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In this paper, we are concerned with traveling wave solutions for two preys–one predator system with switching effect. First, we
discuss that there is no traveling wave solution for this system by using linearization method. Second, applying super-sub solution
method we establish the existence of semitraveling wave solutions with the minimal speed explicitly defined. Moreover, using the
method of Lyapunov function and LaSalle’s invariance principle, under certain conditions, we obtain that the semitraveling wave
solutions connect the only positive equilibrium point at infinity, are actually traveling wave solutions. Finally, the numerical
experiments support the validity of our theoretical results.

1. Introduction

Saha and Samanta [1] considered the following two
preys–one predator system with switching effect:

dx1
dt

¼ α1x1 1 −
x1
K1

� �
−

β1x21y
1þ x1 þ x2

;

dx2
dt

¼ α2x2 1 −
x2
K2

� �
−

β2x22y
1þ x1 þ x2

;

dy
dt

¼ τ1β1x21y þ τ2β2x22y
1þ x1 þ x2

− by;

8>>>>>>>><>>>>>>>>:
ð1Þ

where xiðtÞ ði¼ 1; 2Þ and yðtÞ are the densities of two preys
and one predator, respectively. α1; α2;K1;K2; β1; β2; τ1; τ2
and b are positive constants, b is natural mortality. For more
specific background details on this system, we can take a look
at [1].

Intrapopulation competition of the predator is a key fac-
tor in accurately predicting the population spread of the
model. Moreover, due to the uneven distribution of preys
and predators in different spaces, in the current paper, we
study the following PDE:

∂x1
∂t

¼ d1△ x1 þ α1x1 1 −
x1
K1

� �
−

β1x21y
1þ x1 þ x2

;

∂x2
∂t

¼ d2△ x2 þ α2x2 1 −
x2
K2

� �
−

β2x22y
1þ x1 þ x2

;

∂y
∂t

¼ d3△ y þ τ1β1x21y þ τ2β2x22y
1þ x1 þ x2

− by −my2;

8>>>>>>>><>>>>>>>>:
ð2Þ

wherem is reduction rate of intrapopulation competition, d1;
d2; d3 denote the diffusion coefficients, respectively, which
are positive constants.

If α2β1K1 ¼ α1β2K2, by direct calculation, the system (2)
has the planar equilibrium point and interior equilibrium
point E1ðK1;K2; 0Þ and E2ðη∗1; η∗2; θ∗Þ, and

θ∗ ¼ α1
β1η

∗
1
1þ η∗1 þ η∗2ð Þ 1 −

η∗1
K1

� �
; η∗2 ¼

K2

K1
η∗1; ð3Þ

where η∗1 is a real and positive root of the equation a1x31 þ
a2x21 þ a3x1 þ a4 ¼ 0, with
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a1 ¼ τ1β
2
1 þ τ2β1β2

K2
2

K2
1
þ mα1

K1
1þ K2

K1

� �
2
;

a2 ¼ −β1b 1þ K2

K1

� �
þ 2mα1

K1
1þ K2

K1

� �
−mα1 1þ K2

K1

� �
2
;

a3 ¼ −bβ1 þ
mα1
K1

− 2mα1 1þ K2

K1

� �
;

a4 ¼ −mα1:

ð4Þ

In the past three decades, the existence and asymptotic
behavior of solutions for some models had been studied by
many scholars. Zhang and Ouyang [2] proved the existence
of global weak solutions for a viscoelastic wave equation with
memory term, nonlinear damping and source term by using
the potential well method combined with Galerkin approxi-
mation procedure. Zhang and Miao [3], using Glerkin
method and the multiplier technique, obtained the existence
and asymptotic behavior of strong and weak solutions for
nonlinear wave equation with nonlinear damped boundary
conditions, respectively.

Population ecology has been well-developed as an impor-
tant branch of biomathematics, in which the existence and
nonexistence of traveling wave solutions of biological system,
is one of the most in-depth researches by scholars, where the
Lotka–Volterra model has attracted much attentions. Dun-
bar [4, 5] in the known papers proved the existence of trav-
eling wave solutions to a special prey–predator model by
applying Lyapunov function. He proposed a two-step
method for the existence of traveling wave solutions of
some specific systems for prey and predator interactions.
The first step, applying shooting argument, he demonstrated
the existence of semitraveling wave solutions. The second
step, he proved the semitraveling wave solutions actually
connect to the positive equilibrium point by using the Lya-
punov functions method. Lin et al. [6] studied the one
prey–two predators model, and proved existence of traveling
wave front connecting the trivial equilibrium point and the
positive equilibrium point with some certain conditions by
using the cross iteration method. Due to the variety and
inhomogeneity of ecosystems, the study of the general diffu-
sive prey–predator model has more important significance.
Wang and Fu [7], by establishing Lyapunov function,
proved the existence of traveling waves solutions to the
reaction–diffusion prey–predator models with kinds of func-
tional responses, may be decided by the predator and prey
populations at the same time. Hsu and Lin [8] considered
general diffusive prey–predator models. First, using the
method of counter evidence they proved that the general
diffusive predator–prey models has no positive traveling
wave solutions under specific conditions. Then, applying
the method of super-sub solutions, they proved existence
of semitraveling wave solutions. Final, establishing the
strictly contracting rectangles they concluded existence of
traveling wave solutions. Huang and Ruan [9] studied the
existence of traveling wave solutions for a reaction–diffusion
system. Ai et al. [10] by constructing Lyapunov function and
using the squeeze method proved a similar general existence

result. For more results, we can see [11–18] and the refer-
ences therein.

A solution ðx1ðμ; tÞ; x2ðμ; tÞ; yðμ; tÞÞ for system (2) is
called a traveling wave solution when it has the special form

x1 μ; tð Þ; x2 μ; tð Þ; y μ; tð Þð Þ ¼ X1 ξð Þ;X2 ξð Þ;Y ξð Þð Þ; ξ¼ μþ ct;

ð5Þ

where the wave speed c is positive constant, and ðX1;X2;YÞ
satisfies the following ODE system:

cX0
1 ¼ d1X00

1 þ α1X1 1 −
X1

K1

� �
−

β1X2
1Y

1þ X1 þ X2
;

cX0
2 ¼ d2X00

2 þ α2X2 1 −
X2

K2

� �
−

β2X2
2Y

1þ X1 þ X2
;

cY 0 ¼ d3Y 00 þ Y
τ1β1X2

1 þ τ2β2X2
2

1þ X1 þ X2
− bY −mY2;

8>>>>>>>><>>>>>>>>:
ð6Þ

and the boundary conditions as follows:

0<Xi ξð Þ ≤ Ki; i¼ 1; 2ð Þ; 0<Y ξð Þ ≤ Y0; 8ξ 2 R; ð7Þ

X1;X0
1;X2;X0

2;Y ;Y
0ð Þ −1ð Þ ¼ K1; 0;K2; 0; 0; 0ð Þ; ð8Þ

X1;X0
1;X2;X0

2;Y ;Y
0ð Þ 1ð Þ ¼ η∗1 ; 0; η

∗
2; 0; θ

∗; 0ð Þ; ð9Þ

where Y0 is a positive constant.
In this paper, based on the idea from Ai et al. [10], we

consider traveling wave solutions for two preys–one predator
systems (2) with switching effect. We prove that the nonex-
istence and existence of traveling wave solutions of system
(2), namely, we show the nonexistence and existence of pos-
itive solutions of system (6) satisfying (7), (8) and (9). Let us
point out that although this idea has been used by the others,
our application is new. Our problem is more difficult to
solve, and we need more precise calculations.

