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In this article, we investigate a nonlinear Petrovsky equation with variable exponent and damping terms. First, we establish the
local existence using the Faedo—Galerkin approximation method under the conditions of positive initial energy and appropriate
constraints on the variable exponents p(-) and g(-). Finally, we prove a finite-time blow-up result for negative initial energy.

1. Introduction

In this work, we investigate the following initial-boundary
value problem:

where 2 CR" (n€N™) is a bounded domain with smooth
boundary 0£2:

Uy — Au— Auy + A%u — Auy + |u, PO 20, = [u]1™-24, Q% (0,T),

u(x.t) :a%u(x, t) =0, 002 % (0,T), (1)
u(x,0) = uy(x), u(x,0) = u;(x), x € Q,

2<p; <p(x) < py<oo, if n <4,

_4 (3)

,if n>4,
4

2n
2<pr <p(x) Spa<—

—Auy, is a dissipative term,

—Au, is a strong damping term,

(2) and
Auisa Laplace operator,
A’y is abiharmonic operator, 2<q; < q(x) < gy <00, ifn<4,
and uy(x) € H*(Q)NH*(2), u(x) € L*(£2) are initial condi- 2<q, < q(x) < g, < n—4 Lif n>4, (4)
tions. p(-) and ¢q(-) are given measurable functions on £, n—4

satistying the following equations:
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where

p1 = ess in[fzp(x),pz = ess esssup p(x),
X€

x€ENQ (5)
q, = ess inf q(x), g, = ess esssup q(x),
xX€ER xeQ

and the log-Holder continuity condition for A>0,0<d<1:

A
o) < ——2 forallx.y € Q. with |x — y|<6.
p(x) - p(y)| < e =) forallxy €9, wit x - y|<é
(6)

(i) This kind of Equation (1) without variable exponent
has its origin in the canonical model introduced by
Petrovsky [1, 2]. Petrovsky [1, 2] type equation orig-
inated from the study of plate and beams, and it can
also be used in many branches of science, such as
ocean acoustics, geophysics, optics, and acoustics [3].

(ii) The problems with variable exponents arise in many
branches in science such as the image processing,
filtration processes in porous media, flow of electro-
rheological fluids, and nonlinear viscoelasticity
[4-6].

In the study of Ouaoua and Boughamsa [7], they looked
into the following equation:

Uy + A%u — Au+ |u, |02y, = |ul 02y, (7)

They showed the local existence and also proved that the
local solution is global. Antontsev et al. [8] studied the fol-
lowing a nonlinear Petrovsky equation:

Uy 4 A% = Ay + | [P0, = [u] 102, (8)

Under suitable assumptions on the variable exponents and
initial data, they obtain local weak solutions and established a
blow-up result. Tebba et al. [9] discussed a new class of
nonlinear wave equation:

Uy — Au = Auy + alu, |20, = blufpP® -2y, (9)

Under appropriate assumptions on the variable exponents,
they demonstrated the existence of a unique weak solution
using the Faedo—Galerkin method. They also proved the
finite time blow-up of solutions.

Moreover, numerous researchers have studied the math-
ematical behavior of equations using the Faedo—Galerkin
and the perturbed energy method [10-14].

In this work, we are concerned the existence and blow-up
of the problem (1). The obtained existence and blow-up
results improve and generalize many results in the literature.

This work is composed of three sections in addition to
the introduction. Part 2 presents preliminary information
regarding variable exponents Lebesgue and Sobolev spaces.
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Additionally, we outline significant lemmas and assump-
tions. Part 3 focuses on proving the local existence of solu-
tions. In Part 4, we establish the blow-up of solutions with a
positive initial energy.

2. Preliminaries

Throughout this work, we present some important facts
about Lebesgue and Sobolev spaces with variable exponents
(see [5, 15]).

Let r:£2 — [1, oo] be a measurable function, where Q2 is
a domain of R". We define the variable exponent Lebesgue
space by the following equation:

L'®(Q)= {u:2 — R; umeasurablein Q:p,(,(iu)
<00, forsome A>0},

(10)

where p, ) (u) = [o|u(x) |"®) dx. Equipped with the following
Luxembourg-type norm:

Q

The space L") (L) is a Banach space.
The variable-exponent Sobolev space is defined as
follows:

u(x)

r(x)
dx < 1}. (11)

W (2)= {u € L'V)() such that Vu exists and
|Vu| € L'V(2)}.
(12)

This is a Banach space with respect to the norm || u| |W(1)Ar(_Q) =
el [,y + 11V ul |- 1

Furthermore, we set WO'M(Q) to be the closure of
C*(2) in the space W' '()(Q). Let us note that the space
Wy r(')(.Q) has a differenet definition in the case of variable
exponents.

