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In this paper, the effect of a fractional constitutive model on the rheological properties of fluids and its application in numerical
simulation are investigated, which is important to characterize the rheological properties of fluids and physical characteristics of
materials more accurately. Based on this consideration, numerical simulation and analytical study of unsteady fractional Oldroyd-B
viscoelastic flow are carried out. In order to improve the degree of accuracy, the mixed partial derivative including the fractional
derivative in the differential equation is converted effectively by integrating by parts instead of by direct discretization. Then, the
stability, convergence, and unique solvability of the difference scheme are verified. The validity of the finite difference method is
tested by making comparisons with analytical solutions for two kinds of fractional Oldroyd-B viscoelastic flow. Numerical results
obtained using the finite difference method are in good agreement with analytical solutions obtained via the variable separation
method. Viscoelastic characteristics of the unsteady Poiseuille flow are similar to the second-order fluid or integer-order Oldroyd-B
fluid when the parameter is close to 0 or to 1. Oscillation characteristics of fractional viscoelastic oscillatory flow are similar to
those of the classical viscoelastic fluid under the same condition. Compared with the previous research, the present work studies
the rheological properties of fluids with the finite difference method, and the application of fractional constitutive models in
describing the rheological properties of fluids is developed. Meanwhile, more cases reflecting the fractional-order characteristics are
given. The present method can accurately capture the flow characteristics of unsteady fractional Oldroyd-B viscoelastic fluid and is
applicable for the generalized fractional fluid.

1. Introduction

Recently, non-Newtonian fluid models including fractional
derivatives have aroused great interest because of their
extensive application in practical engineering problems.
Dassios and Baleanu [1] studied singular linear systems of
finite difference equations by using the Caputo fractional
derivative and its two alternative forms. Alsharif and Elma-
boud [2] investigated the physical characteristics of electro-
osmotic flow by solving the fractional Cattaneo model.
Khan et al. [3, 4] obtained some analytical solutions for the
fractional Oldroyd-B fluid with different initial and bound-
ary conditions. Based on the Fourier sine transform,
Nadeem [5] presented exact solutions for the fractional
Oldroyd-B fluid in periodic motion. Qi and Xu [6] obtained

the analytical solution for the Oldroyd-B viscoelastic flow by
using the discrete Laplace transform. However, it is very
difficult to carry them out in the field of engineering applica-
tions. On the one hand, analytical solutions always appear in
complex series form. On the other hand, the Mittag-Leffler
function or the Fox-H function is often included in the exact
solution. To overcome the above problems, researchers
studied the Oldroyd-B viscoelastic flow with other methods.
In combination with the numerical inversion of Laplace
transforms, Huang et al. [7] analyzed the motion character-
istics of the generalized second fluid in a double barrel
rheometer. Yao and Zhang [8] set up a kind of implicit dif-
ference scheme for the viscoelastic fluid following a general-
ized Maxwell fractional differential equation. Wang et al. [9]
studied the unsteady Poiseuille flow of the fractional
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Oldroyd-B viscoelastic fluid between two parallel plates and
used the Stehfest algorithm to carry out numerical inversion
of the Laplace transform. Liu and Zheng [10] used the
Laplace transform coupling with the Hankel transform to
study unsteady helical flows and obtained exact solutions
of a generalized Oldroyd-B fluid between two infinite con-
centric cylinders. Yu [11] adopted a high-order compact
finite difference method to solve the generalized fractional
Oldroyd-B fluid model and mainly investigated the corre-
sponding stability and convergence for the finite difference
method. However, it should be pointed out that the related
work on the numerical analysis is much less compared with
that on viscoelastic rheological behaviors and analytical
solutions. With the help of a discretization of the Caputo
time-fractional derivative and the finite difference method,
Zhang et al. [12] obtained an approximate implicit differ-
ence method to solve a two-dimensional multiterm time-
fractional Oldroyd-B equation. Al-Maskari and Karaa [13]
considered the numerical approximation of a generalized
fractional Oldroyd-B fluid problem with a semidiscrete
scheme based on the piecewise linear Galerkin finite element
method. In other engineering fields, Raslan et al. [14] pres-
ent a computational scheme using the bi-finite difference
method (Bi-FDM) to solve the hyperbolic telegraph equa-
tion in two dimensions. The fluid flow model governed by
partial differential equations is reduced to a system of non-
linear ordinary differential equations for solving the calcula-
tion in reference [15]. However, no relevant literature has
been seen in which the method is applied to fractional-
order models. It shows that the finite difference method
has great advantage in solving the fractional Oldroyd-B
fluid problem.

Large quantities of experiments and engineering prac-
tices have shown that the fractional derivative model can
describe the constitutive relation of viscoelastic materials
and their rheological properties more accurately than other
models. Moreover, traditional constitutive models can be
used as special cases of fractional derivative constitutive
models. Therefore, the fractional derivative is widely used
in the expanding research of the constitutive model. How-
ever, the research of applying the fractional-order derivative
to the Oldroyd-B model is still relatively rare, especially
when the analytical and numerical solutions are given in
specific arithmetic cases and compared. The fractional-
derivative-type viscoelasticity principal structure relation-
ship established by the theory on fractional derivatives was
a newly developed principal structure model nearly two
decades ago. Compared to the Riemann-Liouville [16] frac-
tional derivative, Caputo fractional derivatives [14] are more
suitable and convenient for numerical analysis. Khan and
Rasheed [17] have adopted the Galerkin finite element
method to determine the approximate solution that is uni-
form with the finite difference approximation of the Caputo
fractional time derivative. In another article by them, the
Caputo fractional derivative is used to simulate the physical
properties of the fractional unsteady magnetohydrodynamic
flow [18]. Zaid and Dumitru [19] studied and proposed a
new system of fractional differential equations in conjunc-
tion with the generalized Caputo fractional derivative.

Erturk et al. [20] developed a mathematical analysis for a
corneal-shaped model in combination with the Caputo
fractional derivative. These show that the Caputo fractional
derivative is widely used in mathematical and physical
problems Moreover, the initial and boundary conditions
defined by the Caputo fractional derivatives are specific in
physical meaning, which can provide great convenience for
computation and application in the field of physics and
engineering. Therefore, this paper adopts Caputo fractional
derivatives directly.

In summary, it has been known that the fractional deriv-
ative is widely used in the expanding research of the consti-
tutive model to solve mathematical and physical problems,
but the research of applying the fractional-order derivative
to the Oldroyd-B model is still relatively rare, especially
when the analytical and numerical solutions are given in
specific arithmetic cases and compared. This research idea
is executed in this paper, and four sections are mainly
included here. The finite method is given in Section 2,
including different schemes, the proof of the stability, and
convergence, as well as the analysis of unique solvability.
Taking the unsteady Poiseuille flow and oscillatory flow in
a circular pipe as example, numerical simulations are devel-
oped in Section 3. Then, the final conclusion is given in
Section 4. Moreover, the proof of the numerical simulation
method and analytical solution is given in the appendix.

2. Finite Difference Method

2.1. Governing Equations with Caputo Derivative. The
fundamental equations describing the unsteady motion of
an incompressible fluid are given [21]:

div V = 0, ð1Þ

ρ
dV
dt

= div T, ð2Þ

in which V = ðu, v,wÞ is the velocity vector and u, v, and w
that are, respectively, along the x, y, and z directions in the
Cartesian coordinate system. ρ is the uniform density, and
d/dt denotes the material derivative with respect to time.
T = −pI + σ is the Cauchy stress tensor, in which p repre-
sents the pressure, I is the unit tensor, and σ is the extra
stress tensor.

