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In this paper, we are concerned with traveling wave solutions for two preys—one predator system with switching effect. First, we
discuss that there is no traveling wave solution for this system by using linearization method. Second, applying super-sub solution
method we establish the existence of semitraveling wave solutions with the minimal speed explicitly defined. Moreover, using the
method of Lyapunov function and LaSalle’s invariance principle, under certain conditions, we obtain that the semitraveling wave
solutions connect the only positive equilibrium point at infinity, are actually traveling wave solutions. Finally, the numerical

experiments support the validity of our theoretical results.

1. Introduction

Saha and Samanta [1] considered the following two
preys—one predator system with switching effect:
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where x;(t) (i=1,2) and y(t) are the densities of two preys
and one predator, respectively. ay,a,, Ky, Ky, 1, .71, 7,
and b are positive constants, b is natural mortality. For more
specific background details on this system, we can take a look
at [1].

Intrapopulation competition of the predator is a key fac-
tor in accurately predicting the population spread of the
model. Moreover, due to the uneven distribution of preys
and predators in different spaces, in the current paper, we
study the following PDE:
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where m is reduction rate of intrapopulation competition, d;,
d,, d; denote the diffusion coefficients, respectively, which

are positive constants.
If o, ,K; = a1 5, K5, by direct calculation, the system (2)

has the planar equilibrium point and interior equilibrium
point E; (K;, K,,0) and E, (1}, 175, 6*), and

ay . m K,
0F = —(1+n+m)(1-—), n5 = —=n7, 3
Bt ( m ’72)( K1> M K, m ( )

where 77} is a real and positive root of the equation a;xj +
a,x} + azx; +ag =0, with
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In the past three decades, the existence and asymptotic
behavior of solutions for some models had been studied by
many scholars. Zhang and Ouyang [2] proved the existence
of global weak solutions for a viscoelastic wave equation with
memory term, nonlinear damping and source term by using
the potential well method combined with Galerkin approxi-
mation procedure. Zhang and Miao [3], using Glerkin
method and the multiplier technique, obtained the existence
and asymptotic behavior of strong and weak solutions for
nonlinear wave equation with nonlinear damped boundary
conditions, respectively.

Population ecology has been well-developed as an impor-
tant branch of biomathematics, in which the existence and
nonexistence of traveling wave solutions of biological system,
is one of the most in-depth researches by scholars, where the
Lotka—Volterra model has attracted much attentions. Dun-
bar [4, 5] in the known papers proved the existence of trav-
eling wave solutions to a special prey—predator model by
applying Lyapunov function. He proposed a two-step
method for the existence of traveling wave solutions of
some specific systems for prey and predator interactions.
The first step, applying shooting argument, he demonstrated
the existence of semitraveling wave solutions. The second
step, he proved the semitraveling wave solutions actually
connect to the positive equilibrium point by using the Lya-
punov functions method. Lin et al. [6] studied the one
prey—two predators model, and proved existence of traveling
wave front connecting the trivial equilibrium point and the
positive equilibrium point with some certain conditions by
using the cross iteration method. Due to the variety and
inhomogeneity of ecosystems, the study of the general diffu-
sive prey—predator model has more important significance.
Wang and Fu [7], by establishing Lyapunov function,
proved the existence of traveling waves solutions to the
reaction—diffusion prey—predator models with kinds of func-
tional responses, may be decided by the predator and prey
populations at the same time. Hsu and Lin [8] considered
general diffusive prey—predator models. First, using the
method of counter evidence they proved that the general
diffusive predator—prey models has no positive traveling
wave solutions under specific conditions. Then, applying
the method of super-sub solutions, they proved existence
of semitraveling wave solutions. Final, establishing the
strictly contracting rectangles they concluded existence of
traveling wave solutions. Huang and Ruan [9] studied the
existence of traveling wave solutions for a reaction—diffusion
system. Ai et al. [10] by constructing Lyapunov function and
using the squeeze method proved a similar general existence
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result. For more results, we can see [11-18] and the refer-
ences therein.