However, under the log-Holder continuity condition,
both definitions are equivalent [5]. The space W~""()(Q),
dual of W' ) (€2), is defined in the same way as the classical
Sobolev spaces, where % + ﬁ =1.

Lemma 1 (Diening et al. [5]). If:
1<r =ess in!fz r(x) < r(x) <r, = esssup r(x) <oo,
xe

xeQ

(13)

then we have:

uls)}-

(14)

min{ ) } < ) (1) < ma{ .
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for anyuc L'0)(Q).

Lemma 2 (Diening et al. [5]). Letm,r,s >1 be measurable
functions defined on 2 such that:

1 1 1

5= o) +r—(y)’ fora.e.y € Q. (15)

Ifv, € L"0)(Q) and v, € L'0)(Q), then vyv, € L) (Q), with:

Ivivallsey < 201 llmo V2l (16)

Lemma 3 (Diening et al. [5]). Ifr is a measurable function
on Q satisfying (6), then the embedding H}(2)L"")(Q) is
continuous and compact. Then, the embedding H:(£2)
SL'0(Q) is continuous and compact.

As per Lemma 3, there exists a positive constant denoted
as ¢, that fulfills the following condition:

llull o) < cllVull,, foru € Hy(£2). (17)

Lemma 4 (Komornik [16]). Let F: Rt — R" be a nonin-
creasing function and assume that there are two constants
a>0 and C>0 in the following equation:

/ Pt (5)ds < CF*(0)E(s). Vt € R*. (18)

t

Then, we have the following equation:

F(1) < F(0) (%) Vi C. (19)

To articulate and demonstrate our outcome, we define
the subsequent functionals:

E(@)= 2 (luell® + [IVull® + Ve + Nl Aul]?)

N =

. (20)
— —\u Q(x)dx’
el

1(t) = ||Vul + l4ul]? - / Wide, (1)
Q

1
—— |u|1™) dx. (22)

10 =50Vl + i) = [

Lemma 5. Let u be a solution of problem (1). Then, the energy
functional satisfies the following equation:

B(t) = - / IV, [2dx — / @z, t€ 0. T),  (23)
Q Q

and

E(t) < E(0). (24)

Proof. Multiplying the first equation in Equation (1) by u,
and integrating over ( yields the following equation:

AL e 2 2 2 _/ L
I (2(||”z|\ + [IVull? + llAu|* + [|Au]?) Qq(x)|“| dx
:—/ \Vut\zdx—/ |1, |0 dix,
o Q
(25)
then:
E(t) = —/Q|Vut|2dx - /Q|ut\f’(")dx§0. (26)

Integrating Equation (26) over (0, t), we obtain the following
equation:

E(t) < E(0). (27)
O

Lemma 6. Under the assumptions of Theorem 5 and E(0)>0
hold:

1(0)>0, (28)

and

0, + 6,<1, (29)



with0<a<1, c; , and c,_, are the bests embedding constants
of H} (2)L1¥)(Q) and H} ()< L1¥) (Q), respectively, then
I(t)>0, for allt € [0, T].

Proof. Due to continuity, there exists T, such that:

I(t) >0, forallt € [0, T,]. (31)

Now, for all t € [0, T], we have the following equation:

1 1
1) =5 (IVull + Jaul) - [ o
1 1
2 5 (IVulP + f14ul) = = (IVul? + flAu]? - 1(1)
G —2 2 ) 1
> —(IVul]® + [|[Au]]?) + —1(2).
2q, Vel +l1Aul) + 1)

(32)
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Using Equation (31), we obtain the following equation:

2
(IVul? + 1au) < 220, foralle € 0.7 (33)
=
By Lemma 5, we get the following equation:
29, 29,
Vul]* 4 ||Au|* < ——=E(t) < E(0). 34
IValf + aul < S E0 < FUEO)L ()

Moreover, according to Lemma 1, we obtain the following
equation:

ull) }

ul) }
+ (1 = a)maxyq [Jul|® . [Jufl® b
q(-)° q(*)

|u|q<x)dx < maxy [jul|Z,,
o q(-)

:amax{HuHZE_),

(35)

By the embedding of H3 (2)<L10)(2) and H} (2)<L10) (L),
we obtain the following equation:

/ u1dx < amax] [ Vuld | Vul2 )
Q

+ (1 = a)max{cl;?

