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In this work, a (2+ 1)-dimensional Ito equation is investigated, which represents the generalization of the bilinear KdV equation.
Abundant double-periodic soliton solutions to the (2+ 1)-dimensional Ito equation are presented by the Hirota bilinear form and a
mixture of exponentials and trigonometric functions. The dynamic properties are described through some 3D graphics and
contour graphics.

1. Introduction

“Three-wave method” is an algebraic method developed by
Wang et al. [1], when studying the soliton interaction, to find
the three-solitary wave from the extended homoclinic test
method. With this method, they successfully found the
double-periodic soliton solution and breathing type solitary
wave solution of Korteweg-de Vries (KdV) equation [1]. Subse-
quently, this method has been applied to many other nonlinear
systems, such as the (3+1)-Dimensional Kadomtsev-Petviash-
vili-Boussinesq-Like equation [2], the (3+ 1)-dimensional Boi-
ti–Leon–Manna–Pempinelli (BLMP) equation [3], the third-
order (2+ 1)-dimensional equation [4], the forcedKdVequation
[5], the (3+1)-dimensional soliton equation [6], the fifth-order
Sawada–Kotera equation [7] etc. Recently, this method has been
extended to solve the nonlinear partial differential equations
(NLPDES) with variable coefficients by Liu and Zhu [8] and
Liu et al. [9], and good results have been obtained.

The (2+ 1)-dimensional Ito equation is a generalization
of the bilinear KdV equation, which has attracted the atten-
tion of many scholars. Tang et al. [10] presented two classes
of lump and interaction solutions, which included rational,
periodic, and hyperbolic functions. Zhou and Lan [11]

derived nonelastic interactional solutions composed of three
different types of waves by two new test functions and the
bilinear form. Du and Lou [12] investigated the interactions
of lump and solitons. Feng et al. [13] obtained the exact
analytical solutions and novel interaction solutions by Hirota
bilinear method and symbolic computation. Tan and Zhaqi-
lao [14] studied the effect of three-wave mixing by the long
wave limit approach. Ma et al. [15] obtained the localized
interaction solutions based on a Hirota bilinear transforma-
tion. Zhang et al. [16] presented three kinds of high-order
localized waves. Sulaiman et al. [17] obtained some two-wave
and breather wave solutions for the (2+ 1)-dimensional Ito
equation. However, the double-periodic soliton solutions of
this equation has not been studied in other literature, and
this will be the main work of our paper. In this paper, we will
discuss the following (2+ 1)-dimensional Ito equations [17]:

utt þ uxxxt þ 6 ux ut þ 3u uxt þ 3vt  uxx þ μ uyt þ ν uxt ¼ 0;

ð1Þ

where u¼ uðx; y; tÞ and v¼ vðx; y; tÞ¼ R
u dx, μ and ν are

arbitrary constants.
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Performing the following logarithmic transformation:

u¼ 2  lnΘ x; y; tð Þ½ �xx;    v ¼ 2  lnΘ x; y; tð Þ½ �x; ð2Þ

the bilinear form for Equation (1) can be written as follows:

D2
t þ D3

xDt þ μDyDt þ νDxDt

À Á
Θ ⋅ Θ

¼ Θxxxt þ Θtt þ μΘty þ νΘxt

À Á
 Θ − 3ΘxxtΘx þ 3Θxt  Θxx

−Θt  Θxxx − μΘtΘy − νΘtΘx − Θ2
t ¼ 0:

ð3Þ

The structure of this paper is as follows: Section 2 obtains
abundant double-periodic soliton solutions to the (2+ 1)-
dimensional Ito equation based on a mixture of exponentials

and trigonometric functions. Section 3 analyzes the dynamic
properties for the derived results by some 3D graphics and
contour graphics. Section 4 makes a conclusion.