The constitutive equation of the fractional Oldroyd-B
fluid [3] is

1 + λα1
δα

δtα

� �
σ = μ 1 + λ

β
2
δβ

δtβ

 !
A1, ð3Þ

where μ is the viscosity and λ1 and λ2 are the relaxation time
and retardation time, respectively. α and β are the order of
the fractional derivatives with the condition 0 ≤ α ≤ β ≤ 1.
A1 is the first Rivlin-Ericksen tensor given by

A1 = L + LT, ð4Þ
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where δασ/δtα and δβA1/δtβ are defined as

δασ

δtα
= ∂ασ

∂tα
+ V ⋅ ∇ð Þσ − Lσ − σLT,

δβA1
δtβ

= ∂βA1
∂tβ

+ V ⋅ ∇ð ÞA1 − LA1 −A1LT:
ð5Þ

Here, the fractional differential operator δα/δtα based on
Caputo’s definition [8] is expressed as

∂α f xð Þ
∂xα

= 1
Γ n − αð Þ

ðx
0

f nð Þ ξð Þ
x − ξð Þα+1−n

dξ, n − 1 < α < n: ð6Þ

Here, Γð⋅Þ is the Gamma function.
Besides, the Laplace transform of the time-fractional

Caputo derivative is given as

L C
0Dt

α
f tð Þ ; s

n o
= sαF sð Þ − 〠

n−1

k=0
sα−k−1 f kð Þ 0ð Þ α > 0, n − 1 ≤ α < n,

ð7Þ

and the time-fractional Caputo derivative is defined as

C
aDt

α
f tð Þ =

1
Γ n − αð Þ

ðt
a

f nð Þ τð Þ
t − τð Þ1+α−n dτ, n − 1 < α < n,

dn

dtn
, α = n:

8>>><
>>>:

ð8Þ

The definition is stricter than that of the Riemann-
Liouville fractional-order derivative, in which f ðtÞ is an inte-
grable function of order n.

For the unidirectional flow, the velocity and stress are
considered as follows:

V = u y, tð Þi, σ = σ y, tð Þ, ð9Þ

where i is the unit vector along the x direction. Equa-
tions (5) and (9) satisfy the initial condition σðy, 0Þ = 0; thus,
σxz = σyz = σyy = σzz = 0 is established. Corresponding to
Equation (1), the following expressions are obtained:

1 + λα1
∂α

∂tα

� �
σxy = μ 1 + λ

β
2
∂β

∂tβ

 !
∂u
∂y

� �
, ð10Þ

1 + λα1
∂α

∂tα

� �
σxx − 2λα1σxy

∂u
∂y

= −2μλβ2
∂u
∂y

� �2
: ð11Þ

In the absence of body forces, the momentum Equation
(2) for the unidirectional flow of the fractional Oldroyd-B
fluid is written as

ρ
∂u
∂t

= −
∂p
∂x

+
∂σxy
∂y

: ð12Þ

According to Equations (12) and (14), the motion equa-
tion of the fractional Oldroyd-B fluid is expressed as

∂u
∂t

+ λα1
∂α+1u
∂tα+1

= ν
∂2u
∂y2

+ νλ
β
2
∂β

∂tβ
∂2u
∂y2

 !
− 1 + ∂α

∂tα

� �
A,

ð13Þ

where A = ð1/ρÞð∂p/∂xÞ, ν = μ/ρ.

2.2. Difference Scheme. In the space region ½0, d�, let us set
yi = ih, i = 0, 1, 2,⋯,M, tn = nτ, n = 0, 1,⋯, h = d/M is the
space step, and τ is the time step. Here, uni represents the
approximate value of uðih, nτÞ, and it is assumed that un =
ðun1 ,⋯, unMÞ is a M-dimensional vector.

For convenience, the following marks are introduced:

δtu
n = un − un−1, δyui = ui − ui−1, δ2yui = ui+1 − 2ui + ui−1,

ð14Þ

ut =
∂u
∂t

, unk k∞ = max
0≤i≤M

unij j, δyu
n

 
2 = h〠

M

i=1

uni − uni−1
h

� �2
" #1/2

:

ð15Þ
The Crank-Nicolson (C-N) scheme is used to discretize

partial derivative terms in Equation (11). At node ðyi, tn−1/2Þ,
it is satisfied as tn−1/2 = ðn − 1/2Þτ. The time partial and space
derivative with two orders are, respectively, expressed as

∂u yi, tn−1/2ð Þ
∂t

= δtu yi, tnð Þ
τ

+O τ2
À Á

, ð16Þ

∂2u yi, tn−1/2ð Þ
∂y2

=
δ2yu yi, tnð Þ + δ2yu yi, tn−1ð Þ

2h2
+O τ2
À Á

+O h2
À Á

:

ð17Þ
In combination with Equation (9) and the above C-N

scheme, the implicit difference scheme of Equation (13) at
node ðyi, tn−1/2Þ is expressed as

δtu
n
i

τ
+ λ1

α

Γ 1 − αð Þτ a0
δtu

n
i

τ
− 〠

n−1

k=1
an−k−1 − an−kð Þ δtu

k
i

τ
− an−1ut yi, t0ð Þ

" #

= ν
δ2yu

n
i + δ2yu

n−1
i

2h2
+ νλ2

β

Γ 2 − βð Þτ

Â b0
δt δ2yu

n
i

� �
τh2

− 〠
n−1

k=1
bn−k−1 − bn−kð Þ

δt δ2yu
k
i

� �
τh2

− bn−1wt yi, t0ð Þ
2
4

3
5 −A:

ð18Þ

The detailed derivation process is given in Appendix A.
In addition, the initial and boundary conditions are also

discretized according to the above steps.

2.3. Stability

Lemma 1. (see [22]).
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The function u is defined in �Ih = fxi = ih, 0 ≤ i ≤M, x0 = 0,
xM = Lg; if u0 = uM is satisfied, then kuk∞ ≤ ð ffiffiffi

L
p

/2Þkδxuk is
established.

Theorem 2. The implicit difference scheme of Equation (18)
is unconditionally stable.

Proof. Supposing uni is the exact solution of Equation (18).
Multiplying Equation (18) by hτδtu

n
i , and summing up

for i from 1 to M − 1; then, for n from 1 to N , it can
be obtained as

λ1
α

Γ 1 − αð Þτ〠
N

n=1
〠
M−1

i=1
a0

δtu
n
i

τ
− 〠

n−1

k=1
an−k−1 − an−kð Þ δtu

k
i

τ
− an−1ut yi, t0ð Þ

" #
hτδtu

n
i

+ 〠
N

n=1
〠
M−1

i=1

δtu
n
i

τ
hτδtu

n
i = 〠

N

n=1
〠
M−1

i=1
− hτδtu

n
i

+ 〠
N

n=1
〠
M−1

i=1

δ2yu
n
i + δ2yu

n−1
i

2h2
hτδtu

n
i +

λ2
β

Γ 2 − βð Þτ〠
N

n=1
〠
M−1

i=1

Á b0
δt δ2yu

n
i

� �
τh2

− 〠
n−1

k=1
bn−k−1 − bn−kð Þ

δt δ2yu
k
i

� �
τh2

2
4

− bn−1wt yi, t0ð Þ
#
hτδtu

n
i :

ð19Þ

The following emphasis is focused on analyzing Equa-
tion (19). In combination with Equations (14) and (15), it
can be concluded that

δyu
N 2 ≤ δyu

0 2 − 2Ah〠
N

n=1
〠
M−1

i=1

Γ 1 − αð Þτ
λ1

αtN−α + Γ 1 − αð Þ : ð20Þ

The detailed proof of Equation (20) is given in
Appendix B. According to Lemma 1 [22], we can obtain

uN
 

∞ ≤
ffiffiffi
d

p

2 δyu
N 2: ð21Þ

Therefore, the implicit difference scheme is uncondi-
tionally stable.