The structure of the paper is organized as follows.
Section 2 is devoted to the proof of nonexistence of semitra-
veling wave solutions for the system (2) by using lineariza-
tion method. Section 3 is concerned with existence of
semitraveling wave solutions by method of the super-sub
solution and Schauder fixed point theorem. Such semitravel-
ing wave solutions connect the planar equilibrium point
E1ðK1;K2; 0Þ at ξ→ −1. In Section 4, utilizing the Lyapu-
nov function techniques, we show, with the aid of LaSalle’s
invariance principle, that semitraveling wave solutions of
system (2) are traveling wave solutions. These traveling wave
solutions connect the only positive equilibrium point E2ðη∗1 ;
η∗2; θ

∗Þ at ξ→1 under the additional conditions. In
Section 5, the numerical experiments support the validity
of our theoretical results.

Hereafter, for convenience, we shall apply i to represent
the number 1; 2.
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2. Nonexistence of Semitraveling
Wave Solutions

We pay attention to the nonexistence of semitraveling solu-
tions for the system (2) in the section.

Let

s¼ τ1β1K2
1 þ τ2β2K2

2

1þ K1 þ K2
− b; c∗ ¼ 2

ffiffiffiffiffiffi
d3s

p
: ð10Þ

Our main result is as following.

Theorem 1. Suppose s>0 holds. For c<c∗, the system (6) does
not have positive solutions satisfying (8).

Proof. Linearizing the last equation of system (6) around ðK1;
K2; 0Þ, we get

cY 0 ¼ d3Y 00 þ Y
τ1β1K2

1 þ τ2β2K2
2

1þ K1 þ K2
− b

� �
: ð11Þ

Thus the characteristic equation of (11) is as follows:

d3λ2 − cλþ s¼ 0: ð12Þ

Suppose λ1 and λ2 are two eigenvalues of (12), namely

λ1 ¼
c −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4d3s

p
2d3

; λ2 ¼
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4d3s

p
2d3

: ð13Þ

For contradiction, we suppose ðX1;X2;YÞ is a positive
solution of system (6) with c<c∗ ¼ 2

ffiffiffiffiffiffi
d3s

p
satisfying (8). If

c≤ − 2
ffiffiffiffiffiffi
d3s

p
, so that λi<0, then positive solution of (11) is

unbounded as ξÀ! −1. Suppose jcj<2
ffiffiffiffiffiffi
d3s

p
, then λ1 and

λ2 form a complex conjugate pair: pÆ qi, where p¼ c=ð2d3Þ;
q¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d3s − c2

p
=ð2d3Þ. So the positive solutions of (11) are

epξcos qξ and epξsin qξ, and they cannot be of the same sign

as ξ near negative infinity. Since both eigenvalues have non-
zero real parts, the stability of the original equation at equi-
librium ðK1;K2; 0Þ is the same as that of the linearized
equation at equilibrium ðK1;K2; 0Þ, yielding a contradiction.
This proves Theorem 1. □

3. Existence of Semitraveling Wave Solutions

In order to prove the existence of semitraveling wave solu-
tions for system (2), we first give the definition super-sub
solutions, then we construct a pair of super-sub solutions of
system (2), and finally we prove the existence of semitravel-
ing wave solutions for system (2) by applying method of
super-sub solution and Schauder fixed point theorem.

The definition of super-sub solutions of (6) as following.

Definition 1. The functions ðX 1;X 2;Y Þ and ðX 1;X 2;Y Þ on
R are called a pair of super-sub solutions of (6) if the
following

(i)

0 ≤ Xi ≤ Xi ≤ Ui0;   0 ≤ Y ≤ Y ≤ Y0 ; ð14Þ

hold, where Ui0 are positive constants, ðX 1;X 2;Y Þ; ðX1;X 2;
Y Þ on R are continuous functions.

(ii) There is a finite set B so that:
(a) Xi;Xi;Y ;Y 2C2ðR=BÞ.
(b) The limits to X 0

i;X
0
i;Y

0;Y 0; 8ξ2B satisfy:

X 0
i ξ−ð Þ ≤ X 0

i ξþð Þ;  X 0
i ξ−ð Þ ≥ X 0

i ξþð Þ;  
Y 0 ξ−ð Þ ≤ Y 0 ξþð Þ;  Y 0 ξ−ð Þ ≥ Y 0 ξþð Þ:

ð15Þ

(iii) For continuous functions ðX1;X2;YÞ with Xi ≤
Xi ≤Xi; Y ≤Y ≤Y ; 8ξ2R/B satisfy:

d1X
00
1 ξð Þ − cX 0

1 ξð Þ þ α1X 1 ξð Þ 1 −
X 1 ξð Þ
K1

� �
−

β1X
2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ ≤ 0;

d2X
00
2 ξð Þ − cX 0

2 ξð Þ þ α2X 2 ξð Þ 1 −
X 2 ξð Þ
K2

� �
−

β2X
2
2 ξð ÞY ξð Þ

1þ X1 ξð Þ þ X 2 ξð Þ ≤ 0;

d3Y
00 ξð Þ − cY 0 ξð Þ þ Y ξð Þ τ1β1X

2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − bY ξð Þ −mY 2 ξð Þ ≤ 0;

d1X 00
1 ξð Þ − cX 0

1 ξð Þ þ α1X 1 ξð Þ 1 −
X 1 ξð Þ
K1

� �
−

β1X 2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ ≥ 0;

d2X 00
2 ξð Þ − cX 0

2 ξð Þ þ α2X 2 ξð Þ 1 −
X 2 ξð Þ
K2

� �
−

β2X 2
2 ξð ÞY ξð Þ

1þ X1 ξð Þ þ X 2 ξð Þ ≥ 0;

d3Y 00 ξð Þ − cY 0 ξð Þ þ Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − bY ξð Þ −mY 2 ξð Þ ≥ 0:

ð16Þ
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The following will provide the super-sub solutions
required to show the existence of semitraveling wave solu-
tions of the system (6) on c>c∗ and c¼ c∗, respectively.

Assume

τ1β1K2
1 þ τ2β2K2

2 ≤meλx; 8x< lnY0

λ
; ð17Þ

where Y0 ¼ðτ1β1K2
1 þ τ2β2K2

2 − bÞ=m, and

eY0 1þ K1 þ K2ð Þ ≥ K1 þ K2; ð18Þ

hold.

