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This paper studies the free boundary problem of a multistable equation with a Robin boundary condition, which may be used to
describe the spreading of the invasive species with the solution representing the density of species and the free boundary
representing the boundary of the spreading region. The Robin boundary condition uxðt, 0Þ = τuðt, 0Þ means that there is a flux
of species at x = 0. By studying the asymptotic properties of the bounded solution, we obtain the following two situations:
(i) four types of survival states: the solution is either big spreading (the solution converges to a big stationary solution defined
on the half-line) or small spreading (the solution converges to a small stationary solution defined on the half-line) or small
equilibrium state (the survival interval ½0, hðtÞ� tends to a finite interval and the solution tends to a small compactly supported
solution) or vanishing happens (the solution and the interval ½0, hðtÞ� shrinks to 0 as t⟶ T for T < +∞); (ii) a trichotomous
survival states of solutions: big spreading, big equilibrium state, and vanishing.

1. Introduction

Now, we study the problem having multistable nonlinearity

ut = uxx + f uð Þ, x ∈ 0, h tð Þ½ �, t > 0,
u t, h tð Þð Þ = 0, ux t, 0ð Þ = τu t, 0ð Þ, t > 0,
h′ tð Þ = −ux t, xð Þ − δ, t > 0, x = h tð Þ,
u 0, xð Þ = u0 xð Þ, x ∈ 0, h0½ �, h0 ≔ h 0ð Þ,

8>>>>><
>>>>>:

ð1Þ

where x = hðtÞ is a moving boundary, τ > 0 and δ > 0 are
given constants, and the initial function u0 belongs to
Xðh0Þ, when h0 > 0, where

X h0ð Þ≔ ϕ ∈ C2 0, h0½ �ð Þ: ϕ′ 0ð Þ = τϕ 0ð Þ, ϕ xð Þ ≥ 0
n o

: ð2Þ

Here, f is a multistable nonlinearity, f : ½0,+∞Þ⟶ℝ
is a C1 function, and there are constants θ0 = 0 < θ1 < θ2 <
θ3 < θ4 = 1, which satisfies

f θið Þ = 0 i = 0, 1, 2, 3, 4ð Þ, f uð Þ < 0, θ ∈ θ0, θ1ð Þ ∪ θ2, θ3ð Þ,
f uð Þ > 0, θ ∈ θ1, θ2ð Þ ∪ θ3, θ4ð Þ,
f ′ θið Þ < 0 i = 0, 2, 4ð Þ, f ′ θj

À Á
> 0 j = 1, 3ð Þ,ðθ2

θ0

f uð Þdu > 0, 
ðθ4
θ2

f uð Þdu > 0:

8>>>>>>>><
>>>>>>>>:

ð3Þ

From this condition, one can regard f ðuÞ as a combina-
tion of two bistable functions. C2ð½0, h0�Þ is the space of
functions with second derivative in ½0, h0�, and C1 is the
space of functions with first derivative.

There are some explanations for our problem. Usually,
such problem used to describe the invading of new species
or the development of chemical substances. Since the
survival region of the species depends on time t, we use
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the moving interval ½0, hðtÞ� representing such region; the
spreading speed of front hðtÞ satisfies the classical Stefan
condition, but there is a decay rate caused by the environ-
ment at the left boundary. We are primarily focused on the
spreading of the solution for direction of right side, and
there is a flux on the left boundary.

In the case δ = 0 and τ = 0, under monostable type of
nonlinearity (cf. f ðuÞ = uð1 − uÞ) [1, 2] used such problem
to explain the expanding of a species moving into a new
place. Such species’s density is given by uðt, xÞ, and the
interval ½0, hðtÞ� is a region occupied by the species at time
t. They proved that, when h0 ≥ π/2, only spreading happens
for ðu, hÞ; when h0 < π/2, there is a spreading/vanishing
dichotomy conclusion: spreading (the solution u⟶ 1 and
hðtÞ⟶ +∞ as t⟶ +∞) or vanishing (the solution
u⟶ 0 and hðtÞ tends to a positive number when t⟶
+∞). For bistable and combustion types of nonlinearity,
[2, 3] studied the asymptotic behavior of solutions (i.e.,
the limits of the solutions when the time t goes to +∞)
for such a free boundary problem (also, the case τ = δ = 0).
Moreover, [4] also obtained a dichotomy result with a
advection term but under the condition δ = 0 and uxðt, 0Þ
= τuðt, 0Þ replaced by uðt, gðtÞÞ = 0. Besides, [5] studied the
free boundary problems in high-dimensional space. For the
situation τ = 0, [6, 7] studied the convergence of solutions
for a free problem and obtained a trichotomy result. When
the nonlinearity is Fisher-KPP, [8] studied problem (1) when
δ = 0 and obtained a trichotomy result. For bistable nonline-
arity, [2] obtained a trichotomy result for a free boundary
problem when δ = τ = 0. When f ðuÞ is composed with a
monostable and a bistable type of function, [9] studied the
free boudary problem with Dirichlet boundary and obtained
a richer phenomenon; [10] obtained another convergence
conclusion. When is multistable, some papers studied the
different travelling waves of reaction-diffusion equation, such
as [11–15], and they considered propagating terrace.