2.4. Convergence

Theorem 3. Equation (18) is convergent when it is satisfied
by h ≤ τ.

Proof. Suppose that uðyi, tnÞ is the exact solution of Equation
(13) at node ðyi, tnÞ; uni is the numerical solution, and the
error between two solutions is defined as eni = uðyi, tnÞ − uni .
Here, assume that there exists no error for the initial data,

according to Equations (17) and (18); then,

δte
n
i

τ
+ λ1

α

Γ 1 − αð Þτ a0
δte

n
i

τ
− 〠

n−1

k=1
an−k−1 − an−kð Þ δte

k
i

τ

" #

=
δ2ye

n
i + δ2ye

n−1
i

2h2
+ λ2

β

Γ 2 − βð Þτ

Â b0
δt δ2ye

n
i

� �
τ

− 〠
n−1

k=1
bn−k−1 − bn−kð Þ

δt δ2ye
k
i

� �
τ

2
4

3
5 + Rn

i :

ð22Þ

Here, 1 ≤ i ≤M − 1, n ≥ 1. The initial and boundary
values of the error are

e0i = 0, 0 ≤ i ≤M,
en0 = enM = 0, n ≥ 1:

ð23Þ

It follows from Equation (22) that

δye
n

 2 ≤ 2h〠
n

k=1
〠
M−1

i=1

Γτ

λ1
αtn−α + Γ 1 − αð Þ Rk

i

� �2
, Rk

i =O τ2−α + h2

τβ

 !
:

ð24Þ

We have

δye
n 2 ≤ 2hΓ 1 − αð Þτ

λ1
αtn

−α + Γ 1 − αð Þð Þ〠
n

k=1
〠
M−1

i=1
Rk
i

� �2

≤
2hΓ 1 − αð Þτ

λ1
αtn−α + Γ 1 − αð Þð Þ n M − 1ð Þ Cj j2 τ2−α + h2

τβ

 !2

≤ 2T Cj j2d τ2−α + h2

τβ

 !2

:

ð25Þ

Because kenk∞ ≤ ð ffiffiffi
d

p
/2Þkδyenk2 is established, it can be

further obtained that

enk k∞ ≤ Cj jd
ffiffiffiffi
T
2

r
τ2−α + h2

τβ

 !
= C1 τ2−α + h2

τβ

 !
, ð26Þ

where C1 is a constant which has nothing to do with h and τ.
Therefore, according to h ≤ τ, when it is satisfied that
h⟶ 0 and τ⟶ 0, then kenk∞ ⟶ 0 is established, and
the convergence is proven.

2.5. Unique Solvability

Theorem 4. Equation (18) is uniquely solvable.
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Proof. Equation (16) can be written as

−
ν

2h2
+ νλ2

βb0
Γ 2 − βð Þτ2h2

" #
uni+1

+ 1
τ
+ λ1

αa0
Γ 1 − αð Þτ2 + ν

h2
+ 2νλ2βb0
Γ 2 − βð Þτ2h2

" #
uni

−
ν

2h2
+ νλ2

βb0
Γ 2 − βð Þτ2h2

" #
uni−1 =

un−1i

τ

+ λ1
α

Γ 1 − αð Þτ a0
un−1i

τ
+ 〠

n−1

k=1
an−k−1 − an−kð Þ δtu

k
i

τ
+ an−1ut yi, t0ð Þ

" #

+ ν
δ2yu

n−1
i

2h2
−

νλ2
β

Γ 2 − βð Þτ

Á b0
δ2yu

n−1
i

τh2
+ 〠

n−1

k=1
bn−k−1 − bn−kð Þ

δt δ2yu
k
i

� �
τh2

+ bn−1wt yi, t0ð Þ
2
4

3
5 − A:

ð27Þ

Here, it is satisfied that 1 ≤ i ≤M − 1.
Equation (27) contains M − 1 equations, and the part of

the coefficient can be written as a matrix form:

Cu = b: ð28Þ

u is the velocity vector and b is the right-hand side
(R.H.S.) of Equation (27), where

C =

c11 c12 0 0 0 ⋯ 0
c21 c22 c23 0 0 ⋯ 0
0 c32 c33 c34 0 ⋯ 0
0 0 ⋱ ⋱ ⋱ ⋯ 0
⋮ ⋮ 0 ⋱ ⋱ ⋱ 0
⋮ ⋮ ⋮ 0 cM−2,M−3 cM−2,M−2 cM−2,M−1

0 0 0 0 0 cM−1,M−2 cM−1,M−1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

,

cii =
1
τ
+ λ1

αa0
Γ 1 − αð Þτ2 + ν

h2
+ 2νλ2βb0
Γ 2 − βð Þτ2h2 , cij = cji,

cij =
ν

2h2
+ νλ2

βb0
Γ 2 − βð Þτ2h2 , j = i + 1,

0, otherwise:

8><
>:

ð29Þ

Because the coefficient matrix is strictly diagonally
dominant, the difference scheme Equation (18) is uniquely
solvable.

3. Numerical Study of Poiseuille Flow with
Finite Difference Method

Figure 1 shows the two-dimensional Poiseuille flow between
two parallel plates. In order to verify the finite difference

method, the analytical solution of the Poiseuille flow is
firstly given:

u y, tð Þ = 2
d
〠
∞

n=1
〠
∞

k=0
〠
k

m=0
−1ð Þk

k

m

 !
Anλ

−α k+1ð Þ
1 λ

mβ
2 νk

Á nπ
d

� �2k tαk+α−mβ+k+1

k!
E kð Þ
α,α−mβ+k+2 −λ−α1 tαð Þ sin nπy

d
,

ð30Þ

where

An =
2A
nπ

1 − −1ð Þnð Þ, A = −
1
ρ

∂p
∂x

: ð31Þ

The above analytical solution satisfies the following
initial and boundary conditions:

u y, 0ð Þ = 0, 0 < y < d,
ut y, 0ð Þ = 0, 0 < y < d,
u 0, tð Þ = 0, t > 0,
u d, tð Þ = 0, t > 0:

ð32Þ

Because the form of the analytical solution is very
complex, we only consider the approximate analytical
solution under the condition that t is a small number. In
order to execute the numerical simulation, it is supposed
that ν = d = 1 and A = −1. In Figure 2, the velocity on
the centerline of the two parallel plates is considered,
and numerical comparison between the finite difference
method and the approximate analytical solution is shown.
Here, three groups of parameters are chosen:

group 1 : α = 0:2, β = 0:8, λ1 = 0:1, λ2 = 0:01,
group 2 : α = 0:7, β = 0:9, λ1 = 0:1, λ2 = 0:01,
group 3 : α = 0:2, β = 0:8, λ1 = 0:5, λ2 = 0:1:

ð33Þ

In the first two group parameters, the variation
induced by α and β is compared. In the first and third

Boundary plate, stationary

Boundary plate, stationary

d dp

dx
Fluid Velocity

x

y

u (y)

L

Figure 1: Two-dimensional Poiseuille flow between two parallel
plates.
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Figure 2: Numerical comparison of analytical solutions and finite difference method: the velocity on the centerline with three groups of
parameters.