IA

1 Aul|3. 32| Aul3 }

amax{cf, || Vul3'. cf., | Vul3 } x[|Vul3

+ (1 - a)max{c3, [ Aull3'. o, [|AulF } x [[Aul}

IN

+(1- a)max{cg‘*

X [|Aul)3
Then, we have the following equation:

/ ") dx < 0,[|Vul]2 + 05 |Au|? forall £ € [0, T.].
Q

(37)

2 a2 2 2
amaxy cl', <LE(0)> Lok, <iE(O)> X [[Vul)3
T\q1 — 2 "\ -2

2 1z 2 o
(%Em)) L, (%Em))
q —2 TA\q -2

(36)

\
Since 6, + 0, <1, then, we obtain the following equation:

/ |10 dx < ||Vl + [Au| forallt € [0, T.].  (38)
Q
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This implies that:

I(t)>0, forallt € [0, T,]. (39)

By repeating the aforementioned process, we can extend T,
toT. O

3. Local Existence

This section is dedicated to establishing the local existence of
problem (1). We will employ the Faedo—Galerkin method
approximation.

Theorem 7. Suppose that p, g € C(2) and satisfies Equation
(6). Then, for any (uy, u;) € H*(Q)NH*(Q2) X L*(L2), prob-
lem (1) has a unique weak local solution:

(uZ(t) vl) = (Au(t),vy) — (Au
+ (Ju (D[P0 (1), v) = (Jure(£) 119200 (£). vy)

(0) = o = X (14 (0), vy — sy in HH(@2) N FY(2),

(43)

u(0) = uy = él(ui(O), vl)vl — u; in H3(92). (44)

It is worth noting that the systems (42)—(44) can be solved
using Picard’s iteration method for ordinary differential
equations. As a result, a solution exists within the interval
[0, T,) for some T, >0, and we can extend this solution to
the whole interval [0, T') for any given T'>0 by utilizing the a
priori estimates provided below.

The first estimate: Multiplying Equation (42) by u;, ()
and summing over [ from 1 to k:

d (1 1
& G UIP + 19t + g+ ) - [ i)

2q(x)
- _/Q|vu;¢2dx_/g¢ufk|p<x>dx.
(45)

{ux} isabounded sequence in L*((0, T); H2(£2)),
{u)} isabounded sequence in L*((0, T); H2(£2)) n L") (2% (0, T)).

u €L®(0,T), HA(Q),

u, €L°(0,T), H3(2)n L") (2% (0,T)). (40)

Proof. Let {v;}7°, be a basis of Hj(£2) that forms a complete
orthonormal system in L*(£2). Denote Vi = span{v,,v,, ...,
Vi } as the subspace generated by the first k vectors from the
basis {v;}°,. Due to normalization, we have ||v,|| = 1. For a
given integer k, we consider the approximated solution:

u(t) = éulk(t)vl» (41)

where u(t) is the solutions to the following Cauchy
problem:

(1), 1) + (A%u(2),v) = (Aug(t), m)

42
I=1,2,...,k, (42)

\
Then, we obtain the following equation:

B (ue(t)) = - / | - / Jude<o.  (46)

By integrating Equation (45) over the interval (0,t), we
derive the estimate the following equation:

1 1 1 1
2 || +3 | Ve ||? +3 |Au]|? +3 [[Aw?

a0 g
[ e e <0,

Then, from Equation (38), the inequality (47) becomes:

(47)

-2
sup |V + L= sup fau
t€(0,T)

1 te(0,T)

1 e =2
— 4+ =

-i-l sup HAuwz—i—/t/ |uf (x, 5) [P dxds
2 1e(0.1) o) @
< E(0).
(48)

From Equation (48), we conclude that:

(49)



Since {u}} is uniformly bounded in L*™*)(2x [0, T]), then
(x
{|u; P®=24 } is bounded in Lﬂzf_>J‘(Q % [0, T]) hence, up to a

subsequence, |u} [*)=21}, @ weakly in o (Qx [0, T]). A
in Messaoudi et al’s [17] study, we have to show that
D= |u/|p(x)—2 !