Here, we will study the longtime limits of solutions of
free boundary problem with τ > 0 and δ > 0. The constant
δ > 0 is the decay rate of the species at the spreading bound-
ary. Such a condition also widely is used in protocell growth
models (cf. [16, 17]). This boundary condition can also be
deduced by reaction-diffusion equations (cf. [18]). Addition-
ally, the boundary condition uxðt, 0Þ = τuðt, 0Þ in (1) means
that there exists a flux of the species at the boundary x = 0.
Under a multi-bistable nonlinearity, we consider the spread-
ing of solution when the left boundary has a flux while the
right boundary producing a decay rate of the solution (or,
say the species). There are two critical points δ10 and δ20
(see details in Section 2) playing important roles in the
long-time behavior of solutions; when δ ∈ ð0, δ10Þ, we have
four types of diffusion: big spreading, small spreading, small
equilibrium, and vanishing; when δ ∈ ðδ10, δ20Þ, we have big
spreading, big equilibrium state, and vanishing.

The results in this paper are different from others; there
are some different methods compared before ones, such as,
we use a special stationary solution and an upper solution
to prove that vanishing happens within a finite time. In the
spreading situation, we first give the upper and lower bound

of the limit of uðt, xÞ, then use a solution of another fixed
boundary problem as a lower solution to prove that spread-
ing happens. As for the sufficient conditions for the small
and big spreading, we construct a moving lower solution.

In this paper, we use a multistable nonlinearity which
often used in the study of travelling waves. Besides this, we
add the influence of the boundary on the spreading of solu-
tion. Moreover, since the species is spreading on the right
side, there may be an influx of species at the left boundary;
so, we use the third boundary condition.

According to previous discussions [1, 2], we proved that
equation (1) has a unique solution ðu, hÞ defined on ½0, T∗Þ,
and uðt, xÞ ∈ Cð1+γÞ/2,1+γð½0, T∗� × ½0, hðtÞ�Þ, hðtÞ ∈ C1+γ/2 ð½0,
T∗�Þ for γ ∈ ð0, 1Þ. Additional references [19–27] further
support this claim. Furthermore, if hðT∗Þ > 0, the solution
can be extended to a larger interval ½0, TÞ with T > T∗. Addi-
tionally, using ([7], Lemma 2.8), we get that h∞ ≕ limt⟶T∗

hðtÞ ∈ ð0,+∞� exists.
We mainly consider the influences of the flux and the

decay rate at the boundary on the asymptotic behavior of
the solutions. We firstly obtain the following conclusions.

Theorem 1. Assume τ > 0 and δ ∈ ð0, δ10Þ. Then, the solution
ðu, hÞ of the problem (1) is either

(i) Big spreading: ð0, h∞Þ = ð0,+∞Þ, T∗ = +∞,

uðt, ⋅ Þ⟶V2
τð⋅Þ as t⟶ +∞ locally uniformly in

ð0, +∞Þ with V2
τ is the solution of

v″ + f vð Þ = 0, x > 0,
v′ 0ð Þ = τv 0ð Þ, v +∞ð Þ = 1,

(
ð4Þ

or

(ii) Small spreading: ð0, h∞Þ = ð0,+∞Þ, T∗ = +∞,

uðt, ⋅ Þ⟶V1
τð⋅Þ as t⟶ +∞ locally uniformly in ð0,

+∞Þ,
where V1

τ is the solution of (4) with 1 replaced by θ2;
or

(iii) Vanishing: T∗ < +∞, hðtÞ⟶ 0, max
0≤x≤hðtÞ

uðt, xÞ⟶
0, as t⟶ T∗

or

(iv) In the small equilibrium state case: h∞ = l∗1 and

lim
t⟶+∞

u t, xð Þ = v∗1 xð Þ, x ∈ 0, h∞ð Þ, ð5Þ

where ðl, vÞ = ðl∗1 , v∗1 Þ is the smaller solution of

v″ = f vð Þ = 0, x ∈ 0, lð Þ,
v lð Þ = 0, −v′ lð Þ = δ,
v′ 0ð Þ = τv 0ð Þ:

8>><
>>: ð6Þ
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Figure 1: Points A and C are compactly supported solutions;
points B and D are small and big increasing solutions defined on
the half-line, respectively.