Lemma 1. Assume that c>c∗, s>0, and (17) is satisfied. λ¼
ðc−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4d3s

p
Þ=ð2d3Þ. Constants ω; κ; ζ;B one by one in

the following order such that the inequalities

0<ω<min λ;ωþ
1 ;ω

þ
2f g;

κ>max
QKλ=ω−1

1

κ1

 !
ω=λ

;
QKλ=ω−1

2

κ2

 !
ω=λ

; K1
1
Y0

� �
ω=λ

; K2
1
Y0

� �
ω=λ

; K1; K2

( )
;

0<ζ<ω;   − d3 λþ ζð Þ2 þ c λþ ζð Þ − s>0;

B>max
κ

K1

� �
ζ=ω

;
κ

K2

� �
ζ=ω

;
S 1þ 2κð Þ

−d3 λþ ζð Þ2 þ c λþ ζð Þ − s

� �
;

ð19Þ

hold, where

ωþ
i ¼ c

di
; κi ¼ cω − diω2; Q¼max β1K2

1 ; β2K
2
2f g; ð20Þ

S¼max
2τ1β1K1

1þ K1 þ K2
;

2τ2β2K2

1þ K1 þ K2
;m

� �
: ð21Þ

We define XiðξÞ;XiðξÞ;Y ðξÞ;Y ðξÞ on R as follows:

X i ξð Þ ≡ Ki;  Xi ξð Þ ¼ Ki − κeωξ; 8  ξ ≤ ai;

0; 8 ξ>ai;

(

Y ξð Þ ¼ eλξ; 8 ξ ≤ a3;

Y0; 8 ξ>a3;

(
 Y ξð Þ ¼ eλξ 1 − Beζξð Þ; 8 ξ ≤ a0;

0; 8 ξ>a0;

(
ð22Þ

where

a0 ¼ −
1
ζ
lnB;   ai ¼ −

1
ω

ln
κ

Ki
;   a3 ¼

1
λ
lnY0: ð23Þ

Then the system (6) has a pair of super-sub solutions ðX 1;
X 2;Y Þ and ðX 1;X 2;Y Þ.

Proof. Now we prove the above constants are well defined.
First, we have

0<
c −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4d3s

p
2d3

¼ λ; ð24Þ

so that ω is well defined. Since choice of ω yields that cω−

diω2>0, the κi is well defined, so κ is well defined.
Due to the assumptions of ω; κ; ζ;B, we have

a0<maxfa1; a2g<minf0; a3g. According to the definitions

of Xi;Xi;Y ;Y , it is clear that XiðξÞ<XiðξÞ and Y ðξÞ<Y ðξÞ,
8ξ2R, and

X 0
i ai−ð Þ ¼ −ωKi<0¼ X 0

i aiþð Þ;
Y 0 a0−ð Þ ¼ −ζeλa0 <0¼ Y 0 a0þð Þ;
Y 0 a3−ð Þ ¼ λY0>0¼ Y 0 a3þð Þ:

ð25Þ

Let X1;X2;Y are continuous functions satisfying Xi ≤
Xi ≤Xi and Y ≤Y ≤Y .

Due to X 1 ≡ K1; 8ξ2R, so we obtain

d1X
00
1 ξð Þ − cX 0

1 ξð Þ þ α1X 1 ξð Þ 1 −
X1 ξð Þ
K1

� �
−

β1X
2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ
¼ −

β1K2
1Y ξð Þ

1þ K1 þ K2
<0:

ð26Þ

If ξ<a1, then X 1ðξÞ¼K1 − κeωξ; d1X 00
1ðξÞ− cX 0

1ðξÞ¼
κωðc− d1ωÞeωξ. Combining with α1X 1ðξÞð1−X 1ðξÞ=K1Þ≥
0, we have

α1X 1 ξð Þ 1 −
X1 ξð Þ
K1

� �
−

β1X 2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ
≥ −

β1X 2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ
≥ − β1K2

1Y ξð Þ
≥ − QY ξð Þ:

ð27Þ

For ξ<a1, since a1<a3, we have Y ðξÞ¼ eλξ and the
inequality
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d1X 00
1 ξð Þ − cX 0

1 ξð Þ þ α1X1 ξð Þ 1 −
X1 ξð Þ
K1

� �
−

β1X
2
1 ξð ÞY ξð Þ

1þ X1 ξð Þ þ X2 ξð Þ
≥ κω c − d1ωð Þeωξ − Qeλξ

¼ κeωξ ω c − d1ωð Þ − Qe λ−ωð Þξ

κ

� �
≥ κeωξ ω c − d1ωð Þ − Qe λ−ωð Þa1

κ

� �
¼ κeωξ ω c − d1ωð Þ − QKλ=ω−1

1 κ−λ=ω
h i

:

ð28Þ

Due to definition of κ, so we have

d1X 00
1 ξð Þ − cX 0

1 ξð Þ þ α1X 1 ξð Þ 1 −
X 1 ξð Þ
K1

� �
−

β1X 2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ ≥ 0:
ð29Þ

For ξ>a1, we obtain X1ðξÞ¼ 0, and then

d1X 00
1 ξð Þ − cX 0

1 ξð Þ þ α1X 1 ξð Þ 1 −
X1 ξð Þ
K1

� �
−

β1X 2
1 ξð ÞY ξð Þ

1þ X1 ξð Þ þ X2 ξð Þ ¼ 0;
ð30Þ

holds.
Similarly, we have

d2X
00
2 ξð Þ − cX 0

2 ξð Þ þ α2X 2 ξð Þ 1 −
X 2 ξð Þ
K2

� �
−

β2X
2
2 ξð ÞY ξð Þ

1þ X1 ξð Þ þ X 2 ξð Þ ≤ 0; 8ξ 2 R;

d2X 00
2 ξð Þ − cX 0

2 ξð Þ þ α2X 2 ξð Þ 1 −
X 2 ξð Þ
K2

� �
−

β2X 2
2 ξð ÞY ξð Þ

1þ X1 ξð Þ þ X 2 ξð Þ ≥ 0; 8ξ 2 R:
ð31Þ

For ξ<a3, we have Y ðξÞ¼ eλξ, and by assumption (17),
we infer

d3Y
00 ξð Þ − cY 0 ξð Þ þ Y ξð Þ τ1β1X

2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − bY ξð Þ −mY 2 ξð Þ

¼ d3λ2eλξ − cλeλξ þ τ1β1X2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − b −meλξ

� �
eλξ

¼ eλξ d3λ2 − cλþ τ1β1X2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − b −meλξ

� �
¼ eλξ −

τ1β1K2
1 þ τ2β2K2

2

1þ K1 þ K2
þ τ1β1X2

1 ξð Þ þ τ2β2X2
2 ξð Þ

1þ X1 ξð Þ þ X2 ξð Þ −meλξ
� �

≤ eλξ −
1

1þ K1 þ K2
þ 1

� �
τ1β1K2

1 þ τ2β2K2
2ð Þ −meλξ

� �
≤ eλξ τ1β1K2

1 þ τ2β2K2
2ð Þ −meλξ½ �

≤ 0:

ð32Þ

For ξ>a3, since Y ðξÞ¼Y0, so we have

Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − bY ξð Þ −mY 2 ξð Þ

¼ Y0
τ1β1X2

1 ξð Þ þ τ2β2X2
2 ξð Þ

1þ X1 ξð Þ þ X2 ξð Þ − b −mY0

� �
≤ Y0 τ1β1K2

1 þ τ2β2K2
2 − b −mY0ð Þ

¼ 0:

ð33Þ

And hence

d3Y
00 ξð Þ − cY 0 ξð Þ þ Y ξð Þ τ1β1X

2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ

−bY ξð Þ −mY 2 ξð Þ ≤ 0;

ð34Þ

holds.
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For ξ<a0, we have

Y ξð Þ ¼ eλξ 1 − Beζξð Þ;Y ξð Þ ¼ eλξ: ð35Þ

By the definition of B, we obtain Y ðξÞ≤Y ðξÞ≤ eλa0 .
Thus, for ξ<a0, it holds that

Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X2

1 ξð Þ þ X2
2 ξð Þ − bY ξð Þ −mY 2 ξð Þ

¼ sY ξð Þ − Y ξð Þ τ1β1K2
1 þ τ2β2K2

2

1þ K1 þ K2
− b −

τ1β1X2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ

� �
− bY ξð Þ −mY 2 ξð Þ

¼ sY ξð Þ − τ1β1K2
1 þ τ2β2K2

2

1þ K1 þ K2
−

τ1β1X2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ þmY ξð Þ

� �
Y ξð Þ

≥ sY ξð Þ − τ1β1K2
1

1þ K1 þ K2
−

τ1β1X2
1 ξð Þ

1þ K1 þ K2

� �
þ τ2β2K2

2

1þ K1 þ K2
−

τ2β2X2
2 ξð Þ

1þ K1 þ K2

� �
þmY ξð Þ

� �
Y ξð Þ

≥ sY ξð Þ − τ1β1
1þ K1 þ K2

2K1 K1 − X1 ξð Þð Þ þ τ2β2
1þ K1 þ K2

2K2 K2 − X2 ξð Þð Þ þmY ξð Þ
� �

Y ξð Þ
≥ sY ξð Þ − S K1 − X1 ξð Þð Þ þ K2 − X2 ξð Þð Þ þ Y ξð Þ½ �Y ξð Þ
≥ sY ξð Þ − S K1 − X1 ξð Þð Þ þ K2 − X2 ξð Þð Þ þ Y ξð ÞÂ Ã

Y ξð Þ
≥ sY ξð Þ − S κeωξ þ κeωξ þ eλξð ÞY ξð Þ
¼ sY ξð Þ − S κ þ κ þ e λ−ωð ÞξÀ Á

eωξeλξ

≥ sY ξð Þ − S 2κ þ 1ð Þeωξeλξ:

ð36Þ

Combining with the form of Y ðξÞ, for a0<0 and
0<ζ<ω, we conclude

d3Y 00 ξð Þ − cY 0 ξð Þ þ Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X2

1 ξð Þ þ X2
2 ξð Þ − bY ξð Þ −mY 2 ξð Þ

≥ d3Y 00 ξð Þ − cY 0 ξð Þ þ sY ξð Þ − S 2κ þ 1ð Þeωξeλξ
¼ e λþζð Þξ B −d3 λþ ζð Þ2 þ c λþ ζð Þ − s½ � − S 2κ þ 1ð Þe ω−ζð ÞξÈ É
≥ 0:

ð37Þ

For ξ>a0, due to Y ðξÞ¼ 0, so we obtain

d3Y 00 ξð Þ − cY 0 ξð Þ þ Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X2

1 ξð Þ þ X2
2 ξð Þ

−bY ξð Þ −mY 2 ξð Þ ¼ 0:

ð38Þ
The proof is completed. □

Lemma 2. Assume that c¼ c∗, s>0, λ¼ c=ð2d3Þ, M1 ¼ λeY0,
and (17) and (18) are satisfied. Constants ω; κ one by one in
the following order such that the inequalities

0<ω<min λ;ωþ
1 ;ω

þ
2f g;

κ>max e
ω

λ−ω;
QM1

κ1 λ − ωð Þe ;
QM1

κ2 λ − ωð Þe
� �

;
ð39Þ

hold. There is a sufficiently large N0>0 such that for 8N ≥N0,
we define

ai ¼
1
ω

ln
Ki

κ
;   a3 ¼ −

1
λ
;   a0 ¼ −

N2

M2
1
; ð40Þ

and
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Xi ξð Þ ≡ Ki;  Xi ξð Þ ¼ Ki − κeωξ; 8  ξ ≤ ai;

0; 8 ξ>ai;

(

Y ξð Þ ¼ M1 ξj jeλξ; 8 ξ ≤ a3;

Y0; 8 ξ>a3;

(
 Y ξð Þ ¼ eλξ M1 ξj j − N

ffiffiffiffiffi
ξj jpÀ Á

; 8 ξ ≤ a0;

0; 8 ξ>a0:

( ð41Þ

Then the system (6) has a pair of super-sub solutions ðX 1;X 2;
Y Þ and ðX 1;X 2;Y Þ.

Proof. Similar Lemma 1, we can conclude that ω and κ are
well defined. By the assumption ofM1;ω; κ and the ai ði¼ 0;
1; 2; 3Þ, we have a0<ai<a3<0 ði¼ 1; 2Þ, and N is suffi-
ciently large.

Let X1;X2;Y are continuous functions on R satisfying
Xi ≤Xi ≤Xi and Y ≤Y ≤Y .

For ξ<a1, combining with α1X 1ðξÞð1−X 1ðξÞ=K1Þ≥ 0,
we infer that

α1X 1 ξð Þ 1 −
X1 ξð Þ
K1

� �
−

β1X 2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ
≥ −

β1X2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ
≥ − β1K2

1Y ξð Þ
≥ − QY ξð Þ:

ð42Þ

Due to X 1 ¼Ki − κeωξ and a1<a3, so Y ðξÞ¼M1jξjeλξ,
one has

d1X 00
1 ξð Þ − cX 0

1 ξð Þ þ α1X1 ξð Þ 1 −
X 1 ξð Þ
K1

� �
−

β1X 2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ
≥ κω c − d1ωð Þeωξ − QM1 ξj jeλξ

≥ κeωξ ω c − d1ωð Þ − QM1 ξj je λ−ωð Þξ

κ

� �
:

ð43Þ

Since derivative of ðjξjeðλ−ωÞξÞ0>0 for ξ2 ð−1;
− 1=ðλ − ωÞÞ and a1< − 1=ðλ−ωÞ, so that jξjeðλ−ωÞξ