Furthermore, from Lemma 3 and Equation (49), we
obtain the following equation:
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{]u)1™2u } is uniformly bounded in L ([0, T]), L*(£2).
(50)

From Equations (49) and (50), we deduce the existence of
a subsequence of uy, (still denoted by the same symbol) and a
function u such that:

u — uweakly starin L ([0, T]; H2(£2)),

), — u' weakly star in L°([0, T1);

|uk|q(x)—2uk—xy/weakly L>([0, T). L?

By the Aubin—Lions compactness Lemma [18], we conclude
from Equation (51) that:

u, — u strongly in C([0, T]; H3(£2)), (52)
which implies:
u, — ueverywherein Q2 x [0, T}. (53)
It follow from Equations (51) and (53) that:

2uweakly in L*([0, T]), L*(£2).
(54)

|| 1092 44— || 25) =

The second estimate: Now, we would like to get more
estimates. In doing so, differentiating Equation (42) with
respect to ¢, we get the following equation:

1),v) = (Au(t),v) -

(' (
+ ((p(x) = 1) |ug(t |P
= ((q(x) -

(Adl'(t),v) + (A2u(t), v) — (Auf (). v))
(1), )
D) |u (1) 109720 (1), ), [ =1,2,.... k.

(55)

Next, multiplying Equation (55) by uj, (t) and summing over
I from 1 to k, we get the following equation:

577 P+ 72+ [[ V][ + flaw [ ?)
4 [ o) = vl s+ [ (7P
Q
- /Q<q<>—1>|uk|q 2 d.
(56)

H? () and weakly in LP*) (2 x (0, T)), (51)
Q).

\
We have the following equation from Holder’s inequality:

Jla) - 1) | 70972 ad ||

(57)
< (@ = D)l 3 16k gy 2521

We have, then u; € L*([0, T|, H}(£2)), then the following
equation:

/ |uk|2q(")‘2dx§/ |“k\2q1‘2dx+/ |ug P22 dx < + oo,
Q Q Q
(58)

since,  2(q;—1)<2(q(x)-1)<2(q,-1)<2;%. The
inequality (57), becomes the equation as follows:

\/ ) = 1))y

2’”@””“‘1" SClHu;cHZ(q(x)—l)Hu;c/HZ'

(59)

We have the following equation from Young’s inequality and
Poincare’s inequality:

f -

©72 [ x| < 5| V|| + o[ |-
(60)
Substituting Equation (60) into Equation (56) and integrat-

ing over (0,t) for all t€ [0, T], we obtain the following
equation:
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[+ 9 [+ s+ V)
< (IO + [V + [V + |40
e [ (102 ).
(61)

It follows from Equation (44) and the fact ||V (0)|* <
¢3]|Aup(0)|]* that:

[ (0)][* = (Au(0). 4(0)) —
+ (1 (0) P21 (0), 1(0)) =

(4u(0)

Utilizing Young’s inequality along with Equations (43) and
(44), we have:

[ (0)]]* < cs, (64)

(e (0 )\q

[ Vi (0)]]* + [|[Aug (0) || < e, (62)

where ¢, is a positive constant independent of k.

By multiplying both sides of Equation (42) by uj(t),
summing over [ from 1 to k and setting ¢ = 0, we obtain the
following equation:

(0)) + (A%ur(0), u}(0)) — (Auj(0), u}(0))

i (0), uk(O)) 1=1.2,...k. (63)

\
where ¢ is a positive constant independent of k.
By Equations (62) and (64), Equation (61) becomes:

/|u§c"2dx+/ |Vu§(’2dx+/ ‘VuZ‘%ix—&—/ ’Au;(‘zdx—&—/ |Vu§(”2dx

< coror [ (G + Vg4 [T+ fang P+ V)

We deduce from Equation (65) and Gronwall’s lemma that:

a2+ ([ [2 4 ([ |2+ [lAw |2 + [ Va2 < s
(66)

for all t € [0, T], where cg is a positive constant independent
of k.
We can infer from Equation (66) that:

{u }is uniformly bounded in L**([0, T]. H}(£2)),
{u}} is uniformly bounded in L ([0, T], H} (2)).
(67)

Given that {v;}°, is a basis of H3(£2), we can deduce that u
satisfies Equation (1). From Equation (51), Equation (68)

\
Similarly, we have the following equation:

(68)

u} is uniformly bounded in L> ([0, T, H3(£2)),
uj is uniformly bounded in L>([0, T], Hj (R2)).