Table 1: The relative error of the velocity on the centerline with time for three group coefficients.

Time (s) Error 1 Error 2 Error 3

0.006 0.05384 0.04027 0.02548

0.012 0.05767 0.05164 0.02863

0.018 0.05973 0.06123 0.03205

0.024 0.03959 0.05671 0.03534

0.030 0.02836 0.05110 0.03863

0.036 0.01603 0.04329 0.04151

0.042 0.00959 0.03548 0.04356

0.048 0.00589 0.03178 0.04192

0.054 0.00890 0.02288 0.03986

0.060 0.01164 0.01836 0.03836

0.066 0.01397 0.01397 0.03740

0.072 0.01644 0.01014 0.03630

0.078 0.01932 0.00685 0.03534

0.084 0.02247 0.00329 0.03247

0.090 0.02493 0.00027 0.02562

0.096 0.02740 0.00301 0.01849

0.102 0.02959 0.00507 0.01521

0.108 0.03178 0.00699 0.01247

0.114 0.03384 0.00904 0.01411

0.120 0.03534 0.01137 0.01562
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group parameters, the variation induced by λ1 and λ2 is
considered. As displayed in Figure 2, numerical results
illustrate that the finite difference method is in good agree-

ment with the approximate analytical solution under three
group parameters. It can be preliminarily determined that
the velocity amplitude shows a decreasing trend with the
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Figure 3: The influence of the order parameter α on the velocity (β = 1:0, λ1 = 0:1, λ2 = 0:01): (a) variations of the velocity along the y
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above four parameters. The velocity based on the parame-
ter of group 1 is larger than other two group parameters.
Meanwhile, Table 1 displays the relative error of the veloc-
ity on the centerline with time for three group coefficients.
For example, Error 1 corresponds to group 1. It demon-
strates that the relative error gradually turns to be within
the scope of 2% as time increases, especially for group 2
and group 3. It powerfully states that the finite difference

method is stable and reliable. The relative error of the velocity
on the centerline with time for the above three group coeffi-
cients is given in Table 1, and the small relative error further
reflects the accuracy of the numerical algorithm.

Next, the influence of four parameters on the velocity
and fluid physical properties is considered with the finite
difference method. Figure 3 displays the influence of the
parameter α on the velocity at the center line with the other
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three fixed parameters; here, it is supposed that β = 1:0,
λ1 = 0:1, and λ2 = 0:01. When the parameter α = 0 or α = 1,
the velocity represents the moving velocity of the second-
order fluid or integer-order Oldroyd-B fluid. It can be
observed that the velocity distribution with α = 0 and α = 1 is
in good agreement with that based on integral-order constitu-
tive Equation (18). When it satisfies 0 < α < 1, the velocity of
the fractional Oldroyd-B fluid is between that of the second-
order fluid and that of the integer-order Oldroyd-B fluid. It
also shows in Figure 3(a) that the velocity gradually tends to

be stable with time, and maximum values of the velocity
increase with α. This phenomenon is called velocity overshoot,
which appears as the increasing elasticity and a fluctuation in
velocity. As displayed in Figure 3(b), the distribution of flow is
filed symmetric along the y direction with different α. Mean-
while, the closer the parameter α is to 1, the more obvious is
the velocity overshoot. The physical characteristics of the fluid
is manifested as an increase in fluid elasticity and appearances
of velocity fluctuations, and the flow field variation is also
closer to that of the integer-order Oldroyd-B fluid. In
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Figure 5: Comparisons of analytic solution and finite difference method for the velocity amplitude (α = 1, β = 1,, and θ = 0:001; (a) R∗ = 0:05;
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summary, the fractional Oldroyd-B fluid displays the visco-
elastic characteristics similar to the second-order fluid or the
integer-order Oldroyd-B fluid when the parameter α is close
to 0 or to 1.

Figure 4 mainly studies the influence of the order param-
eter β on the velocity at the center line with fixed parame-
ters; here, it is satisfied as λ1 = 0:1 and λ2 = 0:01. As shown
in Figure 4(a), the velocity increases gradually at the steady
state, but the variation of the amplitude reduces with β. It
illustrates that the fluid viscosity reduces with β; this caused
the amplitude of the velocity to reduce gradually. As shown
in Figure 4(b), when α is large, the variation of the velocity is
basically the same. The parameter β almost has no influence
on the amplitude of velocity and the time to steady state.

There appears a velocity overshoot phenomenon which is
identical with Figure 3. It can be concluded that variations
of parameters α and β can lead to velocity overshoot; this
is because an increase in α causes an increase in the elasticity
of the fluid, while an increase in β causes a decrease in the
viscosity of the fluid.

4. Numerical Simulations of the Oscillatory
Flow in a Circular Pipe

The oscillatory flow in a circular pipe exists extensively in
the blood, petroleum, and polymer solutions. This kind of
flow not only has the viscosity of the fluid but also shows
the elasticity of the solid. Therefore, it is difficult to use
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Figure 6: The velocity amplitude of fractional Oldroyd-B fluid along the pipe axis with ω∗ (α = 0:8, β = 0:95,, and θ = 0:001, (a) R∗ = 0:05;
(b) R∗ = 0:1; (c) R∗ = 0:5; (d) R∗ = 5).
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one model to represent all the characteristics of viscoelastic
fluids, and many viscoelastic models and constitutive equations
have emerged. Fractional Oldroyd-B has made a breakthrough
in the research of material constitutive theory. In general, only a
simple analysis of the velocity and stress is performed in the lit-
erature, but the variation of periodic velocity and stress ampli-
tude is rarely studied. In this paper, the velocity and shear
stress of the oscillatory flow in a circular pipe is studied in detail.

The laminar flow in a circular pipe with an infinite radius
is considered, and it is supposed that (1) the flow is incom-
pressible, (2) the velocity along the radius direction is equal

to zero, (3) the flow is axisymmetric about the pipe, and (4)
the axial velocity is only related with the radius.

In order to verify the correctness of the finite difference
method, the analytical solution of the oscillatory flow is
firstly derived in detail, and then, numerical simulations of
the velocity and shear stress are executed and compared
between two kind of methods. The cylindrical coordinate
system with ðr, θ, zÞ is established here, in which the z axis
is along the central axis of the circular pipe. Here, the pro-
cessing of the difference format for shear stress is similar
to that for the velocity.
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Figure 7: The velocity amplitude of fractional Oldroyd-B fluid along the pipe axis with ω∗ (α = 0:2, β = 0:35,, and θ = 0:001; (a) R∗ = 0:05;
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Starting from Equations (10) and (11), the variable sep-
aration method is used to derive the analytical solution.
Here, the dimensionless analytical amplitudes of the velocity
and shear stress on the pipe wall are given:

Au∗ =
4

iR∗2ω∗
1− 1

J0
ffiffiffiffiffiffiffiffi
ω∗∗

p
R∗

� �
2
4

3
5

������
������,

Aσ∗ =
2ffiffiffiffiffiffiffiffi

ω∗∗
p

r∗

J1
ffiffiffiffiffiffiffiffi
ω∗∗

p
R∗

� �
J0

ffiffiffiffiffiffiffiffi
ω∗∗

p
R∗

� �
������

������:
ð34Þ

The detailed process is contained in Appendix C.
According to the expressions of Au∗ and Aσ∗ , the ampli-

tudes of velocity and stress are related with the pipe radius
R∗, oscillation frequency ω∗, and specific value θ = λ2/λ1,
as well as the order of the fractional Oldroyd-B constitutive
model. In the numerical simulation, the influence of these
parameters is studied.