≤ 1=½ðλ − ωÞe� for ξ<a1. In combination with the constraint
on κ, we get

d1X 00
1 ξð Þ − cX 0

1 ξð Þ þ α1X1 ξð Þ 1 −
X 1 ξð Þ
K1

� �
−

β1X 2
1 ξð ÞY ξð Þ

1þ X 1 ξð Þ þ X2 ξð Þ
≥ κeωξ ω c − d1ωð Þ − QM1

κ λ − ωð Þe
� �

≥ 0:

ð44Þ

In addition,

X 0
1 a1−ð Þ ¼ −κωeωa1 ≤ 0¼ X 0

1 a1þð Þ: ð45Þ

Similarly, we obtain

d2X 00
2 ξð Þ − cX 0

2 ξð Þ þ α2X 2 ξð Þ 1 −
X 2 ξð Þ
K2

� �
−

β2X 2
2 ξð ÞY ξð Þ

1þ X1 ξð Þ þ X 2 ξð Þ ≥ 0;
ð46Þ

and

X 0
2 a2−ð Þ ¼ −κωeωa2 ≤ 0¼ X 0

2 a2þð Þ: ð47Þ

For ξ<a0, we have

Y ξð Þ ¼ M1 ξj j − N
ffiffiffiffiffi
ξj jpÀ Á

eλξ;Y ξð Þ ¼M1 ξj jeλξ: ð48Þ
For all large N , it readily follows that

Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − bY ξð Þ −mY 2 ξð Þ

≥ sY ξð Þ − S K1 − X1 ξð Þð Þ þ K2 − X2 ξð Þ þ Y ξð Þð Þ½ �Y ξð Þ
≥ sY ξð Þ − S K1 − X 1 ξð Þð Þ þ K2 − X 2 ξð Þ þ Y ξð ÞÀ ÁÂ Ã

Y ξð Þ
¼ sY ξð Þ − S κeωξ þ κeωξ þM1 ξj jeλξð ÞY ξð Þ
¼ sY ξð Þ −M1S 2κ þM1 ξj je λ−ωð ÞξÀ Á

eωξ ξj jeλξ
≥ sY ξð Þ −M1S 2κ þM1 ξj jð Þ ξj jeωξeλξ:

ð49Þ
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Since

d3 M1ξeλξð Þ00 − c M1ξeλξð Þ0 þ sM1ξeλξ ¼ 0; ð50Þ

so

d3Y 00 ξð Þ − cY 0 ξð Þ þ sY ξð Þ ¼ d3 Y ξð Þ þM1ξeλξð Þ00
−c Y ξð Þ þM1ξeλξð Þ0 þ s Y ξð Þ þM1ξeλξð Þ;

ð51Þ

thus we have

Y ξð Þ þM1ξe
λξð Þ0 ¼ N

2
ffiffiffiffiffiffi
−ξ

p − λN
ffiffiffiffiffiffi
−ξ

p� �
eλξ ¼ N

1

2
ffiffiffiffiffiffi
−ξ

p −

ffiffiffiffiffiffi
−ξ

p
λ

� �
eλξ;

Y ξð Þ þM1ξeλξð Þ00 ¼ N −
1

4ξ
ffiffiffiffiffiffi
−ξ

p þ 1ffiffiffiffiffiffi
−ξ

p λ −
ffiffiffiffiffiffi
−ξ

p
λ2

� �
eλξ;

ð52Þ

and

d3Y 00 ξð Þ − cY 0 ξð Þ þ sY ξð Þ
¼N −

d3
4ξ

ffiffiffiffiffiffi
−ξ

p þ λ
d3ffiffiffiffiffiffi
−ξ

p − d3λ2
ffiffiffiffiffiffi
−ξ

p
−

c

2
ffiffiffiffiffiffi
−ξ

p þ cλ
ffiffiffiffiffiffi
−ξ

p� �
eλξ − sN

ffiffiffiffiffiffi
−ξ

p
eλξ

¼ −d3N

4ξ
ffiffiffiffiffiffi
−ξ

p eλξ:

ð53Þ

Thus we obtain

d3Y 00 ξð Þ − cY 0 ξð Þ þ Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X

2
2 ξð Þ

1þ X1 ξð Þ þ X2 ξð Þ − bY ξð Þ −mY 2 ξð Þ

≥ −
d3N

4ξ
ffiffiffiffiffiffi
−ξ

p −M1S 2κ þM1 ξj jð Þ ξj jeωξ
� �

eλξ:

ð54Þ

Since N is large enough, so it holds that

d3Y 00 ξð Þ − cY 0 ξð Þ þ Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ

−bY ξð Þ −mY 2 ξð Þ ≥ 0:

ð55Þ

Furthermore, we have

Y 0 a0−ð Þ ¼ −M1 þ
N

2
ffiffiffiffiffiffiffi
a0j jp" #

eλa0 ¼ −
M1

2
eλa

0
<0¼ Y 0 a0þð Þ:

ð56Þ

For ξ<a3, now we check the Y ðξÞ. Since

Y ξð Þ ¼ −M1ξeλξ;  Y 0 ξð Þ ¼ −M1 1þ λξð Þeλξ: ð57Þ

So that Y 0ða3 − Þ¼ 0¼Y 0ða3 þÞ. we can apply (17) and
(18) to get

Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − bY ξð Þ −mY 2 ξð Þ − sY ξð Þ

¼ −M1ξeλξ
τ1β1X2

1 ξð Þ þ τ2β2X2
2 ξð Þ

1þ X1 ξð Þ þ X2 ξð Þ − bþmM1ξeλξ
� �

þM1ξeλξ
τ1β1K2

1 þ τ2β2K2
2

1þ K1 þ K2
− b

� �
¼ −M1ξeλξ

τ1β1X2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ þmM1ξeλξ −

τ1β1K2
1 þ τ2β2K2

2

1þ K1 þ K2

� �
≤ −M1ξeλξ τ1β1K2

1 þ τ2β2K2
2 þM1ξ τ1β1K2

1 þ τ2β2K2
2ð Þ − τ1β1K2

1 þ τ2β2K2
2

1þ K1 þ K2

� �
≤ −M1ξeλξ τ1β1K2

1 þ τ2β2K2
2 −

M1

λ
τ1β1K2

1 þ τ2β2K2
2ð Þ − τ1β1K2

1 þ τ2β2K2
2

1þ K1 þ K2

� �
¼ −M1ξeλξ τ1β1K2

1 þ τ2β2K2
2ð Þ 1 − eY0 −

1
1þ K1 þ K2

� �
≤ 0:

ð58Þ
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Thus

Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − bY ξð Þ −mY 2 ξð Þ ≤ sY ξð Þ;

ð59Þ

combining with

d3Y
00 ξð Þ − cY 0 ξð Þ þ sY ξð Þ ¼ 0; ð60Þ

it follows that

d3Y
00 ξð Þ − cY 0 ξð Þ þ Y ξð Þ τ1β1X

2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ

−bY ξð Þ −mY 2 ξð Þ ≤ 0:

ð61Þ

The proof is completed. □

For convenience, let

Fi X1 ξð Þ;X2 ξð Þ;Y ξð Þð Þ ¼ αiXi ξð Þ 1 −
Xi ξð Þ
Ki

� �
−

βiX2
i ξð ÞY ξð Þ

1þ X1 ξð Þ þ X2 ξð Þ i¼ 1; 2ð Þ;