Setting up k — oo and passing to the limit in Equation (42),
we obtain the following equation:

(69)

and Lemma 3.1.7 in Zheng’s [19] study with B= H2(£2) and
L*(9), respectively, we infer that:



{ uj is uniformly bounded in H (£2), (70)

u is uniformly bounded in H (£2).

We get from Equations (43), (44), and (70) that u(0) = u,,
u(0) =u,.
Consequently, the proof of existence is now concluded.
Uniqueness of the solution: Now it remains to prove
uniqueness. Let y and z be two solutions in the class
described in the statement of this theorem, and w= y —z.
Then, w satisfies the following equation:

Wy — Aw — Awy, + Aw — Aw, + |)’t|p(x)_2)’t - |Zt|p(x)_zzt
= |y|q(x>_2y _ |Z|q(x>_22,

(71)
and

w(x,0) = wy(x), w(x,0) = w;(x). (72)

Multiplying Equation (71) by wy;, then integrating with
respect to x, we get the following equation:

1
! / (il + [Vl + Vo, + |Aw[?)dx
02

2
t t
+// \Aw|2dx+// (19:lP9=2y, = |2,P9=22, ) w,dxds
o) @ J o) e
t
=// (Iy]99-2y — |2|909-22 ) w,dxds.
o) @

(73)
By using the inequality:
(Jafp®=2a — |b|P®)2b) (a - b) > 0, (74)
forall a,b€R and a.e. x € Q.
This implies:
[we* + [IVw]|* + | Ve |* + [[Aw]?
(75)

t
< C/ / (Iy]1%)2y — |2]9)22 ) w,dxds.
o) @

By repeating the estimate as in Messaoudi’s [20] study, we
arrive the following equation:

[ (il + [V + [V -+ 4w )ds
Q

t
< c/ / ([ ? + |Vw|?)dxds.
0J Q
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Then:

/ (el + [Vl + [V, + |Aw]2)dx
Q

t
< C/ (Jwe? + [Aw]? + |[Vw|* + |Aw|?)dxds.
0J Q

(77)

Gronwall’s inequality yields the following equation:
[[well? + [Vl + |V, [[* + [[Aw]|* = 0. (78)
Thus, w=0. The shows the uniqueness. O

4. Blow-Up

In this section, we examine the blow-up of the solution to
problem (1). To begin, we introduce the following [20].

Lemma 8. Ifg: 2 — [1,00) is a measurable function and

2<q; <4q(x) < gy<ooforn <4,

2 79
" forn>4, (79)
n—4

holds. Then, we have the following inequalities:
Py () < C[1 A6l + py( (u)). (80)

Lemma 9. Suppose the conditions of Lemma 8 hold and let u
be the solution of Equation (1). Then:

@)
lull, < C(lAul? + [lul3). (81)
(ii)
P () S C(E) + P + [Vt + pyy ). (82)
(iii)

lually, < C(F(E) + [luae I + 1 Vaae|[* + [[ullg;)- (83)
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(iv) Proof. When we multiply both sides by u, and integrate over
the domain £, the result is as follows:
[ulld < Coge (w), (84)
for any ue€Hj(Q2) and 2<s<gq;. Where py)(u)= % B(”utuz IV Vsl =+ JAull) - /Qﬁ |u|‘1(")dx:|
[olul?dx and C>1 a positive constant and 7(t) = — - / V|2 / |, [P di,
E(1). J a a
Then, functions 7(t)and E(¢) will be defined later. (87)

Now, we state and prove our blow-up result.