4.1. The Influence of Parameters on the Velocity. Next,
numerical simulations of the oscillatory flow in a circular
pipe are executed. Firstly, the finite difference method is ver-
ified by comparing numerical results and the analytical solu-
tion. When the order parameters are chosen as α = β = 1, the
fractional Oldroyd-B constitutive model degenerates to the
classical Oldroyd-B constitutive model. Figure 5 shows the
variation of the velocity amplitude with the oscillation fre-
quency. It demonstrates that numerical results are in good
agreement with the analytical solution for different pipe

radii. The velocity amplitude basically shows a decreasing
trend with the pipe radius. In Figure 5(a), the resonance phe-
nomenon appears at ω∗ = 48, because the peak value of the
velocity amplitude is much larger than at other frequencies.
In Figures 5(b)–5(d), the number of the formant is gradually
increasing with the pipe radius. Meanwhile, the peak value sub-
stantially reduces especially for the velocity amplitude at R∗ = 5
. Compared with the case of R∗ = 0:05, 0:1, 0:5, 5, all formants
concentrate at 0 ≤ ω∗ ≤ 10. The curve of the velocity amplitude
gradually approximates to a monotonic decreasing curve with
R∗, which is very close to the curve of the Newtonian fluid.

Secondly, a different order parameter is chosen to study the
variation of the velocity amplitude. Figure 6 shows the velocity
amplitude with α = 0:8 and β = 0:95, and Figure 7 chooses the
order parameter as α = 0:2 and β = 0:35. It can be observed that
the formant also appears in the velocity amplitude curve of the
fractional Oldroyd-B fluid similar to the classical Oldroyd-B
fluid. On the one hand, the first peak appears in Figure 7(a) cor-
responding to R∗ = 0:05, and the number of the formant
increases, but the peak value substantially reduces with R∗.
On the other hand, the location of the peak value moves left
along the horizontal axis. Otherwise, when the parameter is
chosen as α = 0:8 and β = 0:95 in Figure 7, the velocity ampli-
tude also decreases quickly comparing with Figures 6(a) and
6(b). In brief, the velocity amplitude reduces gradually with
R∗ and the parameters α and β. Comparison with Figure 5
shows that the physical variation laws of fractional-order
Oldroyd-B fluids are similar to those of classical Oldroyd-B
fluids. It further shows that the oscillation peak and oscilla-
tion frequency can be reduced by reasonably controlling
the above parameters.

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

A
u
⁎

𝜔
⁎

𝛼 = 0.3
𝛼 = 0.6
𝛼 = 0.9

(a)

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0

2

1.6

1.2

0.8

0.4

0

2

1.6

1.2

0.8

0.4

A
u
⁎

𝜔
⁎

𝛽 = 0.3
𝛽 = 0.6
𝛽 = 0.9

(b)

Figure 8: The influence of order parameters α and β on the velocity amplitude (R∗ = 0:5 and θ = 0:001; (a) β = 0:95; (b) α = 0:2).
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In addition, we discuss the influence of α and β on the
velocity amplitude. In Figure 8, the influence of α with
fixed β and the influence of β with fixed α are all shown.
It can be found that there are multiple formants in the
curve with α = 0:9, but only one formant exists with α =
0:6 and α = 0:3 in Figure 8(a). However, there only exists

one formant with different β in Figure 8(b). The same
characteristic is that the first peak with different α and β
corresponds to the same frequency. Meanwhile, the peaks
are gradually decreasing with α and β. On the whole,
the velocity amplitude increases with the increase of α
and decreases with β at low frequencies.
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Figure 9: Comparisons of analytical solution and finite difference method for the wall shear stress Aσ∗ (α = 1:0 and β = 1:0; (a) R∗ = 0:05; (b)
R∗ = 0:5).
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4.2. The Influence of Parameters on the Shear Stress. Zhu
et al. [23] studied physical characteristics of the Maxwell
flow oscillating in a pipe. Their research shows that the res-
onance phenomenon occurred on the amplitude of the wall
shear stress at certain frequencies, and this discovery is help-
ful to improve the core oil displacement efficiency in the
practical engineering field. Therefore, the variation of the
shear stress with different parameters and frequency is fur-
ther studied in this part.

At first, the parameters are chosen as α = 1:0 and β = 1:0;
the influence of the frequency on the shear stress is given in
Figure 9. It can be observed that numerical results are in

good agreement with analytical solutions. Similar to the
velocity image, the resonance phenomenon also exists in
the amplitude of the wall shear stress, especially for R∗ =
0:5 as displayed in Figure 9(b). For different R∗, the variation
tendency of Aσ∗ is identical with Au∗ , such as R∗ = 0:05 and
R∗ = 0:5. The first peak value reaches the maximum value,
and other peak value shows a decreasing trend on the whole.
Meanwhile, the number of peaks gradually increases with R∗.
The first peak value decreases and moves to the left along the
horizontal axis. It can be inferred that when R∗ is greater than
a certain value, the cure will approximate to a monotone
decreasing cure. Finally, after R is greater than a certain value,
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Figure 10: The wall shear stress amplitude Aσ∗ of the fractional Oldroyd-B fluid with ω∗ (α = 0:8, β = 0:95, and θ = 0:001; (a) R∗ = 0:05; (b)
R∗ = 0:5).
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the stress change curve will approach a monotonically
decreasing curve, close to that of a Newtonian fluid.

Secondly, the influence of parameters on the wall shear
stress is considered. For Figures 10 and 11, α = 0:8,
β = 0:95, and α = 0:2, β = 0:35, are chosen, respectively.
Figure 10 shows the same variation trend as Figure 9, and
the resonance peak increases with R∗. The difference is that
the amplitude of Aσ∗ is smaller compared with that in
Figure 9. It can be concluded that the amplitude of Aσ∗ varies
with α, β, and R∗. Here, R∗ has the greatest impact compared
to the other two parameters. The larger R∗ is, the faster Aσ∗

decreases with little α and β. The curve corresponding to

Aσ∗ is basically monotonically decreasing with frequency
for different R∗.

As Figure 11 shows, when both α and β are small, the
curves obtained for different R∗ are monotonically decreasing.
And the larger the R∗, the faster the magnitude decreases. This
physical phenomenon fully illustrates that parameters α and β
influence the appearance of the resonance phenomenon. The
classical viscoelastic model can be considered as a special case
of the fractional-order viscoelastic model, and this is theoreti-
cally consistent with Zhu’s findings.