A solution (x;(u,t), x5(, t), y(p, t)) for system (2) is
called a traveling wave solution when it has the special form

(1 (g £), 22 (s 1), y (s 1)) = (X1(8), X2(6), Y(£)), E = + e,
(5)

where the wave speed c is positive constant, and (X;,X,,Y)
satisfies the following ODE system:
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and the boundary conditions as follows:

0<X;(&) <K;, (i=1,2),0<Y(&) Yo, VEER,  (7)
(X1 X} X, X5, Y. V')(=00) = (K. 0.K,0,0.0).  (8)
(X0 X X, X Y. V') (00) = (1}, 0.15.0.6.0). (9)

where Y is a positive constant.

In this paper, based on the idea from Ai et al. [10], we
consider traveling wave solutions for two preys—one predator
systems (2) with switching effect. We prove that the nonex-
istence and existence of traveling wave solutions of system
(2), namely, we show the nonexistence and existence of pos-
itive solutions of system (6) satisfying (7), (8) and (9). Let us
point out that although this idea has been used by the others,
our application is new. Our problem is more difficult to
solve, and we need more precise calculations.

The structure of the paper is organized as follows.
Section 2 is devoted to the proof of nonexistence of semitra-
veling wave solutions for the system (2) by using lineariza-
tion method. Section 3 is concerned with existence of
semitraveling wave solutions by method of the super-sub
solution and Schauder fixed point theorem. Such semitravel-
ing wave solutions connect the planar equilibrium point
E, (K, K, 0) at £ > —o0. In Section 4, utilizing the Lyapu-
nov function techniques, we show, with the aid of LaSalle’s
invariance principle, that semitraveling wave solutions of
system (2) are traveling wave solutions. These traveling wave
solutions connect the only positive equilibrium point E, (7,
n5,0%) at £ — oo under the additional conditions. In
Section 5, the numerical experiments support the validity
of our theoretical results.

Hereafter, for convenience, we shall apply i to represent
the number 1, 2.
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2. Nonexistence of Semitraveling
Wave Solutions

We pay attention to the nonexistence of semitraveling solu-
tions for the system (2) in the section.
Let

115K} + 12 K5
s=—— 1 22 p o =2+/dss. 10
KK Vs (10)

Our main result is as following.

Theorem 1. Suppose s>0 holds. For c<c*, the system (6) does
not have positive solutions satisfying (8).

Proof. Linearizing the last equation of system (6) around (K,
K, 0), we get
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Thus the characteristic equation of (11) is as follows:

dsA* —cA+s=0. (12)

Suppose 4; and 1, are two eigenvalues of (12), namely

L c—/ —4dss | o4/ —4dss
j'1 - ’AZ - . (13)
24, 24

For contradiction, we suppose (X, X,,Y) is a positive
solution of system (6) with c<c* :2\/d_3s satisfying (8). If
c< —24/dss, so that 4;<0, then positive solution of (11) is
unbounded as & — — 0. Suppose |c| <24/d;s, then 4, and
A, form a complex conjugate pair: p & gi, where p=c¢/(2d;),

q=+/4dss — ¢*/(2d;). So the positive solutions of (11) are

ePécos g& and ef“sin g&, and they cannot be of the same sign
|

X&) - Ky (8) + Xy (D) (1 -

BX(E) - XK(E) + wXa(©) (1 -
1151 XE(E) + 125, X3 (€)

as £ near negative infinity. Since both eigenvalues have non-
zero real parts, the stability of the original equation at equi-
librium (K}, K,,0) is the same as that of the linearized
equation at equilibrium (K}, K;, 0), yielding a contradiction.
This proves Theorem 1. O

3. Existence of Semitraveling Wave Solutions

In order to prove the existence of semitraveling wave solu-
tions for system (2), we first give the definition super-sub
solutions, then we construct a pair of super-sub solutions of
system (2), and finally we prove the existence of semitravel-
ing wave solutions for system (2) by applying method of
super-sub solution and Schauder fixed point theorem.