Theorem 10. Under the conditions of Lemma 9. Also, let
initial energy satisfy E(t) <0 and the exponents p(-) and q(-)
satisfy the following equation:

E'(t) :—/ |Vut|2dx—/ |1, [PX) dx, (88)
Q Q

(n-2)
n—4

2<p1 <p(x) <pr <q1 <q(x) <q,<2 . n>4.

(85) where

Then, the solution of Equation (1) blows up in finite time T", 1 5 5 5 X
in the following sense: E(t)= E(HutH +IVull? + [V [|* + [|[Au]?) (59)
89
1
l—-a — | ——|u|1™Wdx.
‘P(t)—>ooast—>T*SWﬁ(0)~ (86) /Q‘J(x)| |

here £ €(0,1), Y(t) and o will given later in Equations (91) By setting % (¢t) = — E(t), we establish that E(#) <0. Refer-
and (94), respectively. ring to Equation (88), it follows that #(¢) > Z(0)>0:

1 1
7 (t) =—5(|Iut||2+|\W||2+\IVut||2+||Au||2)+/ —— [u|1dx.

24q(x)
1
< —— || dx (90)
/ 24q(x)
1
< — P )
@ a(-)(w)
\
We then define the following equation: By deriving Equation (91) and applying Equation (1), we

acquire the following equation:

(1) = 2 (1) —|—e/ i + 5 [ Vul?, (o1)
Q
W) = (1 ) Z- () (F) + £ / Wdx + e / ity d,
for small e that will be selected later, and @ @ (93)

@ -2 g -p }
0<aq<mind 2—= 2L f1 L 92
{ a1 q(pr—1) 62)

¥ (1) +% <€/QVuVutdx> =1-a)Z ()7 (t)

+ 8/ (u? = |Vul> + |Vu,|* — |Au|*)dx (94)
Q

+ 8/ |u|1%) dx — e/ ulu, P2y, dx.
Q Q
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We subsequently utilize Young’s inequality for all, for all  to estimate the last term in Equation (94) as follows:

5>0, 141 =1 .
/ ot P dx < / L ) d
» Q ap(x)
xr<Zx+ 2y x v 20 (95) plx) =1 o (56)
= s t ) ) = Y, +/ 5[W|ut|lp(x)utdx7
a p)
which yields, by substitution in Equation (94):
|
d -
w(e) + e/ VuVuds) > (1 - a)%-*(0)7'(t)
Q
+ 8/ (uf = |Vul* + |Vu,|* = |Au|?)dx
o 1 (97)
+8/ |u|‘1(")dx—/ —— &) P dx
Q ap(x)
_ / M&%Mpmutdx.
a px)
\
Therefore, by taking & so that §P¥/PX)-1 = kgz=a(t), for
large k to be specified later, and substituting in Equation (97),
we arrive at the following equation:
|
/ d p2 - 1 _ "
P'(t)+— (el VuVudx) > |(1-a)—ek=——|F ()T (t)
dt Q p2
+ 8/ (u? = |[Vul> = |[Vu,|* - |Aul?)dx (98)
Q
Jl=p
te / 10Ty = < gpme1(p) / ) dx.
Q b1 Q
\
Adding and subtracting eq, H(t) from the right-hand side of
Equation (98), we obtain the following equation:
|
! d b2 - 1 - 4
V(t)+— (e VuVudx| > |(1-a)-ek=——|F () (t)
dt Q )2
+ s(l +@)/ uldx + s(@ - 1)/ |Vu|?dx
2 Q 2 Q (99)

+ 8(%— 1)/Q|Vu,|2dx+£(% - 1)/Q|Au|2dx

1=py
+eq F(t) — ek 7["'0’2‘1)(1‘)/ [P dx.
b Q
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By exploiting Equation (99) and the inequality Lemma 9, we
obtain the following equation:

G (1) / Q\u|P<">de%’“@2_1)(t) ( ()7 + o(u )m)

100)
Lt prtaq (p2—1 p2taq (pa—1) ’ (
< (2)" a0 o)
\
hence, Equation (100) yields the following equation:
|
! d p2 - l _ "
Y'(t)+—\e| VuVudx)> |(1-a)-ek——|T () (t)
dt Q )2
ql 2 ﬂ_ 2
+e( )/Qutdx—l—e(z 1)/Q|Vu| dx
qr _ 2 q_ 2 101
+£(2 1 /Q|Vu,| dx+£<2 1)/Q|Au| dx (101)
kP /1) alp-1)
+eqH(t) —¢ o\

1+aq, (p,—1 +aq, (p,—1
x C(fJully ) 4 e D).