Theorem 2. Assume τ > 0 and δ ∈ ðδ10, δ20Þ, u0 = ρΦ. Then,

(i) When ρ > ρ∗, big spreading happens

(ii) When 0 < ρ < ρ∗, vanishing happens

(iii) When ρ = ρ∗, big equilibrium state happens: h∞ = l∗2
and

lim
t⟶+∞

u t, xð Þ = v∗2 xð Þ, x ∈ 0, h∞ð Þ, ð7Þ

where ðl, vÞ = ðl∗2 , v∗2 Þ is the bigger solution of (6) (cf.
Section 2).

Theorem 3. Assume δ = δ10; then, the solution is either van-
ishing or big spreading. When δ ≥ δ20, only vanishing happens
for any solutions of (1).

Remark 4. From the aspect of spreading for some species,
δ ≥ δ20, that is, when the decay rate at the boundary is large,
the environment at the boundary is so bad that the species
cannot spread outside, and only vanishing happens.

The structure of this paper is organized as follows. In
Section 2, we provide the stationary solutions of equation
(1), in Section 3, we analyze the asymptotic behavior of solu-
tions and present several sufficient conditions for spreading
and vanishing in Section 4. In Section 5, we present the com-
plete proof of our main theorems.

2. Stationary Solutions

This section focuses on the examination of stationary solu-
tions for the given problem (1). Specifically, we consider

v″ + f vð Þ = 0, x > 0: ð8Þ

Let p = v′, then equation (8) is changed into

dp
dv

= −
f vð Þ
p

: ð9Þ

According to the phase plane analysis (cf. [28]), the
stationary solutions of (1) have the following cases (see
Figure 1):

(i) Constant solutions: θ0 = 0, θ1, θ2, θ3, θ4 = 1

(ii) Increasing solutions defined on the half-line Vi
τ:

vðxÞ =Vi
τ is the unique solution of (8) and satisfies

v′ 0ð Þ = τv 0ð Þ,v +∞ð Þ = χi in 0,+∞½ Þ, ð10Þ

where χi = θ2ði = 1Þ or 1 ði = 2Þ. By the phase plane
analysis, Vi

τ always exists for all τ > 0 (cf. points B
and D in Figure 1)

(iii) Decreasing solutions defined on the half-line Ui
0:

vðxÞ =Ui
0 is the unique solution of (8) and satisfies

v 0ð Þ = 0,v −∞ð Þ = χi in 0,+∞½ Þ, ð11Þ

where χi = θ2ði = 1Þ or 1 ði = 2Þ, denoted by

δi0 ≔ − Ui
0

À Á′ 0ð Þ: ð12Þ

(iv) Compactly supported solutions: on the phase plane,
for any γ ∈ ð0, δ10Þ ∪ ðδ10, δ10Þ, the problem

v″ + f vð Þ = 0, z ∈ 0, lð Þ,
v′ 0ð Þ = τv 0ð Þ, v lð Þ = 0, v′ lð Þ = −γ, v zð Þ ∈ 0, lð Þ,

(

ð13Þ

has a unique solution ðvγ, lγÞ. In addition, when
γ = δ, denoted its solution as ðl∗δ , v∗δÞ(cf. points A
and C in Figure 1); when δ ∈ ð0, δ10Þ, denoted ðl∗δ ,
v∗δÞ as ðl∗1 , v∗1 Þ (cf. point A in Figure 1); when δ ∈
ðδ10, δ20Þ, denoted ðl∗δ , v∗δÞ as ðl∗2 , v∗2 Þ (cf. point C in
Figure 1). Besides, for any γ1 < γ2 ∈ ð0, δ10Þ ∪ ð0, δ20Þ,
we have lγ1 < lγ2 .