Next, the parameters are chosen as R∗ = 0:5 and θ =
0:001, and the influence of different order parameters on
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Figure 11: The wall shear stress amplitude Aσ∗ of the fractional Oldroyd-B fluid with ω∗ (α = 0:2, β = 0:35, and θ = 0:001; (a) R∗ = 0:05; (b)
R∗ = 0:5).
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the wall shear stress is studied in detail. As shown in
Figure 12(a), the shear stress with β = 0:95 results in a reso-
nance phenomenon at ω∗ ≈ 5:6Hz, and the peak value
increases dramatically with α at this frequency. Multiple

peak values appear especially for α = 0:9, and the amplitude
decreases with α when the frequency satisfies ω∗ > 10Hz. The
similar phenomenon also exists in Figure 12(b), where the
amplitude decreases with β for ω∗ > 15Hz. However, there is
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Figure 12: The influence of order parameters α and β on the amplitude of wall shear stress Aσ∗ (R∗ = 0:5 and θ = 0:001; (a) β = 0:95; (b)
α = 0:2).
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only one peak value at ω∗ ≈ 2Hz, and this indicates that the
parameter β almost has no influence on the resonance phe-
nomenon. However, as β decreases, the amplitude of the wall
shear stress decreases very slightly at low frequencies, but there
is a significant increase in the amplitude at high frequencies.

5. Conclusions

In the present paper, the difference scheme based on the differ-
ential equation with fractional derivatives is obtained. Then,
the stability, convergence, and unique solvability are proven
by the energy method. Finally, the finite difference method is
verified with the Poiseuille flow and oscillatory flow in a circu-
lar pipe. The following conclusions are obtained:

(1) The fractional mixed partial derivative in the differen-
tial equation is solved reasonably by integration, suc-
cessfully avoiding the problem of low-order accuracy
caused by discretizing the mixed derivative directly

(2) The consistency of the numerical and exact solutions
indicates that the method is reliable, and it is effec-
tive and concise to deal with applicable engineering
problems. Moreover, according to the results in this
paper, the finite difference method can be applied
to differential equations with fractional mixed partial
derivatives similar to Equation (13)

(3) The finite difference method accurately captures the
velocity overshoot phenomenon in the Poiseuille flow
and resonance phenomena that appeared in the oscilla-
tory flow. Based on these studies, it can be inferred that
the same phenomena that occur in the classical visco-
elastic fluid flow also occur in the fractional viscoelastic
fluid flow. Otherwise, the above phenomena have a sig-
nificant dependence on the order of fractional deriva-
tives. Meanwhile, the classical viscoelastic model can
be regarded as a special case of the fractional viscoelas-
tic model. For example, the simulation of the oscilla-
tory flow can well describe the physical deformation
of materials, which is very helpful for the study of the
properties of several materials in terms of damping

Appendix

A The Proof of Finite Difference Scheme

For Equation (13), the time partial derivative with the α + 1
order is given:

∂α+1u yi, tnð Þ
∂tα+1
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Then, the following formula is obtained:
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Based on the following formulas,
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Equation (A.2) is further simplified as
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∂α+1u yi, tnð Þ
∂tα+1

+ ∂α+1u yi, tn−1ð Þ
∂tα+1

" #

= 1
Γ 1 − αð Þτ a0

δtu yi, tnð Þ
τ

�

− 〠
n−1

k=1
an−k−1 − an−kð Þ δtu yi, tkð Þ

τ
− an−1ut yi, t0ð Þ

#

+O τ2−α
À Á

:

ðA:5Þ

Supposing w = ∂2u/∂y2, we have

∂βw yi, tnð Þ
∂tβ

= 1
Γ 1 − βð Þ

−1
1 − β

tn − tð Þ1−β∂w yi, tð Þ
∂t

����
tn

0

�

+ 1
1 − β

ðtn
0

∂2w yi, tð Þ
∂t2

tn − tð Þ1−βdt
#
:

ðA:6Þ

The first item in the square brackets on the right-hand
side of Equation (A.6) is
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−1
1 − β

tn − tð Þ1−β∂w yi, tð Þ
∂t

����
tn

0
= 1
1 − β

tn
1−β ∂w yi, 0ð Þ

∂t
= 0:

ðA:7Þ

Similar to the discrete method of the preceding item
∂α+1uðyi, tnÞ/∂tα+1, the second term is discretized. Here,

w yi, tnð Þ = ∂2u yi, tnð Þ
∂y2

=
δ2yu yi, tnð Þ

h2
+O h2
À Á

: ðA:8Þ

In combination with Equations (A.2), (A.5), (A.7), and
(A.8), the partial derivative of ∂2uðyi, tn−1/2Þ/∂y2 with β
order is given

∂β

∂tβ
∂2u yi, tn−1/2ð Þ

∂y2

 !
= 1
Γ 2 − βð Þτ b0

δt δ2yu yi, tnð Þ
� �

τh2

2
4

− 〠
n−1

k=1
bn−k−1 − bn−kð Þ

δt δ2yu yi, tkð Þ
� �

τh2

− bn−1wt yi, t0ð Þ
#
+O τ3−β + h2

τβ

 !
:

ðA:9Þ

Inserting Equations (15), (16), (A.2), and (A.8) into
Equation (11), we obtain the expression at node ðyi, tn−1/2Þ.

δtu yi, tnð Þ
τ

+ λ1
α

Γ 1 − αð Þτ

Â a0
δtu yi, tnð Þ

τ
− 〠

n−1

k=1
an−k−1 − an−kð Þ δtu yi, tkð Þ

τ
− an−1ut yi, t0ð Þ

" #

= ν
δ2yu yi, tnð Þ + δ2yu yi, tn−1ð Þ

2h2
+ νλ2

β

Γ 2 − βð Þτ

Â b0
δt δ2yu yi, tnð Þ
� �

τh2
− 〠

n−1

k=1
bn−k−1 − bn−kð Þ

δt δ2yu yi, tkð Þ
� �

τh2

2
4

− bn−1wt yi, t0ð Þ
#
− A + Rn

i ,

ðA:10Þ

where 1 ≤ i ≤M − 1 and Rn
i =Oðτ2−α + h2/τβÞ is the local

truncation error.

The expression (A.10) is further arranged as

δtu
n
i

τ
+ λ1

α

Γ 1 − αð Þτ a0
δtu

n
i

τ
− 〠

n−1

k=1
an−k−1 − an−kð Þ δtu

k
i

τ
− an−1ut yi, t0ð Þ

" #

= ν
δ2yu

n
i + δ2yu

n−1
i

2h2
+ νλ2

β

Γ 2 − βð Þτ

Â b0
δt δ2yu

n
i

� �
τh2

− 〠
n−1

k=1
bn−k−1 − bn−kð Þ

δt δ2yu
k
i

� �
τh2

− bn−1wt yi, t0ð Þ
2
4

3
5 −A:

ðA:11Þ

B The Proof of Equation (20)

For the second item on the LHS of Equation (A.11), it is
satisfied:

λα1
Γ 1 − αð Þτ〠

N

n=1
〠
M−1

i=1
a0

δtu
n
i

τ
− 〠

n−1

k=1
an−k−1 − an−kð Þ δtu

k
i

τ
− an−1ut yi, t0ð Þ

" #
hτδtu

n
i

≥
λα1

Γ 1 − αð Þτ h 〠
M−1

i=1
〠
N

n=1
a0 δtu

n
ið Þ2 − 1

2〠
N

n=2
〠
n−1

k=1
an−k−1 − an−kð Þ

(

Â δtu
k
i

� �2
+ δtu

n
ið Þ2

� ��
:

ðB:1Þ

And the RHS of the above inequality is further simpli-
fied as

λα1
Γ 1 − αð Þτ h 〠

M−1

i=1
〠
N

n=1
a0 δtu

n
ið Þ2 − 1

2〠
N

n=2
〠
n−1

k=1
an−k−1 − an−kð Þ

"

