsilon\left(\frac{q_{1}-2}{4}\right)\|\Delta u\|^{2} \tag{103}\\
& \varepsilon\left(\frac{q_{1}+2}{2}-k^{1-p_{1}} C_{1}\right) \mathscr{H}(t)+\varepsilon\left(\frac{q_{1}-2}{2 q_{1}}-k^{1-p_{1}} C_{1}\right)\|u\|_{q_{1}}^{q_{1}}, \tag{104}
\end{align*}
$$

equation:
where

$$
\begin{equation*}
N(t)=\Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right) . \tag{105}
\end{equation*}
$$

At this point, we choose k large enough so that the coefficients of $\mathscr{H}(t),\left\|u_{t}\right\|^{2},\left\|\nabla u_{t}\right\|^{2}$, and $\|u\|_{q_{1}}^{q_{1}}$ in Equation (104) are strictly positive; hence, we get the following equation:

$$
\begin{align*}
\Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right) \geq & {\left[(1-\alpha)-\varepsilon k \frac{p_{2}-1}{p_{2}}\right] \mathscr{H}^{-\alpha}(t) \mathscr{H}^{\prime}(t) } \\
& +\varepsilon\left[\begin{array}{c}
\mathscr{H}(t)+\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2} \\
+\|\Delta u\|^{2}+\|u\|_{q_{1}}^{q_{1}}
\end{array}\right] \tag{106}
\end{align*}
$$

where $\gamma>0$ is the minimum of these coefficients. Once k is fixed (hence γ), we pick ε small enough so that $(1-\alpha)$ $\varepsilon k\left(p_{2}-1\right) / p_{2} \geq 0$ and

$$
\begin{equation*}
\Psi(0)=\mathscr{H}^{1-\alpha}(0)+\varepsilon \int_{\Omega} u_{0} u_{1} d x+\frac{\varepsilon}{2}\left\|\nabla u_{0}\right\|^{2}>0 \tag{107}
\end{equation*}
$$

Therefore, Equation (106) takes the following form:

$$
\begin{align*}
& \Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right) \\
& \geq \varepsilon \gamma\left[\mathscr{H}(t)+\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|\Delta u\|^{2}+\|u\|_{q_{1}}^{q_{1}}\right] . \tag{108}
\end{align*}
$$

Consequently, we have the following equation:

$$
\begin{equation*}
\Psi(t) \geq \Psi(0)>0, \text { for all } t \geq 0 \tag{109}
\end{equation*}
$$

Next, we would like to show the following equation:
$\Psi^{\prime}(t)+\frac{d}{d t}\left(\varepsilon \int_{\Omega} \nabla u \nabla u_{t} d x\right) \geq \Gamma \Psi^{1 /(1-\alpha)}(t)$, for all $t \geq 0$,
where Γ is a positive constant depending on $\varepsilon \gamma$ and C (the constant of Equation (81)). Once Equation (110) is established, we obtain in a standard way the finite time blow-up of $\Psi(t)$, hence of u (see Batle et al. [21] for instance).

To prove Equation (110), we first estimate the following equation:

$$
\begin{align*}
\left|\int_{\Omega} u u_{t}(x, t) d x\right| & \leq\|u\|_{2}+\left\|u_{t}\right\|_{2} \tag{111}\\
& \leq C\left(\|u\|_{q_{1}}+\left\|u_{t}\right\|_{2}\right),
\end{align*}
$$

which implies:

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C\|u\|_{q_{1}}^{1 /(1-\alpha)}\left\|u_{t}\right\|_{2}^{1 /(1-\alpha)} \tag{112}
\end{equation*}
$$

Again Young's inequality gives the following equation:

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C\left[\|u\|_{q_{1}}^{\mu /(1-\alpha)}+\left\|u_{t}\right\|_{2}^{\theta /(1-\alpha)}\right] \tag{113}
\end{equation*}
$$

for $\frac{1}{\theta}+\frac{1}{\mu}=1$. We take $\theta=\frac{2}{1-\alpha}$, to get $\frac{\mu}{1-\alpha}=\frac{2}{1-2 \alpha} \leq q_{1}$ by Equation (92). Therefore, Equation (113) becomes:

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C\left[\|u\|_{q_{1}}^{s}+\left\|u_{t}\right\|_{2}^{2}\right] \tag{114}
\end{equation*}
$$

where $s=\frac{2}{1-2 \alpha} \leq q_{1}$. By using Equation (83), we obtain for all $t \geq 0$:

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C\left[\mathscr{H}(t)+\left\|u_{t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|u\|_{q_{1}}^{q_{1}}\right] . \tag{115}
\end{equation*}
$$

Finally, by noting the following equation:

$$
\begin{align*}
\Psi^{1 /(1-\alpha)}(t) & \leq C\left[\mathscr{H}^{1 /(1-\alpha)}(t)+\varepsilon \int_{\Omega} u u_{t}(x, t) d x\right]^{1 /(1-\alpha)} \\
& \leq 2^{1 /(1-\alpha)} C\left[\mathscr{H}^{1 /(1-\alpha)}(t)+\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)}\right], \tag{116}
\end{align*}
$$

and combining it with Equations (108) and (115), the inequality (110) is established. A simple integration of Equation (110) over ($0, t$), then yields the following equation:

$$
\begin{equation*}
\Psi^{1 /(1-\alpha)}(t) \geq \frac{1}{\Psi^{-\alpha /(1-\alpha)}(t)-\Gamma t \alpha /(1-\alpha)} \tag{117}
\end{equation*}
$$