(v) Compactly supported travelling wave ðvcðx − ctÞ, ℓcÞ:
consider the problem

v″ + cv′ + f vð Þ = 0, 0 < x < ℓ,
v 0ð Þ = 0, v ℓð Þ = 0, v′ ℓð Þ = −δ − c:

(
ð14Þ
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When β ∈ ð0, δ10Þ ∪ ðδ10, δ20Þ, for any c > 0 smaller than the
speed of the travelling wave of the equation v″ + f ðvÞ = 0,
then (14) has a unique solution, denoted by ðvcðx − ctÞ, ℓcÞ.
Besides, (8) has other solutions, such as travelling wave and
travelling semiwave solutions, groundstate solution which
are not used in this paper.

3. Asymptotic Behavior of Solutions

Using the same method as in ([7], Lemma 2.5) with minor
modifications, we have the following estimates.

Lemma 5. Assume (3). Let ðu, hÞ be a solution of (1) defined
for t ∈ ½0, TÞ, where t ∈ ½0, TÞ. Then, there exists a positive
constant M (depends on u0 and h0) such that 0 < uðt, xÞ ≤
M, and juxðt, xÞj ≤M for t ∈ ½0, TÞ, and x ∈ ½0, hðtÞ�.

Also, there exists C depending on M but independent of
T , such that −δ < h′ðtÞ ≤ C, for t ∈ ð0, TÞ.

Proof. We first prove the bondedness of uðt, xÞ. By the prop-
erty of f (i.e., (3)) and the comparison principle shows that
uðt, xÞ <max fku0kL∞ , 1g for all t ∈ ½0, TÞ and x ∈ ½0, hðtÞ�.

Hence, uðt, xÞ ≤M1 ≔max f1, ku0kL∞g, for t ∈ ½0, TÞ,
and x ∈ ½0, hðtÞ�.

We next consider the estimate of hðtÞ. Choose a large L
satisfying

L≔max
M1 + δ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 + δð Þ2 +N1/2

q
, 2 u0k kC1 0,h0½ �ð Þ

M1

8<
:

9=
;,

ð15Þ

with N1 ≔max0≤u≤M1
j f ′ðuÞj.

Construct

G t, xð Þ≔M1L h tð Þ − xð Þ 2 − L h tð Þ − xð Þ½ �, ð16Þ

for 0 < t < T and x ∈ ½hðtÞ − L−1, hðtÞ�. Then, Gðt, hðtÞÞ =
uðt, hðtÞÞ = 0 for t ∈ ð0, TÞ.

The definitions of L and N1 derive that

Gt − Gxx − f Gð Þ ≥M1 2L2 − 4 M1 + δð ÞL −N1
Â Ã

≥ 0, ð17Þ

for 0 < t < T , hðtÞ − L−1 < x < hðtÞ.
Moreover,

G t, h tð Þ − L−1
À Á

=M1 ≥ u t, h tð Þ − L−1
À Á

: ð18Þ

The classical comparison principle implies that

u t, xð Þ ≤G t, xð Þ, 0 < t < T , h tð Þ − L−1 < x < h tð Þ: ð19Þ

Note that

h′ tð Þ = −ux t, h tð Þð Þ − δ ≤ −Gx t, h tð Þð Þ − δ ≤ 2MC1 − δ:

ð20Þ

Denoted by C:= 2MC1 and −uxðt, hðtÞÞ ≤ C, according to
the classical parabolic estimates, there exists a constant
M2 > 0 such that juxðt, xÞj <M2 when 0 < x < hðtÞ and
define M ≔max fM1,M2g; we get the conclusion.

Lemma 6. Let ðu, hÞ be the solution of problem (1) for
t ∈ ½0, TÞ; if hðtÞ⟶ 0 as t⟶ T , then

limt⟶T u t, ⋅ð Þk kL∞ 0,h tð Þð Þ = 0, ð21Þ

and T ∈ ð0,+∞Þ.

Proof. From hðtÞ⟶ 0 and the estimates in Lemma 5, we
can derive that, for any γ < δ10, there is a time Tγ such that,
when t > Tγ, uðt, xÞ ≤ vτðxÞ for x ∈ ½0, hðtÞ�.

By the property vγ ⟶ 0 as γ⟶ 0 (cf. Section 2), we
have uðt, xÞ⟶ 0 as t⟶ T . And there is T1 < T such that
uðt, xÞ < 1 for x ∈ ½0, hðtÞ�.

Now, we show T < +∞. Define

N ≔max δ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + 2F0

q
, 4ε

� �
, ð22Þ

with F0 ≔max0≤u≤1j f ′ðuÞj. We choose a small ε > 0 such
that

4Nε < δ

2 : ð23Þ

Also, there is T2 > T1 such that uðt, xÞ < ε for x ∈ ½0, hðtÞ�
and all t ≥ T2.