\
We then use Lemma 8 and Equation (92), for s=p, +
aqi(p,—1)<q, and s=p,+aq,(p,-1)<q,, to deduce
from Equation (101):

0 +% <e / QVuVuzdx> > [(1 —a) - ekpz_l} T ()2 (1)

j 2

+e(l+%)/ dx—f—e(@ )/Q|Vu|2dx (102)
e(% - 1)/Q|Vut|2dx+ s(%— 1)/Q\Au|2dx

_|_
+e[q (1) — K CUZ(8) + |l + VeI + [[ullg)]

where Cl :;—?(qll)(l(lh_l)_ By noting that: N(f) > |:(l _ (1) _ 8kpZ - 1:| %_a(t)%l(t)

2
6
R £ 0 PO
%(t)z—H“qui—E(HutH + || Vul]? + || Vu,||* + [|Au|]?),
N e (’1‘ kl-P-c1)||w||2+e(‘h )HMIZ
( e )%(t)+e(q1—‘—k1-mc1>||u||z;
2q,

and writing ¢, = (q; +2)/2 + (¢, — 2)/2 yields the following (104)
equation:

(103)
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where

N(t)=Y'(¢) —l—% <€/QVuVutdx>. (105)

¥'(t)

where y>0 is the minimum of these coefficients. Once k is
fixed (hence y), we pick ¢ small enough so that (1-a)—

ek(p, —1)/p, >0 and

Y(0)=1%(0) + e/ ugudx + % [Vuel*>0.  (107)
Q

Therefore, Equation (106) takes the following form:

d
Y(t) +— (e/ VuVutdx>
dt Q
2 ey [2(t) + [l + [|Vail]? + [ Ve |2 + ([ Aul> + [Jull]-
(108)
Consequently, we have the following equation:
Y(t) > ¥ (0)>0, forallt > 0. (109)

Next, we would like to show the following equation:

d
P(t) + 7 (s/ VuVugix) > /-9, forallt >0,
Q

(110)

where I" is a positive constant depending on ¢y and C (the
constant of Equation (81)). Once Equation (110) is estab-
lished, we obtain in a standard way the finite time blow-up of
¥ (t), hence of u (see Batle et al. [21] for instance).

To prove Equation (110), we first estimate the following
equation:

‘/ uu,(x, t)dx
Q

<lully + [luell

<C(llully, + lll,).

(111)
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At this point, we choose k large enough so that the coeffi-
cients of Z (), ,and ||u||2! in Equation (104)
are strictly positive; hence, we get the following equation:

+% <e/QVuVutdx) > {(1 -a) - Skpzp—:l} () (t)

s 106
%m+ww%ﬂwwLHWWW] (106)
+lAul? + [lul
[
which implies:
1/(1-a)
‘/JW@&M < Clul YO g JY079. (112)

Again Young’s inequality gives the following equation:

‘/ uu,(x, t)dx
Q

fore—i—l—l We take 6 =-%, L =—2-<q, by
Equation (92). Therefore, Equation (113) becomes.

1/(1—a)

(1- 0/(1
< |l + i),

(113)

to get ;=

1—

1/(1-a
’/ uu,(x, t)dx <
Q

where s=
all t>0:

1/
‘/ uu (x, t)dx
Q

(114)

Clluly, + 3
1552 < q1- By using Equation (83), we obtain for

(1-0)
<CA () + [l ]? + [IVee|1* + Jul§]-

(115)
Finally, by noting the following equation:

p1/(1-0) (1) SC{%I/(I—HO( )+ g/ uu,(x, t)dx

‘ / uu, (x dx

} 1/(1-a)

Szl/(l -a) |:%1/1 a)

/(1= a)]

(116)

and combining it with Equations (108) and (115), the
inequality (110) is established. A simple integration of
Equation (110) over (0,t), then yields the following
equation:
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P10 (1) > 1

2y )i -a) 17

Therefore, Equation (117) shows that ¥(¢) blows up in finite
time:

1-a

* Talw )7 e

where I" and a are positive constant with @< 1 and ¥ is given
by Equation (91). This completes the proof. O
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