Therefore, Equation (117) shows that $\Psi(t)$ blows up in finite time:

$$
\begin{equation*}
\Psi^{*} \geq \frac{1-\alpha}{\Gamma \alpha[\Psi(0)]^{\alpha /(1-\alpha)}} \tag{118}
\end{equation*}
$$

where Γ and α are positive constant with $\alpha<1$ and Ψ is given by Equation (91). This completes the proof.

Data Availability

There are no underlying data supporting the results of the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] I. G. Petrovsky, "Über das cauchysche problem für systeme von partiellen differential-gleichungen," Математический сборник, vol. 44, pp. 815-870, 1937.
[2] I. G. Petrovsky, "Sur l'ánalyticité des solutions des systémes d'équations différentielles," Matematiceskij sbornik, vol. 47, pp. 3-70, 1939.
[3] J. Ferreira, N. Irkıl, E. Pişkin, C. Raposo, and M. Shahrouzi, "blow up of solutions for a Petrovsky type equation with logarithmic nonlinearity," Bulletin of the Korean Mathematical Society, vol. 59, no. 6, pp. 1495-1510, 2022.
[4] Y. Chen, S. Levine, and M. Rao, "Variable exponent, linear growth functionals in image restoration," SIAM Journal on Applied Mathematics, vol. 66, no. 4, pp. 1383-1406, 2006.
[5] L. Diening, P. Hasto, P. Harjulehto, and M. M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg, 2017.
[6] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, 2000.
[7] A. Ouaoua and W. Boughamsa, "Well-posedness and stability result for a class of nonlinear fourth-order wave equation with variable-exponents," International Journal of Nonlinear Analysis and Applications, vol. 14, no. 1, pp. 1769-1785, 2023.
[8] S. Antontsev, J. Ferreira, and E. Pişkin, "Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinerarities," Electronic Journal of Differential Equations, vol. 2021, no. 6, pp. 1-18, 2021.
[9] Z. Tebba, S. Boulaaras, H. Degaichia, A. Allahem, and A. Farouk, "Existence and blow-up of a new class of nonlinear damped wave equation," Journal of Intelligent \& Fuzzy Systems, vol. 38, no. 3, pp. 2649-2660, 2020.
[10] Z. Zhang and Q. Ouyang, "Global existence, blow-up and optimal decay for a nonlinear viscoelastic equation with nonlinear damping and source term," Discrete and Continuous Dynamical Systems-B, vol. 28, no. 9, pp. 4735-4760, 2023.
[11] Z. Zhang, Z. Liu, Y. Deng, J. Huang, and C. Huang, "Long time behavior of solutions to the damped forced generalized

Ostrovsky equation below the energy space," Proceedings of the American Mathematical Society, vol. 149, no. 4, pp. 15271542, 2021.
[12] Z.-Y. Zhang and J.-H. Huang, "On solvability of the dissipative Kirchhoff equation with nonlinear boundary damping," Bulletin of the Korean Mathematical Society, vol. 51, no. 1, pp. 189-206, 2014.
[13] Z.-Y. Zhang, Z.-H. Liu, and X.-Y. Gan, "Global existence and general decay for a nonlinear viscoelastic equation with nonlinear localized damping and velocity-dependent material density," Applicable Analysis, vol. 92, no. 10, pp. 2021-2048, 2013.
[14] Z.-Y. Zhang, Z.-H. Liu, X.-J. Miao, and Y.-Z. Chen, "Global existence and uniform stabilization of a generalized dissipative Klein-Gordon equation type with boundary damping," Journal of Mathematical Physics, vol. 52, Article ID 023502, 2011.
[15] E. Pişkin and B. Okutmuştur, An Introduction to Sobolev Spaces, Bentham Science, 2021.
[16] V. Komornik, Exact Controllability and Stabilization the Multiplier Method, Masson-JohnWiley, Paris, 1994.
[17] S. A. Messaoudi, A. A. Talahmeh, and J. H. Al-Smail, "Nonlinear damped wave equation: existence and blow-up," Computers \& Mathematics with Applications, vol. 74, no. 12, pp. 3024-3041, 2017.
[18] J. L. Lions, Quelques Mthodes de Resolution des Problmes aux Limites Nonlinaires, Dunod, Paris, 1969.
[19] S. Zheng, Nonlinear Evolution Equations, Chapman and Hall/ CRC, Florida, 2004.
[20] S. A. Messaoudi, "Global existence and nonexistence in a system of Petrovsky," Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 296-308, 2002.
[21] J. Batle, C. H. R. Ooi, A. Farouk, M. S. Alkhambashi, and S. Abdalla, "Global versus local quantum correlations in the Grover search algorithm," Quantum Information Processing, vol. 15, no. 2, pp. 833-849, 2016.