Construct a function

�U t, xð Þ≔ ε h tð Þ − xð Þ 2N +N2 x − h tð Þð ÞÂ Ã
, ð24Þ

defined on

Σ≔ t, xð Þ: max 0, h tð Þ −N−1È É
< x < h tð Þ, t > T2

È É
: ð25Þ

By calculation, �U is an upper solution. From the Hopf
lemma and the choice of ε, we have

−ux t, h tð Þð Þ < −�U t, h tð Þð Þ = 4Nε < δ

2 : ð26Þ

Therefore,

h′ tð Þ = −ux t, h tð Þð Þ − δ < −
δ

2 , ð27Þ

so hðtÞ⟶ 0 as t⟶ T < 2ðh0/δÞ.
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Lemma 7. Assume δ ∈ ð0, δ10Þ ∩ ðδ10, δ20Þ, 0 < h∞ < +∞ and
ðu, hÞ is the solution of (1). Then, h∞ = l∗δ and limt⟶∞u
ðt, ⋅ Þ = v∗δ in any subset of ð0, h∞Þ, where ðl∗δ , v∗δÞ is the
solution of (6).

Remark 8. When δ = 0 and τ = 0, the convergence results in
the above lemma never happens. Besides, if f ðuÞ = uð1 − uÞ,
as δ⟶ 0, we can show that v∗δ ⟶ 0 and l∗δ ⟶ π. This is
the result in ([1], Lemma 3.1): vanishing happens when
h∞ ≤ π.

Proof. Since 0 < h∞ < +∞, we deduce that, for any given
v > 0, there is tv > 0, such that hðtÞ ∈ ðh∞ − v, h∞ + vÞ for
t > tv. We now define an upper solution V+ðt, xÞ which
is the solution of

Vt =Vxx + f Vð Þ, t > tv, x ∈ 0, h∞ + vð Þ,
Vx t, 0ð Þ = τV t, 0ð Þ, V t, h∞ + vð Þ = 0, t > tv,
V tv, xð Þ =V0 xð Þ, x ∈ 0, h∞ + vð Þ,

8>><
>>:

ð28Þ

where V0ðxÞ ≥ uðtv , xÞ for x ∈ ð0, h∞Þ. By the convergence
result of the solution (cf. [2], Theorem 1.1), we have
V+ðt, xÞ⟶ v+v ðxÞ as t⟶∞, where v+v ðxÞ is the solution of

v″ + f vð Þ = 0, 0 < x < h∞ + v,
v′ 0ð Þ = τv 0ð Þ, v h∞ + vð Þ = 0:

(
ð29Þ

Since V+ is an upper solution, so uðt, xÞ <V+ðxÞ for x ∈
½0, hðtÞ� and t > 0. Therefore,

limt⟶+∞ sup u t, ⋅ð Þ ≤ v+v ⋅ð Þ in 0, h∞½ �: ð30Þ

On the other hand, we can similarly prove

lim
t⟶+∞

inf u t, ⋅ð Þ ≥ v−v ⋅ð Þ in 0, h∞ − v½ �, ð31Þ

where v−v is the solution of

v″ + f vð Þ = 0, 0 < x < h∞ − v,
v h∞ − vð Þ = 0, v′ 0ð Þ = τv 0ð Þ:

(
ð32Þ

We derive from the standard compactness and unique-
ness argument that, as v⟶ 0,

v±v xð Þ⟶w xð Þ inC2
loc 0, h∞½ �ð Þ, ð33Þ

where w satisfies

w″ + f wð Þ = 0, 0 < x < h∞,
w h∞ð Þ = 0, w′ 0ð Þ = τw 0ð Þ:

(
ð34Þ

Change ½0, hðtÞ� to ½0, h0�; furthermore utilizing the stan-
dard regularity theory of parabolic equation, we can obtain

limt⟶+∞ u t, ⋅ð Þ −w ⋅ð Þk kC2 0,h tð Þ½ �ð Þ = 0: ð35Þ

This implies that, as t⟶ +∞,

ux t, h tð Þð Þ⟶w′ h∞ð Þ: ð36Þ

From 0 < h∞ < +∞, we must have h′ðtÞ⟶ 0ðt⟶
+∞Þ. This and the boundary condition h′ðtÞ = −uxðt, hðtÞÞ
− δ means that −w′ðh∞Þ = δ. From Section 2, the solution
of problem (34) with −w′ðh∞Þ = δ is nothing but v∗δðxÞ,
that is,

h∞ = l∗δ ,w xð Þ ≡ v∗δ xð Þ in 0, h∞ð Þ: ð37Þ

Moreover, when δ ∈ ð0, δ10Þ, ðl∗δ , v∗δÞ = ðl∗1 , v∗1 Þ; when
δ ∈ ðδ10, δ20Þ, ðl∗δ , v∗δÞ = ðl∗2 , v∗2 Þ.