F3 X1 ξð Þ;X2 ξð Þ;Y ξð Þð Þ ¼ Y ξð Þ τ1β1X
2
1 ξð Þ þ τ2β2X2

2 ξð Þ
1þ X1 ξð Þ þ X2 ξð Þ − bY ξð Þ −mY2 ξð Þ:

ð62Þ

Then the system (6) can be written as follows:

cX0
1 ξð Þ ¼ d1X00

1 ξð Þ þ F1 X1 ξð Þ;X2 ξð Þ;Y ξð Þð Þ;
cX0

2 ξð Þ ¼ d2X00
2 ξð Þ þ F2 X1 ξð Þ;X2 ξð Þ;Y ξð Þð Þ;

cY 0 ξð Þ ¼ d3Y 00 ξð Þ þ F3 X1 ξð Þ;X2 ξð Þ;Y ξð Þð Þ:

8><>: ð63Þ

We can easy verify that the F1ðX1;X2;YÞ; F2ðX1;X2;YÞ;
GðX1;X2;YÞ satisfy Lipschitz condition on ½0;K1�× ½0;K2�
× ½0;Y0�, namely

F1 X11;X21;Y1ð Þ − F1 X12;X22;Y2ð Þj j þ F2 X11;X21;Y1ð Þ − F2 X12;X22;Y2ð Þj j
þ F3 X11;X21;Y1ð Þ − F3 X12;X22;Y2ð Þj j ≤Ω X11 − X12j j þ X21 − X22j j þ Y1 − Y2j jð Þ; ð64Þ

where Ω is a positive constant.
We give the following existence result of system (63) on

semitraveling wave solutions.

Theorem 2. If (17) and (18) hold. Then the system (63) has a
positive solution ðX1;X2;YÞ for every c≥ c∗, and satisfying

Xi ξð Þ ≤ Xi ξð Þ ≤ Xi ξð Þ;  Y ξð Þ ≤ Y ξð Þ ≤ Y ξð Þ;  8 ξ 2 R;
ð65Þ

and X0
i ;X

00
i ;Y

0;Y 00 are bounded on R. Moreover, the solution
ðX1;X2;YÞ satisfying (8).

Proof. Define the functions bFi ¼ FiðX1;X2;YÞþΩXi andbF3 ¼ F3ðX1;X2;YÞþΩY , where Ω is the constant in (64).
We can easily check that bF1ðX1;X2;YÞ is nondecreasing in
X1 2 ½0;K1� for every fixed ðX2;YÞ 2 ½0;K2�× ½0;Y0�, bF2ðX1;
X2;YÞ is nondecreasing in X2 2 ½0;K2� for every fixed ðX1;
YÞ 2 ½0;K1�× ½0;Y0�, bF3ðX1;X2;YÞ is nondecreasing in Y 2

½0;Y0� for every fixed ðX1;X2Þ 2 ½0;K1�× ½0;K2�, then (63)
can be rewritten as follows:

d1X00
1 − cX0

1 −ΩX1 þ bF1 X1;X2;Yð Þ ¼ 0;  ξ 2 R;

d2X00
2 − cX0

2 −ΩX2 þ bF2 X1;X2;Yð Þ ¼ 0;  ξ 2 R;

d3Y 00
− cY 0

−ΩY þ bF3 X1;X2;Yð Þ ¼ 0;  ξ 2 R:

8>><>>:
ð66Þ

Let

W¼ X1;X2;Yð Þ 2 C Rð Þ½ �3jXi ξð Þ ≤ Xi ξð Þf
≤Xi ξð Þ;Y ξð Þ ≤ Y ξð Þ ≤ Y ξð Þ; 8ξ 2 R

É ; ð67Þ

and

λÆi ¼ 1
2di

cÆ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4diΩ

p� �
; i¼ 1; 2; 3: ð68Þ
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We define the map Γ¼ðΓ1;Γ2;Γ3Þ:W→ C½R�3 by

Γi X1;X2;Yð Þ ξð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4diΩ

p Z
ξ

−1
eλ

−

i ξ−sð Þ þ
Z 1

ξ
eλ

þ
i ξ−sð Þ

� �
bFi X1;X2;Yð Þ sð Þds:

ð69Þ

By variation-of-parameters formula we obtain that ðΦ1;
Φ2;Ψ Þ¼ΓðX1;X2;YÞ for each ðX1;X2;YÞ 2W is a
bounded solution to the following system

d1Φ00
1 − cΦ0

1 −ΩΦ1 þ bF1 Φ1;Φ2;Ψð Þ ¼ 0;

d2Φ00
2 − cΦ0

2 −ΩΦ2 þ bF2 Φ1;Φ2;Ψð Þ ¼ 0;

d3Ψ 00
− cΨ 0

−ΩΨ þ bF3 Φ1;Φ2;Ψð Þ ¼ 0:

8>><>>: ð70Þ

Apparently, the fixed point of Γ in W is a solution of
system (63). So, we are going to prove that Γ inW has a fixed
point. Inspired by [10], we define the Banach space

Xρ ¼ X1;X2;Yð Þ 2 C Rð Þ½ �3 : X1;X2;Yð Þk kρ<1
n o

;

ð71Þ

with the exponentially weighted norm

X1;X2;Yð Þk kρ ¼ sup
ξ2R

X1 ξð Þ;X2 ξð Þ;Y ξð Þð Þj je−ρ ξj j

¼ sup
ξ2R

X1 ξð Þj j þ X2 ξð Þj j þ Y ξð Þj j½ �e−ρ ξj j;

ð72Þ

here 0<ρ<min fjλ−i jg ði¼ 1; 2; 3Þ, and we can easily know
this subset W is closed, bounded and convex in Xρ:

Obviously, Γ :W→W is Lipschitz continuous, and com-
pact on W. From the Schauder fixed point theorem, it fol-
lows that Γ has a fixed point ðX1;X2;YÞ in W. Next, we
prove that the X0

i ;X
00
i ;Y

0 and Y 00 are bounded.
Note that for ξ2R

X0
i ξð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ 4diΩ
p λ−i

Z
ξ

−1
eλ

−

i ξ−sð Þ þ λþi

Z 1

ξ
eλ

þ
i ξ−sð Þ

� �
bFi X1;X2;Yð Þ sð Þds;

ð73Þ

Y 0 ξð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4d3Ω

p λ−3

Z
ξ

−1
eλ

−

3 ξ−sð Þ þ λþ3

Z 1

ξ
eλ

þ
3 ξ−sð Þ

� �
bF3 X1;X2;Yð Þ sð Þds:

ð74Þ

It follows that jX0
iðξÞj≤M0=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4diΩ

p
Þ, and jY 0ðξÞj

≤M0=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4d3Ω

p
Þ for ξ2R, where

M0 ¼max bFi X1;X2;Yð Þ
��� ��� i¼ 1; 2; 3ð Þ : 0 ≤ Xi ≤ Ki; 0 ≤ Y ≤ Y0

n o
:

ð75Þ

This shows that X0
i and Y 0 are bounded on R, and using

the system (63), the boundedness of X00
i and Y 00 are obtained

as well. Finally, we show that the solution satisfying (8).
Summarizing the above results, we obtain a solution ðX1;
X2;YÞ for (63) satisfying XiðξÞ≤XiðξÞ≤XiðξÞ and Y ðξÞ≤
YðξÞ≤Y ðξÞ. Then by the definitions of XiðξÞ;XiðξÞ;Y ðξÞ
and Y ðξÞ, we have ðX1;X2;YÞðξÞ→ðK1;K2; 0Þ as ξ→ −1.
Using the expressions

X0
i ξð Þ ¼ e

cξ
diX0

i 0ð Þ þ
Z

0

ξ
e
c ξ−sð Þ
di Fi X1 sð Þ;X2 sð Þ;Y sð Þð Þds;

ð76Þ

Y 0 ξð Þ ¼ e
cξ
d3Y 0 0ð Þ þ 1

d3

Z
0

ξ
e
c ξ−sð Þ
d3 F3 X1 sð Þ;X2 sð Þ;Y sð Þð Þds;

ð77Þ

we know ðX0
1ðξÞ;X0

2ðξÞ;Y 0ðξÞÞ→ð0; 0; 0Þ as ξ→ −1:
Therefore, ðX1;X2;YÞ is a positive solution satisfying (8).

The proof of Theorem 2 is given. □

4. Existence of Traveling Wave Solutions

Summarizing the above results, Theorem 2 established that
the system (63) has a positive solution ðX1:X2;YÞ, and ðX1;
X0
1;X2;X0

2;Y ;Y
0Þð−1Þ¼ ðK1; 0;K2; 0; 0; 0Þ. In what fol-

lows, we aim to verify the solution ðX1:X2;YÞ satisfying
ðX1;X0

1;X2;X0
2;Y ;Y

0Þð1Þ¼ ðη∗1; 0; η∗2; 0; θ∗; 0Þ by applying
method of Lyapunov function.

Theorem 3. Suppose that all conditions in Theorem 2 are met.
Furthermore, assume that α2β1K1 ¼ α1β2K2, τ1β1η

∗
1 þ

τ2β2η
∗
2<b, and Y0>θ∗ hold. Then the system (63) has a posi-

tive solution ðX1;X2;YÞ satisfying (8) and (9) for every c≥ c∗.

Proof. We konw that system (63) admits a positive solution
ðX1;X2;YÞ satisfying (8) by Theorem 2. We shall show that
the ðX1;X0

1;X2;X0
2;Y ;Y

0ÞðξÞ→ðη∗1; 0; η∗2; 0; θ∗; 0Þ as ξ→1.
We construct a Lyapunov function V as follows:

V X1;X0
1;X2;X0

2;Y ;Y
0ð Þ¼ cH X1;X2;Yð Þ − d1

∂H
∂X1

X0
1

−d2
∂H
∂X2

X0
2 − d3

∂H
∂Y

Y 0;

ð78Þ
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in the following region

M ¼ X1;X2;Yð Þ 2 R3 :Xi>
2αiKi 1þ K1 þ K2ð Þ

αi 1þ K1 þ K2ð Þ þ Kiβiθ
∗ ;Y ≥ θ∗

� �
;

ð79Þ

where

H X1;X2;Yð Þ¼ τ1 X1 − η∗1 − η∗1 ln
X1

η∗1

� �� �
þ τ2 X2 − η∗2 − η∗2 ln

X2

η∗2

� �� �
þ Y − θ∗ − θ∗ ln

Y
θ∗

� �� �
:

ð80Þ

We have

dV
dξ

¼ ∂H
∂X1

F1 X1;X2;Yð Þ þ ∂H
∂X2

F2 X1;X2;Yð Þ þ ∂H
∂Y

F3 X1;X2;Yð Þ
� �
−d1

∂2H
∂X2

1
X0
1ð Þ2 − d2

∂2H
∂X2

2
X0
2ð Þ2 − d3

∂2H
∂Y2 Y 0ð Þ2;

ð81Þ

where

∂H
∂X1

F1 X1;X2;Yð Þ þ ∂H
∂X2

F2 X1;X2;Yð Þ þ ∂H
∂Y

F3 X1;X2;Yð Þ

¼ τ1 1 −
η∗1
X1

� �
α1X1 1 −

X1

K1

� �
−

β1X2
1Y

1þ X1 þ X2

� �
þ τ2 1 −

η∗2
X2

� �
α2X2 1 −

X2

K2

� �
−

β2X2
2Y

1þ X1 þ X2

� �

þ 1 −
θ∗

Y

� �
τ1β1X2

1Y
1þ X1 þ X2

þ τ2β2X2
2Y

1þ X1 þ X2
− bY −mY2

� �

¼ τ1α1X1 1 −
X1

K1

� �
þ τ2α2X2 1 −

X2

K2

� �
− τ1α1η

∗
1 1 −

X1

K1

� �
− τ2α2η

∗
2 1 −

X2

K2

� �

þ τ1β1η
∗
1X1Y

1þ X1 þ X2
þ τ2β2η

∗
2X2Y

1þ X1 þ X2
−

τ1β1X2
1θ

∗

1þ X1 þ X2
−

τ2β2X2
2θ

∗

1þ X1 þ X2
− bY þ bθ∗ −mY2 1 −

θ∗

Y

� �

≤ τ1α1X1 −
τ1α1
K1

X2
1 þ τ2α2X2 −

τ2α2
K2

X2
2 − τ1α1η

∗
1 þ

τ1α1η
∗
1

K1
X1 − τ2α2η

∗
2 þ

τ2α2η
∗
2

K2
X2

þτ1β1η
∗
1Y þ τ2β2η

∗
2Y −

τ1β1X2
1θ

∗

1þ K1 þ K2
−

τ2β2X2
2θ

∗

1þ K1 þ K2
− b Y − θ∗ð Þ

≤ 2τ1α1X1 þ 2τ2α2X2 −
τ1α1
K1

X2
1 −

τ2α2
K2

X2
2 − τ1α1η

∗
1 − τ2α2η

∗
2 þ Y τ1β1η

∗
1 þ τ2β2η

∗
2 − bð Þ

−
τ1β1X2

1θ
∗

1þ K1 þ K2
−

τ2β2X2
2θ

∗

1þ K1 þ K2

¼ τ1X1 2α1 − X1
α1
K1

þ β1θ
∗

1þ K1 þ K2

� �� �
þ τ2X2 2α2 − X2

α2
K2

þ β2θ
∗

1þ K1 þ K2

� �� �
þY τ1β1η

∗
1 þ τ2β2η

∗
2 − bð Þ − τ1α1η

∗
1 þ τ2α2η

∗
2ð Þ

< 0:

ð82Þ
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And we have

di
∂2H
∂X2

i
X0
ið Þ2 ¼ diτi

η∗i
X2
i
X0
ið Þ2 ¼ diτiη∗i

X0
i

Xi

� �
2
; ð83Þ

d3
∂2H
∂Y2 Y 0ð Þ2 ¼ d3

θ∗

Y2 Y 0ð Þ2 ¼ d3θ∗
Y 0

Y

� �
2
: ð84Þ

So

dV
dξ

< − d1τ1η∗1
X0
1

X1

� �
2
− d2τ2η∗2

X0
2

X2

� �
2
− d3θ∗

Y 0

Y

� �
2
≤ 0:

ð85Þ

Let ρi ¼ X0
i

Xi
;  ρ3 ¼ Y 0

Y , ρ
þ
i be a positive constant solution of

the following equation

ρ
0
i ¼ −ρ2i þ

c
di
ρi þ

bM
di

: ð86Þ

Then we have

ρ0i ¼
X00
i Xi − X0

ið Þ2
X2
i

¼ X00
i

Xi
− ρ2i

¼ c
di
ρi −

Fi
diXi

− ρ2i

≤ − ρ2i þ
c
di
ρi þ

bM
di

;  

ð87Þ

TABLE 1: Parametric values.

d1 ¼ 1 d2 ¼ 1 d3 ¼ 1 α1 ¼ 0:1 α2 ¼ 0:2 K1 ¼ 25
K2 ¼ 100 β1 ¼ 0:4 β2 ¼ 0:2 τ1 ¼ 0:1 τ2 ¼ 0:06 m¼ 0:00001

26

24

22

20

18

16
1,000 800

x1 (μ, t)

600
400

Time (t) Dista
nce (μ) 

200 0 0

500

1,000

100

90

80

70

60
1,000 800 600 400

Time (t)

Dist
an

ce 
(μ)

200 0 0
200

400
600

800
1,000

x2 (μ, t)

0.8

0.6

0.4

0.2

0
1,000 800

y (μ, t)

600 400 200 0 0

500

1,000

Time (t)
Dista

nce (μ) 

FIGURE 1: Profiles of the traveling wave solution to system (2) connecting E2 for b¼ 0:8.

12 Advances in Mathematical Physics



and

ρ03 ¼ Y 00Y − Y 0ð Þ2
Y2 ¼ Y 00

Y
− ρ23

¼ c
d3

ρ3 −
F3
d3Y

− ρ23

≤ − ρ23 þ
c
d3

ρ3 þ
bM
d3

;

ð88Þ

where bM ¼maxf αiXi
Ki

þ βiXiY
1þX1þX2

; bþmYg ði¼ 1; 2Þ.
We can appeal to the comparison theorem to conclude ρ1ðξÞ

<ρþ1 ; 8ξ2R. If there exists ξ0 such that ρ1ðξ0Þ< − ρþ1 . We let
ρðξÞ be the solution of ρ0ðξÞ¼ − ρ2ðξÞþ c=d1ρðξÞþ bM=d1
with ρðξ0Þ¼ ρ1ðξ0Þ have a solution, then can apply the com-
parison theorem to derive that ρ1ðξÞ≤ ρðξÞ; 8ξ≥ ξ0. Notice

−ρ2 ξ0ð Þ þ c
d1

ρ ξ0ð Þ −
bM
d1

< − −ρþ1ð Þ2 þ c
d1

−ρþ1ð Þ þ
bM
d1

<0:

ð89Þ

This means that ρðξÞ→−1 as ξ→ ξ1, where the ξ1 is a
finite number greater than ξ0. It follows ρ1ðξÞ→−1 as ξ→ ξ2
for some ξ2 2 ðξ0; ξ1�. Contradicting with the definition of ρ1,
we have jρ1j≤ ρþ1 for 8ðX1;X2;YÞ 2 ð0;K1�× ð0;K2�× ð0;
Y0�=fðη∗1; η∗2; θ∗Þg.

Similarly, we can obtain constants ρþi >0 such that jρij≤
ρþi ; ði¼ 2; 3Þ for 8ðX1;X2;YÞ 2 ð0;K1�× ð0;K2�× ð0;Y0�=
fðη∗1; η∗2; θ∗Þg. It shows that dV=dξ≤ 0 and the equality hold
only at ðη∗1; 0; η∗2; 0; θ∗; 0Þ.

Applying LaSalle’s invariance principle, ðX1;X0
1;X2;X0

2;
Y ;Y 0ÞðξÞ→ðη∗1 ; 0; η∗2; 0; θ∗; 0Þ as ξ→1. Theorem 3 is
proved. □
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FIGURE 2: Profiles of the traveling wave solution to (2) connecting E2 for b¼ 1:1.
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5. Numerical Simulation

Numerical simulations are vital parts for the system (2) as
they support the above theorem results. In current section,
we provide the numerical simulations with the arithmetic
software MATLAB.

We show that the values of the parameters in Table 1 are
used to draw Figure 1 (for b¼ 0:8), Figure 2 (for b¼ 1:1),
and Figure 3 (for b¼ 1:2). We assign the values as initial
conditions x1ðμ; 0Þ¼ 25; x2ðμ; 0Þ¼ 100; yðμ; 0Þ¼ 0:01, and
choose a small disturbance of steady-state E1ð25; 100; 0Þ with
only two preys to simulate a predator population invading a
new resource habitat. Direct computations show that E2 ¼
ð17:3939; 69:5756; 0:3847Þ for b¼ 0:8, so we obtain that,
from Figure 1, the system (2) admits a traveling wave solu-
tion, and the trajectory approaches connecting E2. The
Figures 2 and 3 show that if the predator mortality rate b
decreases, and b is less than a certain value b∗ (1:1≤ b∗<1:2),
then the three species approach toward coexistence.

6. Discussion

In this paper, we investigate the existence and nonexistence
of traveling wave solutions for two preys–one predator sys-
tem with switching effect. In order to be more practical and
accurately predict the key factors of population dispersal, the
spatial diffusive behavior of population and the internal
competition of predator are considered. First, we use lineari-
zation method to discuss the nonexistence of semitraveling
wave solutions with the wave speed c<c∗, and c∗ is selected
as the critical value (Theorem 1). Second, we apply super-sub
solution method to obtain existence of semitraveling wave
solutions, only connecting the planar equilibrium point
E1ðK1;K2; 0Þ with c≥ c∗ (Theorem 2). Moreover, utilizing
method of Lyapunov function, we obtain traveling wave
solutions to system (2), namely, the semitraveling wave solu-
tions from Theorem 2 connect the only positive equilibrium
point E2ðη∗1 ; η∗2 ; θ∗Þ at infinity (Theorem 3). Finally, we pro-
vide numerical experiments to demonstrate existence results
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FIGURE 3: Profiles of the traveling wave solution to (2) connecting E1 for b¼ 1:2.
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of the traveling wave solutions to system (2), and we show
that the three species approach toward coexistence when the
predator mortality rate is less than a certain value.
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