Â δtu
k
i

� �2
+ δtu

n
ið Þ2

� ��
= λα1
Γ 1 − αð Þτ h 〠

M−1

i=1
〠
N

n=1
a0 δtu

n
ið Þ2

"

−
1
2 〠
N−1

k=1
〠
N

n=k+1
an−k−1 − an−kð Þ δtu

k
i

� �2
−
1
2〠

N

n=2
a0 − an−1ð Þ δtu

n
ið Þ2
#

= λα1
Γ 1 − αð Þτ h 〠

M−1

i=1
〠
N

n=1
a0 δtu

n
ið Þ2 − 1

2〠
N

k=1
a0 − aN−kð Þ δtu

k
i

� �2"

−
1
2〠

N

n=1
a0 − an−1ð Þ δtu

n
ið Þ2
#

= λα1
Γ 1 − αð Þτ h 〠

M−1

i=1

1
2〠

N

k=1
aN−k δtu

k
i

� �2
+ 1
2〠

N

n=1
an−1 δtu

n
ið Þ2

" #
:

ðB:2Þ
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For the formula (B.2), the following inequality is
established:

λα1
Γ 1 − αð Þτ h 〠

M−1

i=1

1
2〠

N

k=1
aN−k δtu

k
i

� �2
+ 1
2〠

N

n=1
an−1 δtu

n
ið Þ2

" #

≥
λα1

Γ 1 − αð Þτ h 〠
M−1

i=1

1
2 aN−1 〠

N

k=1
δtu

k
i

� �2
+ 1
2 aN−1 〠

N

n=1
δtu

n
ið Þ2

" #

≥
λα1

Γ 1 − αð Þτ h 〠
M−1

i=1
tN

−ατ〠
N

n=1
δtu

n
ið Þ2

" #
:

ðB:3Þ

Therefore, formula (B.1) can be equally expressed as

λ1
α

Γ 1 − αð Þτ〠
N

n=1
〠
M−1

i=1
a0

δtu
n
i

τ
− 〠

n−1

k=1
an−k−1 − an−kð Þ δtu

k
i

τ
− an−1ut yi, t0ð Þ

" #
hτδtu

n
i

+ 〠
N

n=1
〠
M−1

i=1

δtu
n
i

τ
hτδtu

n
i ≥

λ1
αhtN

−α

Γ 1 − αð Þ 〠
N

n=1
〠
M−1

i=1
δtu

n
ið Þ2 + h〠

N

n=1
〠
M−1

i=1
δtu

n
ið Þ2:

ðB:4Þ

Meanwhile, the equality is found for the RHS of
Equation (B.4):

λ1
αhtN

−α

Γ 1 − αð Þ 〠
N

n=1
〠
M−1

i=1
δtu

n
ið Þ2 + h〠

N

n=1
〠
M−1

i=1
δtu

n
ið Þ2

= λ1
αhtN

−α + hΓ 1 − αð Þ
Γ 1 − αð Þ 〠

N

n=1
〠
M−1

i=1
δtu

n
ið Þ2:

ðB:5Þ

Then, the following result can be easily obtained:

〠
N

n=1
〠
M−1

i=1

δ2yu
n
i + δ2yu

n−1
i

2h2
hτδtu

n
i

= τ〠
N

n=1
〠
M−1

i=1
h
δyu

n
i+1 − δyu

n
i+1 + δyu

n−1
i+1 − δyu

n−1
i

2h2
δtu

n
i

= −
τ

2〠
N

n=1
〠
M

i=1
h
δyu

n
i + δyu

n−1
i

h2
δyu

n
i − δyu

n−1
i

À Á

= −
τ

2〠
N

n=1
〠
M

i=1
h

δyu
n
i

À Á2
h2

− 〠
M

i=1
h

δyu
n−1
i

À Á2
h2

" #

= −
τ

2 δyu
N 2 − δyu

0 2h i
:

ðB:6Þ

Because A is a negative, we can obtain

〠
N

n=1
〠
M−1

i=1
− Ahτδtu

n
i = −Ahτ〠

N

n=1
〠
M−1

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1 − αð Þτ

λ1
αtN−α + Γ 1 − αð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1

αtN−α + Γ 1 − αð Þ
Γ 1 − αð Þτ

s
δtu

n
i

≤ −Ahτ〠
N

n=1
〠
M−1

i=1

Γ 1 − αð Þτ
λ1

αtN
−α + Γ 1 − αð Þ

+ 〠
N

n=1
〠
M−1

i=1

λ1
αtN

−αh + Γ 1 − αð Þh
Γ 1 − αð Þ δtu

n
ið Þ2:

ðB:7Þ

Similar to Equation (B.1), the third item on the RHS
of Equation (A.10) can be dealt with

〠
N

n=1
〠
M−1

i=1
b0

δt δ2yu
n
i

� �
τh2

− 〠
n−1

k=1
bn−k−1 − bn−kð Þ

δt δ2yu
k
i

� �
τh2

− bn−1wt yi, t0ð Þ
2
4

3
5hτδtuni

= 1
h

〠
N

n=1
〠
M−1

i=1
b0 δ2yu

n
i − δ2yu

n−1
i

� �
δtu

n
i

"

− 〠
N

n=2
〠
M−1

i=1
〠
n−1

k=1
bn−k−1 − bn−kð Þ δ2yu

k
i − δ2yu

k−1
i

� �
δtu

n
i

#

= 1
h

−〠
N

n=1
〠
M

i=1
b0δy δtu

n
ið Þ δtu

n
i − δtu

n
i−1ð Þ

"

+ 〠
N

n=2
〠
M

i=1
〠
n−1

k=1
bn−k−1 − bn−kð Þδy δtu

k
i

� �
δtu

n
i − δtu

n
i−1ð Þ
#

≤
1
h

−〠
N

n=1
〠
M

i=1
b0 δy δtu

n
ið ÞÀ Á2 + 1

2〠
N

n=2
〠
M

i=1
〠
n−1

k=1
bn−k−1 − bn−kð Þ

(

Â δy δtu
k
i

� �� �2
+ δy δtu

n
ið ÞÀ Á2� ��

= 1
h

−〠
N

n=1
〠
M

i=1
b0 δy δtu

n
ið ÞÀ Á2 + 1

2 〠
N−1

k=1
〠
M

i=1
bn−k−1 − bn−kð Þ δy δtu

k
i

� �� �2"

+ 1
2〠

N

n=1
〠
M

i=1
b0 − bn−1ð Þ δy δtu

n
ið ÞÀ Á2#

= −
1
h

1
2〠

N

n=1
〠
M

i=1
bN−n + bn−1ð Þ δy δtu

n
ið ÞÀ Á2" #

≤ 0:

ðB:8Þ

Taking into account Equations (B.7) and (B.8), it can
be concluded that

−
τ

2 δyu
N 2 − δyu

0 2h i
− Ahτ〠

N

n=1
〠
M−1

i=1

Γ 1 − αð Þτ
λ1

αtN−α + Γ 1 − αð Þ ≥ 0:

ðB:9Þ

Namely,

δyu
N 2 ≤ δyu

0 2 − 2Ah〠
N

n=1
〠
M−1

i=1

Γ 1 − αð Þτ
λ1

αtN−α + Γ 1 − αð Þ :

ðB:10Þ

C The Derivation of Analytical Solution of
the Oscillatory Flow in a Circular Pipe

Based on the hypothesis mentioned in Section 4, the model
equation of the fractional Oldroyd-B fluid is equally
expressed as