Lemma 9. Let ðu, hÞ be a solution of problem (1); if ð0, h∞Þ
= ð0,+∞Þ, then

V1
τ xð Þ ≤ lim

t⟶+∞
inf u t, xð Þ ≤ lim

t⟶+∞
sup u t, xð Þ

≤V2
τ xð Þ in 0,+∞ð Þ,

ð38Þ

where V1
τ is the solution of (4) with 1 replaced by θ2; V

2
τ is the

solution of (4).

Proof. Step 1. Firstly, choose γ ∈ ðδ10, δ20Þ; let vγðxÞ be the
solution of (13) (cf. Section 2); we define an upper solution
u+ðt, xÞ which is the solution of

qt − qxx − f qð Þ = 0, x > 0, t > 0, ð39Þ

with conditions

q 0, xð Þ ≥max u0 xð Þ, vγ xð ÞÈ É
, x > 0 ; qx t, 0ð Þ = τq t, 0ð Þ, t > 0:

ð40Þ

Then, the comparison principle derives that uðt, xÞ ≤ u+

ðt, xÞ, for x ∈ ½0, hðtÞ�. By the convergence theorem of the
solution, we have u+ðt, xÞ⟶V2

τðxÞ as t⟶ +∞ locally
uniformly for x ∈ ð0,+∞Þ. Therefore,

lim
t⟶+∞

sup u t, xð Þ ≤V2
τ xð Þ, for x ∈ 0,+∞ð Þ: ð41Þ

Step 2. From h∞ = +∞, for any fixed large X > h0, there
is TX > 0, such that hðTXÞ = X and hðtÞ > X for t > TX . We

5Advances in Mathematical Physics



now define a lower solution u−Xðt, xÞ which is the solution of
the problem

vt = vxx + f vð Þ, 0 < x < X, t > TX ,
vx t, 0ð Þ = τv t, 0ð Þ, v t, Xð Þ = 0, t > TX ,
v TX , xð Þ = u TX , xð Þ, 0 < x < X:

8>><
>>: ð42Þ

Then, we deduce from the comparison principle that

u t, xð Þ ≥ u−X t, xð Þ for t, xð Þ ∈ TX ,+∞ð Þ × 0, X½ �: ð43Þ

By the convergence result, u−Xðt, xÞ⟶ u∗XðxÞ as t⟶
+∞ locally uniformly in ½0, X�, where u∗X is the solution of

η″ + f ηð Þ = 0, 0 < x < X, t > 0,
η′ 0ð Þ = τη 0ð Þ, η Xð Þ = 0:

(
ð44Þ

Therefore lim
t⟶+∞

inf uðt, xÞ ≥ u∗XðxÞ locally uniformly

in ℝ.
Step 3. As X⟶∞, u∗XðxÞ⟶ V1

τðxÞ or V2
τ uniformly

in any compact subset of ℝ.
Hence,

lim
t⟶+∞

inf u t, xð Þ ≥V1
τ xð Þ, x ∈ 0,+∞½ Þ: ð45Þ

Therefore, (38) follows from (41) and (45).

4. Sufficient Conditions

It is commonly known that the asymptotic behavior of solu-
tions is affected by the initial data; here, we only give simple
sufficient conditions for small (big) spreading, vanishing,
and equilibrium state; these conditions will be utilized in
the proof of the main theorems.

Lemma 10. Let uðt, xÞ be the solution of (1) with initial data
~u0 ∈ Xðh0Þ.

(i) Assume δ ∈ ð0, δ10Þ. If ~u0ðxÞ > v∗δðxÞ and ~u0ðxÞ <
V1

τðxÞ for x ∈ ½0, h0�, then small spreading happens

(ii) Assume δ ∈ ð0, δ20Þ. Choose β ∈ ðδ10, δ20Þ; if ~u0ðxÞ >
vβðxÞ for x ∈ ½0, h0�, then big spreading happens

(iii) Assume δ ∈ ð0, δ10Þ ∪ ðδ10, δ20Þ. If ~u0ð⋅Þ ≡ v∗δð⋅Þ in ½0,
h0�, then small (big) equilibrium state happens

(iv) For any δ > 0. Choose γ < δ; if ~u0ð⋅Þ < vγðxÞ for x ∈
½0, h0� ⊂ ð0, lγÞ, then vanishing happens

Proof.