The definition of super-sub solutions of (6) as following.

Definition 1. The functions (X, X,,Y) and (X;,X,,Y) on
R are called a pair of super-sub solutions of (6) if the
following

(i)

0<X;<X;<Uy, 0<Y<Y<Y,. (14)

hold, where Uy, are positive constants, (X1, X,,Y), (X;,X,,
Y) on R are continuous functions.
(ii) There is a finite set B so that:
(a) X;,X;. Y. Y e C*(R/B).
(b) The limits to X!, X, Y',Y', V& € B satisfy:
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1+ X,(8) + X,(8)



The following will provide the super-sub solutions
required to show the existence of semitraveling wave solu-
tions of the system (6) on ¢>c¢* and ¢ = c*, respectively.
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where Y, = (7,4,K} + 7,5,K3 — b)/m, and

eYy(1+ K, + K,) 2K, + K, (18)
hold.
Lemma 1. Assume that ¢>c*, s>0, and (17) is satisfied. 1 =

(c— /¢ —4dss)/(2d;). Constants w,k,{, B one by one in
the following order such that the inequalities
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We define X; (&), X;(£), Y (£),Y(&) on R as follows:
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Then the system (6) has a pair of super-sub solutions (X,
Xz, ?) and (Kl s XZ» X)

Proof. Now we prove the above constants are well defined.
First, we have

c—\/cz—4d3si/1

24
= 24)
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so that @ is well defined. Since choice of @ yields that cw —
d;w?*>0, the «; is well defined, so « is well defined.

Due to the assumptions of w,k,{,B, we have
ay<max{a,, a,} <min{0, a3 }. According to the definitions
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Let X;,X;, Y are continuous functions satisfying X; <
Xi<X;and Y<Y<Y.
Due to X, =K, VE€R, so we obtain
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If &<ay, then X,(&)=K;—ke”, d\X](&)—cX}(&)=
kw(c - dyw)e” . Combining with o, X, (€)(1 - X,(¢£)/K;) >
0, we have
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For £<a,, since a,<a;, we have Y (&) =¢* and the
inequality
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d,X() = X! (8) + 0, X, (&) (1 _X;{(f)) = ffig)ﬁ()i)(g) Due to definition of k, so we have
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For £<ay, we have

Y(§) =e(1-Be¥). Y (&) =¥ (35)
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By the definition of B, we obtain Y (&) <
Thus, for £<ay, it holds that
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and (17) and (18) are satisfied. Constants w, k one by one in
the following order such that the inequalities

and
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X 14X (E) + 1AX3(E) 2
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Since thus we have

ds (M, Ee)" — (M, Ee) + sM et =0, (50)

(Y(6) + M, Ee¥) = (%__5- /w\/‘—Z> o :N(il _ @0 i
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—N< o A V- cll\/_>e’1 NyE )
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7151 X3 () + 12, X3(8)
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Since N is large enough, so it holds that For £<as, now we check the Y (£). Since
" / TﬂX2(§)+TﬁX2(§) — _
dsY"(8) - cY'(§) + Y(§) = +1X1( 5 " XZZ (g) V(&) = —MyE%, Y'(&) = -My(1 + 284, (57)
“bY (&) - m¥?(&) 20.
(55) So that Y'(a; — ) =0=7Y'(a; + ). we can apply (17) and

(18) to get

— o TPXE(E) + 1B X5 (E)
YO X @+ 50

— _M1§g§<71ﬂ1 i(¢ )+Tzﬂ2X2)(cf) b+mM1§e’1‘5) —&—Ml.fe’lf(M—b)
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1+ X,(8) +X(¢ 1+K, +K,