1 + λα1
δα

δtα

� �
σrz = μ 1 + λ

β
2
δβ

δtβ

 !
∂uz
∂r

, ðC:1Þ

where σrz is the rz component of shear stress and uz is
the velocity component along z direction. The influence of
the volume force is ignored, and the momentum equations
with the nonslip boundary condition are obtained
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ρ
∂uz
∂t

= −
∂pz
∂z

+ ∂ rσrzð Þ
r∂r

, ðC:2Þ

uz R, tð Þ = 0: ðC:3Þ
In combination with Equations (C.2) and (C.3), the

velocity equation along the z direction is obtained:

μ 1 + λ
β
2
δβ

δtβ

 !
∂2uz
∂r2

+ 1
r
∂uz
∂r

 !
− ρ 1 + λα1

δα

δtα

� �
∂uz
∂t

− 1 + λα1
δα

δtα

� �
∂pz
∂z

= 0:

ðC:4Þ

In order to verify the numerical method, the analytical
solution of the velocity and stress are given first. The expres-
sion of the pressure gradient is given:

∂pz
∂z

= −p0e
iωt : ðC:5Þ

The flow considered here has the characteristics of a sim-
ple harmonic oscillation, so all physical quantities change
periodically like the frequency. Therefore, the velocity and
shear stress are expressed, respectively, as

uz r, tð Þ = v rð Þeiωt , ðC:6Þ

σrz r, tð Þ = τ rð Þeiωt: ðC:7Þ
Substituting Equations (C.5) and (C.6) into Equation

(C.4), the velocity equation is simplified as

r2
∂2v
∂r2

+ r
∂v
∂r

+ ξ2r2 v −
p0
ρiω

� �
= 0, ðC:8Þ

where

ξ2 = −
ρiω 1 + iωλ1ð Þαð Þ
μ 1 + iωλ2ð Þβ
� � ,

iωð Þα = ωj jαeiαπ/2signω = ωj jα cos απ

2 + isignω sin απ

2
� �

:

ðC:9Þ

Here, the new variables are introduced:

w rð Þ = v rð Þ − p0
ρiω

,

r′ = ξr:

ðC:10Þ

Then, Equation (C.8) is equally expressed as

r′2 ∂
2w
∂r2

+ r′ ∂w
∂r

+ r′2w = 0, ðC:11Þ

with the nonslip boundary condition

w R′
� �

= −
p0
ρiω

, R′ = ξR: ðC:12Þ

Obviously, Equation (C.11) is the first kind of zero-order
Bessel equation, so that the exact solution of wðrÞ can be
given as

w r′
� �

= CJ0 r′
� �

, ðC:13Þ

J0 xð Þ = 〠
∞

m=0
−1ð Þm 1

Γ m + 1ð ÞΓ m + 1ð Þ
x
2
� �2m

: ðC:14Þ

The coefficient C is obtained with the nonslip boundary con-
dition:

C = −
p0

ρiωJ0 R′
� � : ðC:15Þ

Furthermore, in combination with Equations (C.13) and
(C.15), vðrÞ is solved

v rð Þ = p0
ρiω

1 − J0 ξrð Þ
J0 ξRð Þ

� �
, ðC:16Þ

and we can directly give the exact solution of the velocity:

uz r, tð Þ = p0
ρiω

1 − J0 ξrð Þ
J0 ξRð Þ

� �
eiωt: ðC:17Þ

With the same method, the exact solution of the shear
stress for the oscillating flow is obtained:

σrz r, tð Þ = p0
ξ

J1 ξrð Þ
J0 ξRð Þ e

iωt: ðC:18Þ

In the following paper, the numerical simulation is exe-
cuted with dimensionless analysis. Here, the dimensionless
quantities are introduced:

u∗ = uz
u0

, r∗ = rffiffiffiffiffiffiffi
υλ1

p , ω∗ = ωλ1, t∗ =
t
λ1

: ðC:19Þ

Then, we can obtain

ξ2 = −
ρiω 1 + iωλ1ð Þαð Þ
μ 1 + iωλ2ð Þβ
� � = −

iω∗ 1 + iω∗ð Þαð Þ
υλ1 1 + iω∗ λ2/λ1ð Þð Þβ
� � = ω∗∗

υλ1
,

ðC:20Þ

where u0 is the steady velocity corresponding to the
pressure gradient ∂pz/∂z = −p0.
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u0 =
p0R

2

4μ ,

θ = λ2
λ1

, 0 ≤ θ < 1,

ω∗∗ = −
iω∗ 1 + iω∗ð Þαð Þ
1 + iω∗ λ2/λ1ð Þð Þβ

= −
iω∗ 1 + ω∗j jα cos απ/2ð Þ + isignω∗ sin απ/2ð Þð Þð Þ
1 + θj jβ ω∗j jβ cos βπ/2ð Þ + isignω∗ sin βπ/2ð Þð Þ

:

ðC:21Þ

The dimensionless velocity is expressed as

u∗ = 4
iR∗2ω∗

1−
J0

ffiffiffiffiffiffiffiffi
ω∗∗

p
r∗

� �
J0

ffiffiffiffiffiffiffiffi
ω∗∗

p
R∗

� �
2
4

3
5eiω∗t∗ , ðC:22Þ

where R∗ = R/
ffiffiffiffiffiffiffi
υλ1

p
.

Based on Equation (C.19), the amplitude of dimension-
less velocity is obtained:

Au∗ =
4

iR∗2ω∗
1− 1

J0
ffiffiffiffiffiffiffiffi
ω∗∗

p
R∗

� �
2
4

3
5

������
������: ðC:23Þ

With the same method, the dimensionless shear stress
and its amplitude on the pipe wall are also obtained:

σ∗R = −
2ffiffiffiffiffiffiffiffi

ω∗∗
p

r∗

J1
ffiffiffiffiffiffiffiffi
ω∗∗

p
R∗

� �
J0

ffiffiffiffiffiffiffiffi
ω∗∗

p
R∗

� � eiω∗t∗ ,

Aσ∗ =
2ffiffiffiffiffiffiffiffi

ω∗∗
p

r∗

J1
ffiffiffiffiffiffiffiffi
ω∗∗

p
R∗

� �
J0

ffiffiffiffiffiffiffiffi
ω∗∗

p
R∗

� �
������

������:
ðC:24Þ

Nomenclature

V = ðu, v,wÞ: The velocity vector, and u, v, and w are,
respectively, along the x, y, and z directions

ρ: The uniform density
p: The pressure
T = −pI + σ: The Cauchy stress tensor
σ: The extra stress tensor
σxz : The shear stress component along the z-axis

in the plane corresponding to the x-axis
d/dt: The material derivative of time
I: The unit tensor
i: The unit vector along the x direction
A1: The first Rivlin-Ericksen tensor
al, bl: Interpolation coefficient
Au∗ : The dimensionless analytical amplitude of the

velocity
R∗: Pipe radius
δα/δtα: The fractional differential operator
α, β: The order of the fractional derivatives

λ1: The relaxation time
λ2: The retardation time
μ: The viscosity
Γð⋅Þ: Gamma function
yi = ih: The discrete point of the mesh
h, τ: The space step and the time step
i: Grid node
L: The gradient of the velocity vector
LT: The transpose form of L
eni : The error between numerical result and exact

solution at the n-th time step
δ: The interpolation operator
d: The width of two parallel plates
Aσ∗ : The dimensionless analytical amplitude of the

stress tensor
ω∗: Oscillation frequency.
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