(i) From the comparison principle and the definition of
v∗δ (which satisfies the boundary condition, cf.

Section 2), we have uðt, xÞ > v∗δðxÞ for x ∈ ½0, hðtÞ�
⊃ ½0, l∗δ �. Moreover, let ðℓc, vcðx − ctÞÞ be the com-
pactly supported travelling wave in Section 2; we
have, for some small c, u0ðxÞ > vcðxÞ for x ∈ ½0, h0�
⊃ ½0, ℓc�. Then, it follows from the comparison prin-
ciple that

u t, xð Þ > vc x − ctð Þ, for x ∈ ct, ct + ℓc½ � ⊂ 0, h tð Þ½ �, t > 0:
ð46Þ

So, hðtÞ > ct + ℓc ⟶ +∞ as t⟶∞.

Moreover, from ~u0ðxÞ <V1
τðxÞ, we have lim

supt⟶+∞uðt, xÞ ≤ V1
τðxÞ for x ∈ ½0,+∞Þ; combin-

ing this and Lemma 9, we get that small spreading
happens.

(ii) By the comparison principle, we have

h tð Þ > lβ and u t, xð Þ > vβ xð Þ, for all t > 0, x ∈ 0, h tð Þ½ �:
ð47Þ

So, h∞ > lβ > l∗δ (note that β > δ). If h∞ < +∞, it
then follows from Lemma 7 that the solution ðh, uÞ
converges to ðl∗δ , v∗δÞ, but this is impossible since
h∞ > lβ > l∗δ . Therefore, h∞ = +∞. However, from
Figure 1 in Section 2, we see that maxx∈½0,lβ�vβðxÞ >
θ2; combining this, (47) and Lemma 9, we get that
big spreading happens.

(iii) By the comparison principle, hðtÞ ≡ l∗δ for all t > 0
and uðt, xÞ ≡ v∗δðxÞ, for x ∈ ½0, l∗δ �. This means that
equilibrium happens

(iv) By the comparison principle,

h tð Þ < lτ, u t, xð Þ < vτ xð Þ
< v∗δ xð Þ, for all t ∈ℝ, x ∈ 0, h tð Þ½ �: ð48Þ

By Section 2 (cf. Figure 1), max
x∈½0,lτ�

vτðxÞ < θ2. So, small and

big spreading cannot happen. But Lemma 7 implies that
h∞ < +∞ is impossible since h∞ ≤ lτ < l∗δ (notice that γ <
δ). So, hðtÞ converges to 0 within a finite time. This means
that vanishing happens.

5. Proof of Main Theorems

Proof of Theorem 1. Theorem 1 follows from Lemmas 6, 7,
and 9.

Proof of Theorem 2. Vanishing, big equilibrium state, and big
spreading follow from Lemmas 6, 7, and 9, respectively. To
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complete the proof of Theorem 1, we only need to prove the
sharp result. Denote uðt, xÞ by uðt, x ; ρϕÞ and hðtÞ by hðt ;
ρϕÞ. Define

ρ∗ = sup μ ≥ 0 : u t, x ; ρϕð Þ, h t ; ρϕð Þð Þvanishesf g: ð49Þ

Proof. We divide the proof into three cases.
Case 1. ρ < ρ∗. We deduce from the definition of ρ∗ and

the classical comparison principle that vanishing happens
for uðt, x ; ρϕÞ.

Case 2. ρ = ρ∗. If vanishing happens, then there exists
T1 > 0 such that uðT1, x ; ρ∗ϕÞ < ~u0ðxÞ, where ~u0 is given in
Lemma 10 (iv). For any given sufficiently small ε > 0, we
have

u T1, x ; ρ+ε ϕð Þ < ~u0 xð Þ, 0 < x < h T1 ; ρ+ε ϕð Þ, ð50Þ

where ρ+ε ≔ ρ∗ + ε. From Lemma 10, uðt + T1, x ; ρ+ε ϕÞ van-
ishes. This also contradicts ρ∗. If big spreading happens
when ρ = ρ∗.