_ ¢ TAXL(E) + X3 (8) S +72ﬂ2K22>
Mie! ( X @150 MM TR Tk,

K} + 0,4,K;3 (58)
< = My |0 K2 + 0o K3 + MiE(e 1K + o K3) — DKL TPk
1€ [1ﬁ1 1 251G 15( 15Ki 2P 2) 1+K +K
M .,/ K3 + 1,5,K?
< - M e |:Tlﬂ1K12 + 1,5K35 - Tl(flﬂlKlz+72ﬂ2K22) - 222 11+IK1 +21<22 s
1
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1‘}: (lﬂl 1 2:82 2) 0 1+K1+K2
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Thus it follows that
S0 TAXL(E) + AX3(E) - v 2 2
Y (&) — bY (&) - mY2(&) <sY (&), LT 7 o TAXL(E) + 15 X5(E)
- +Y
158+ X%,(0) A S TGRS AR
(59) “bY (&) - mY2(€) <0.
(61)
combining with
d;Y" (&) = cY'(¢) +sY(£) =0, (60) The proof is completed. O
For convenience, let
|
Xi(¢) PXIEY(E) .
Fi(X,(8), X, (&), Y(& :a,XZj(l— )— i=1,2),
(60,0 Y(@) = &) (1- =) - TS s (=1.2) -
0/ X1(E) + 1AX5(E)
F(X,(8),X5(8),Y =Y - bY (&) —mY?(&).
£ (X1(8). 52(8). (€)= V(&) M S bv(e) - my(g)
\
Then the system (6) can be written as follows: We can easy verify that the F; (X, X,,Y), F,(X;, X5, Y),
G(X,,X,,Y) satisfy Lipschitz condition on [0, K] X [0, K]
cX1(8) = i X{(§) + F1(X1(£). X5(8). Y(£)). %[0, Y], namely
cX3(8) = dX5(€) + F(X,(8). X5 (£). Y (£)). (63)
cY'(§) = dsY"(&) + F5(X,(8). X3(8). Y(£)).-
|
‘ F1<X11»X21? Yl) - FI(XIZ’XZZ» Y2)| + ‘ FZ(X117X215 Yl) - FZ(X127X227 YZ)‘ (64)
+ F3 (X1, X1 Y1) = F3(Xi2, Xo2, YV2) | (X1 = Xip| + [ X1 = Xoa| + Y1 = T3),
where £ is a positive constant. [0, Y] for every fixed (X;,X,)€[0,K;]X[0,K;], then (63)
We give the following existence result of system (63) on  can be rewritten as follows:
semitraveling wave solutions.
di X! — X! - QX, + F(X,X,.Y) =0, £€R,
Theorem 2. If (17) and (18) hold. Then the system (63) has a N ) ~
positive solution (X,,X,,Y) for every c>c*, and satisfying LX) — Xy — QX + B (X1, X, Y) =0, SR,
d;Y" =Y — QY + F;(X,.X,,Y) =0, E€R.
X/(8) <X(8) <X,(8). X(§) < Y(§) <T(&), VEEE, (66)
(65)
Let
and X!, X!, Y',Y" are bounded on R. Moreover, the solution
(%, X, Y) satisfying (5. = (%) CRFIKE X
~ <Xi(8). Y (§) SY(§) <Y (). VE€ R}
Proof. Define the functions F; =F;(X;,X,,Y)+QX; and
15; =F;(X,,X,,Y)+QY, where Q is the constant in (64). d
an

We can easily check that F, (X,,X,.Y) is nondecreasing in
X, €0, K] for every fixed (X,,Y) € [0.K;] x [0, Yy], F5 (X, ]
X,,Y) is nondecreasil}\g in X, € [0, K;] for every fixed (X, A= 2 (C v+ 4dl-!2> ,i=1,2,3. (68)
Y) €[0,K,] %[0, Yy, F3(X, X,,Y) is nondecreasing in Y €
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We define the map I' = (I';, I, ['3): W — C[R]? by

e free)

(69)

(X, X, Y) (&)= \/ﬁ (/

E(X,. X5, Y)(s)ds.

By variation-of-parameters formula we obtain that (@,
D), ¥)=I(X,,X,,Y) for each (X|,X,,Y)eEW is a
bounded solution to the following system
- Q0|+ F\(®,,®,.¥) =0,

- QO, + F,(®,,®,.¥) =0, (70)
Y — QY + F (D), ®,,¥) =0.

dl (plll - C¢’1
d, D — D)
d, " -

Apparently, the fixed point of /" in W is a solution of
system (63). So, we are going to prove that /" in W has a fixed
point. Inspired by [10], we define the Banach space

X, = {2, Y) € [OR)P |1, X, V)|, <00 |,

(71)
with the exponentially weighted norm
1. 5. V), = sup | (X (&). X5(6). ¥(&)) e
=sup [1X,(&)] + [X,(8) | + | Y (&) [Je¥,
(72)

here 0<p<min {|/; |} (i=1,2,3), and we can easily know
this subset W is closed, bounded and convex in X,,.
Obviously, I": W — W is Lipschitz continuous, and com-
pact on W. From the Schauder fixed point theorem, it fol-
lows that I" has a fixed point (X, X,,Y) in W. Next, we
prove that the X/, X, Y" and Y” are bounded.
Note that for £€ R

(&)= CHdQ(/eﬂ +/1+/e’1 )
Ei(X,.X,.Y)(s)d
(73)
o eta(of. v )
F3(X1,X2, Y)(s)d
(74)

It follows that |X!(&)| < My/(\/c* + 4d:2), and |Y'(¢)]
<M,/ (/¢ + 4d3Q2) for £ € R, where

Advances in Mathematical Physics

M, :max{ ‘E(XI,XZ,Y) (i=1.2,3):0< X, <K.0<Y < YO}.
(75)

This shows that X! and Y’ are bounded on R, and using
the system (63), the boundedness of X! and Y” are obtained
as well. Finally, we show that the solution satisfying (8).
Summarizing the above results, we obtain a solution (X,
X,,Y) for (63) satisfying X;(&) < X;(¢) <X;(¢) and Y (&) <
Y(€) <Y(&). Then by the definitions of X,(&),X;(&),Y (&)
and Y (&), we have (X;,X,,Y) (&)= (K, K;,0) as £ > —occ.
Using the expressions

M@zﬁx@+é3?mx@&®mww,

(76)

we know (X](&),X}(€),Y'(£))—(0,0,0) as &— —oc.
Therefore, (X;,X,, Y) is a positive solution satisfying (8).
The proof of Theorem 2 is given. O

4. Existence of Traveling Wave Solutions

Summarizing the above results, Theorem 2 established that
the system (63) has a positive solution (X;.X,,Y), and (X,
X, X5, X5, Y, Y)(—00)=(K;,0,K;,0,0,0). In what fol-
lows, we aim to verify the solution (X;.X,,Y) satisfying
(X1, X1, X5, X5, Y, Y')(00) = (7, 0.%5,0,6%,0) by applying
method of Lyapunov function.

Theorem 3. Suppose that all conditions in Theorem 2 are met.
Furthermore, assume that oK, =a,/,K,, ©.1nf+
7,15 <b, and Yy >0 hold. Then the system (63) has a posi-
tive solution (X, X5, Y) satisfying (8) and (9) for every ¢ > c*.

Proof. We konw that system (63) admits a positive solution
(X1.X,,Y) satisfying (8) by Theorem 2. We shall show that
the (X1, X1, X,, X5, Y, Y)(E)—=(57,0,75,0,0%,0) as £ — oo.
We construct a Lyapunov function V as follows:

oH

VX, X1, X, X, Y, Y)= cH(X,,X,,Y) - d, 67)(/
1

oH oH
—dy — X, —dy — Y’
2ox, 2 oy

(78)
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in the following region
20iK;(1 + K, + K;)

Y>0" 0,
a;(1+ K, + K,) + Kp,6* }
(79)

M= {(XI,XZ, Y)eR: X;>

11

where

X
H(X,.X,.Y)= 1, |:X1 -m-m ln(—i)
m

X

+1, [Xz -1 =1 ln<—f>} (80)
M

Y

Y-0*-6"In[ —)]|.