This means uðt, x ; ρ∗ϕÞ⟶V2
τðxÞ and hðt ; ρ∗ϕÞ⟶

+∞ as t⟶∞. So, there exists T2 such that hðT2 ; ρ∗ϕÞ
> l∗2 and uðT2, x ; ρ∗ϕÞ > v∗2 ðxÞ for x ∈ ½0, l∗2 �. Also, there
exists ε > 0 sufficiently small such that

u T2, x ; ρ∗ − εð Þϕð Þ > v∗2 xð Þ, and h T2 ; ρ∗ϕð Þ > l∗2 , x ∈ 0, l∗2½ �
⊂ 0, h T2 ; ρ∗ − εð Þϕð Þ½ �:

ð51Þ

Lemma 9 implies big spreading for uðt + T2, x ; ðρ∗ − εÞ
ϕÞ, a contradiction with ρ∗. Therefore, big spreading and
vanishing cannot happen. Combine this and δ ∈ ðδ10, δ20Þ;
we have big equilibrium state happens.

Case 3. ρ > ρ∗. The definition of ρ∗ implies that vanish-
ing cannot happen. We now prove that big equilibrium state
is impossible. Otherwise, there is some ρ1 > ρ∗ such that
uðt, x ; ρ1ϕÞ⟶ v∗2 ðxÞ as t⟶ +∞. By the comparison
principle, for any t > 0,

h t ; ρ∗ϕð Þ < h t ; ρ1ϕð Þ and u t, x ; ρ∗ϕð Þ < u t, x ; ρ1ϕð Þ: ð52Þ

Since uðt, x ; ρ1ϕÞ converges to v∗2 , for small ε > 0, there
is large t0 such that

h t0 ; ρ∗ϕð Þ < lδ−ε < h t0 ; ρ1ϕð Þ and u t0, x ; ρ∗ϕð Þ
< vδ−ε xð Þ < u t0, x ; ρ1ϕð Þ, ð53Þ

where ðlδ−ε, vδ−εÞ is the compactly supported solution (cf.
Section 2). By the comparison principle, for t > 0,

h t+t0 ; ρ∗ϕð Þ < lδ−ε and u t + t0, x ; ρ∗ϕð Þ < vδ−ε xð Þ: ð54Þ

This contradicts case 2 that uðt, x ; ρ∗ϕÞ converges to
the big equilibrium state. Therefore, combining this and

Lemma 10, we have big spreading which happens when
ρ > ρ∗.

Proof of Theorem 3.

(i) We first prove that, when δ ≥ δ20, only vanishing
happens. Actually, small and big equilibrium states
are impossible when δ ≥ δ20, since there is no com-
pactly supported solutions (cf. Section 2). We next
show that big spreading is also impossible, and the
proof for small spreading follows a similar approach.
Suppose on the contrary that spreading happens,
then

u t, xð Þ⟶V2
τ xð Þ as t⟶ +∞: ð55Þ

Furthermore, the property V2
τð+∞Þ = 1 and ([29],

Proposition A) imply that, for some M1 > 0, T1 > 0,
and some v ∈ ð0,−f ′ð1ÞÞ, the following holds:

u t, xð Þ ≤ 1 +M1e
−vt , forx ∈ 0, h tð Þ½ �, t ≥ T1: ð56Þ

For some M ′ >M1, σ > 0, X0 > 2hðT1Þ, construct an
upper solution:

�h tð Þ = X0 +M ′σ 1 − e−vt
À Á

, �u t, xð Þ
≔ 1 +M ′e−vt
� �

U2
0 x − �h tð ÞÀ Á

:
ð57Þ

Therefore, h∞ ≕ limt⟶+∞hðtÞ ≤ limt⟶+∞�hðtÞ <
+∞. So, big spreading cannot happen. Suppose
h∞ > 0, it follows from Lemma 7 that equilibrium
state happens, but this is impossible since there are
no compactly supported solutions when δ > δ20.
Therefore, only vanishing happens.

(ii) When δ = δ10, vanishing follows from Lemma 6,
small spreading cannot happen using the same
method as in the proof of (i). From Lemma 10 (ii),
big spreading happens

6. Conclusions

This paper explores the free boundary problem with multi-
stable nonlinearity and presents two cases for the solution’s
spreading. The first one is four types of diffusion: big spread-
ing, small spreading, small equilibrium and vanishing; the
second one is a trichotomy result: big spreading, big equilib-
rium state and vanishing. Additionally, it is a good idea to
consider the free boundary problem of fractional differential
equation (see also [30]). Also, we will consider the problem
in time/space environment. Besides, we will find some inter-
esting models from other background (cf. [31–33]).
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