+[ 0 6’n<9*)]

We have

B _ (O .57+ x5 ) + P rx 1)
dg_ aX] 1 15432 0X2 2 15432 ()Y 3 15432 (81)
0*H 0*H 0*H
-d K%(X{)Z - d, a_xg(Xﬁ)z —ds W(Y’)Z,

where

oH
0X, 0X, F)%

i X X}y 3 X X3y
=1 1= aX ([1-22 __BXiY +1, 1= aX,(1-22 __PXY
Xl Kl 1+X1 +X2 X2 K2 1+X1 +X2

by — mYZ}

Tzﬁ2X§ Y

+ 1_@ 0 /XTY +
Y)[1+X+X,

1+X, +X,

oH oH
——F (X, %, Y)+ —EX,X,Y) + - FK(X,X,,Y)

Xy X, . Xy . X,
zrlale 1 - f +T2(12X2 1 - f - Tlall’h 1- ? - 12a2n2 1- f
1 2 1 2

npimX,Y fas Xo Y _ 7,/ X710 _ 1,4, X30* —bY + bO* — mY? (1 _ f)
I+X+X, 1+4X+X 1+4X4+X, 14X, +X, Y
a a oy i
<tioX; - iz X3+ Ty X, - - 2X3 - + am Xi -y, + 202l X (82)
Kl K2 1 2
' T1ﬂ1X%9* 72ﬁ2X229*
+7 Y+, Y - - -b(Y - 6*
WALk 215 11K +K 1+K+K ( )
T Ta
<2ty Xy + 200X, — %X% - ;< 2X3 - nyayn = mas + Y (o fini + wafons - b)
1 2
T1ﬂ1X%9* TZﬂZX%B*

14K +K, 1+K +K,

o R

a 0"
=1,X, |20, - X e X, |20, - X, (24—
i l{al 1<K1+1+K1+K2>]+12 2[% 2<K2+1+KI+K2)]

+Y (15107 + T2foms — b) = (riaany + 100075)

<0.
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TaBLE 1: Parametric values.
d =1 d,=1 d;=1 a;=0.1 a,=0.2 K, =25
K, =100 pr1=04 p,=0.2 7, =0.1 7, =0.06 m=0.00001
X (W t)

.. xl ([4: t)

i

Sl i

! I .
i LT i I Ik
(R A ‘H”W““ a

0.8 5
0.6
0.4
027 1,000
1000 Sy WP
600 400 oo 0 o

Time ()
FiGURe 1: Profiles of the traveling wave solution to system (2) connecting E, for b=0.8.
X! 4 e .
Letp;= . p3 = Yy, pi be a positive constant solution of

the following equation

And we have
PH n; A%
d S (X = dyry (X! = dyry (=L 83 M
zaXlz( 1) iTi X12( l) 17’-1771 (XZ> ’ ( ) L _ 2+ i -+ M (86)
Pi = ~Pi d-pl d -’
OH 0 Y'\2
d—Y’Z:d—Y”:dG*(_). "
3 aYZ( ) 3 YZ( ) 3 Y (84) Then we have
So )X - (X)? X 2
pz - 2 - !
Xi Xl
AV . N\ 2 i I\ 2 . Y 2 ¢ Fi
d_§< leﬂh(X) —d272’12<)72> - ds0 (?) <0 dipl d:.X; P
(85) 2. c M
= pz dlp1+ di’
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X (4 1)

YW t)

600
400

Time 200

®

FiGure 2: Profiles of the traveling wave solution to (2) connecting E, for b=1.1.

and

B Y'Y — (Y/)z B Y” R
=Ty 7—P3

c F; N
:73,03 —ﬁ_ﬁ’s (88)
c
dy

/

P3

~

M
ps+ -

<-pi+ I
3

where M = max{a’%" + 1+ﬁ>i<)](fxz b+mY} (i=1,2).

We can appeal to the comparison theorem to conclude p (&)
<py,VEER. If there exists & such that p, (&) < — p. We let
p(&) be the solution of /(&) = — (&) + c/dyp(&) + M/d;
with p(&) =p1(&) have a solution, then can apply the com-
parison theorem to derive that p; (&) < p(&), VE > &,. Notice

13
X W t)
100
98
96
94
1,000
1,000
5
400 @c“w
200 o
0
2 ¢ M 2, € + M
- (&) - < = (= — (- = <o.
/’(fo)erlP(&)) d1< (=p1) +dl(/’l)erl
(89)

This means that p(&)— — 0o as & — £, where the & is a
finite number greater than &;. It follows p, (§)—> — oo as & — &,
for some &, € (&, £,]. Contradicting with the definition of p,
we have |p,|<p] for V(X,X;,Y)€(0,K;]%(0,K;] % (0,
Yol /A, m5,67)}-

Similarly, we can obtain constants p;” >0 such that |p;| <
pi, (i=2,3) for V(X;,X,,Y)€(0,K]x(0,K;] % (0, Y]/
{(n%.n5,0%)}. It shows that dV/dE <0 and the equality hold
only at (n7,0,73,0,6%,0).

Applying LaSalle’s invariance principle, (X;, X}, X,, X5,
Y,Y')(€)—-(n;,0,75,0,6%,0) as &— oo. Theorem 3 is
proved. O
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x (‘M, t) - Xy (!4; t)
25054 10024
25 100

249 99.6 o
1,000 vo4 ar

1,000 ¥

i _\‘;\@Q
, 200 Y
Tlme (t) 0 0
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600 -
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FiGure 3: Profiles of the traveling wave solution to (2) connecting E; for b=1.2.

5. Numerical Simulation

Numerical simulations are vital parts for the system (2) as
they support the above theorem results. In current section,
we provide the numerical simulations with the arithmetic
software MATLAB.

We show that the values of the parameters in Table 1 are
used to draw Figure 1 (for b=0.8), Figure 2 (for b=1.1),
and Figure 3 (for b=1.2). We assign the values as initial
conditions x; (i, 0) =25, x, (¢, 0) =100, y(u, 0) =0.01, and
choose a small disturbance of steady-state E; (25, 100, 0) with
only two preys to simulate a predator population invading a
new resource habitat. Direct computations show that E, =
(17.3939, 69.5756,0.3847) for b=0.8, so we obtain that,
from Figure 1, the system (2) admits a traveling wave solu-
tion, and the trajectory approaches connecting E,. The
Figures 2 and 3 show that if the predator mortality rate b
decreases, and b is less than a certain value b* (1.1 <b*<1.2),
then the three species approach toward coexistence.

6. Discussion

In this paper, we investigate the existence and nonexistence
of traveling wave solutions for two preys—one predator sys-
tem with switching effect. In order to be more practical and
accurately predict the key factors of population dispersal, the
spatial diffusive behavior of population and the internal
competition of predator are considered. First, we use lineari-
zation method to discuss the nonexistence of semitraveling
wave solutions with the wave speed c<c*, and ¢* is selected
as the critical value (Theorem 1). Second, we apply super-sub
solution method to obtain existence of semitraveling wave
solutions, only connecting the planar equilibrium point
E (K}, K,0) with ¢>c* (Theorem 2). Moreover, utilizing
method of Lyapunov function, we obtain traveling wave
solutions to system (2), namely, the semitraveling wave solu-
tions from Theorem 2 connect the only positive equilibrium
point E, (n}, 75, 0*) at infinity (Theorem 3). Finally, we pro-
vide numerical experiments to demonstrate existence results
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of the traveling wave solutions to system (2), and we show
that the three species approach toward coexistence when the
predator mortality rate is less than a certain value.
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