2. Double-Periodic Soliton Solutions

Recently, “Three-wave method” was revised for obtaining
the double-periodic soliton solutions to NLPDES [18],
such as the (2+ 1)- and (3+ 1)-dimensional BLMP equation
[19, 20], the (2+ 1)-dimensional breaking soliton equation
[21], the new (2+ 1)-dimensional KdV equation [22], the
(2+ 1)-dimensional generalizedHirota–Satsuma–Ito equation
[23] etc. Following the steps of this method, Θðx; y; tÞ has a
solution of the following form:

Θ x; y; tð Þ ¼ k1e
2 δ1tþα1xþβ1yð Þ þ eδ1tþα1xþβ1y γ2sin δ2t þ α2x þ β2yð Þ½

þ γ1cos δ2t þ α2x þ β2yð Þ� þ eδ3tþα3xþβ3y γ4½ sin δ4t þ α4x þ β4yð Þ
þ γ3cos δ4t þ α4x þ β4yð Þ� þ k2e2 δ4tþα4xþβ4yð Þ;

ð4Þ

where αi, βi, and δi ði¼ 1; 2; 3; 4Þ are constants to be deter-
mined later. The assumptions used in the “Three-wave
method” are special cases of Equation (4). Substituting

Equation (4) into Equation (3), a set of algebraic equations
about αi, βi, and δi ði¼ 1; 2; 3; 4Þ are obtained. With the aid
of Mathematica software, we have the following results:

Case 1

δ4 ¼ δ2 ¼ k1 ¼ 0; β4 ¼ −
α4 3α23 − 12α4α3 þ 11α24 þ νð Þ

μ
;

δ3 ¼ −α3ν − α33 þ 15α24α3 − 20α34 − β3μ;
δ1 ¼ −α1 α21 − 3α22 þ νð Þ − 14α34 − 12 α1 − 2α3ð Þα24

þ 6 α21 − α22 − α23ð Þα4 − β1μ; β2 ¼
α2 α22 − 3 α1 − 2α4ð Þ 2 − νð Þ

μ
;

β3 ¼ α1½ −3α22 þ 12α24 þ νð Þ − α3 α23 þ νð Þ þ α31
− 6α4α21 − 6α34 − 9α3α24 þ 6 α22 þ α23ð Þα4 þ β1μ�=μ:

ð5Þ

Case 2

δ4 ¼ δ2 ¼ k1 ¼ δ3 ¼ δ1 ¼ 0; β4 ¼ −
α4 3α23 − 12α4α3 þ 11α24 þ νð Þ

μ
;

β2 ¼ γ1½ −½ α1 α21 − 3α22 þ νð Þ − 14α34 − 12 α1 − 2α3ð Þα24
− 6 −α21 þ α22 þ α23ð Þα4 − β1μ� þ α2γ2 α

2
2 − 3 α1 − 2α4ð Þ 2 − ν½ ��= γ2μð Þ;

β3 ¼ −
α3 ν − 15α24ð Þ þ α33 þ 20α34

μ
:

ð6Þ

Case 3

δ4 ¼ δ2 ¼ k2 ¼ δ1 ¼ δ3 ¼ 0; β4 ¼ −
α4 3α23 − 12α4α3 þ 11α24 þ νð Þ

μ
;

β2 ¼
α2 −3α21 þ α22 − νð Þ

μ
; β1 ¼ −

α1 α21 − 3α22 þ νð Þ
μ

:
ð7Þ
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Case 4

δ4 ¼ δ2 ¼ k2 ¼ 0; β2 ¼
α2 −3α21 þ α22 − νð Þ

μ
;

δ1 ¼ δ3 ¼ −α3 α23 − 3α24 þ νð Þ þ 6α31 − 12α3α21 þ 6 α22 þ α23 − α24ð Þα1 − β3μ;
β1 ¼ −½ α1 3α22 þ 6α23 − 6α24 þ νð Þ þ α3 ν − 3α24ð Þ − 7α31

þ 12α3α21 þ α33 þ β3μ�=μ; β4 ¼
α4 −3 α3 − 2α1ð Þ 2 − νð Þ þ α34

μ
:

ð8Þ

Case 5

δ4 ¼ k1 ¼ α2 ¼ 0; α1 ¼ 2α4; β3 ¼ −
α3 ν − 15α24ð Þ þ α33 þ 20α34 þ δ3

μ
;

δ2 ¼ −β2μ; β4 ¼ −
α4 3α23 − 12α4α3 þ 11α24 þ νð Þ

μ
;

β1 ¼ −
2α4 3α23 − 12α4α3 þ 11α24 þ νð Þ þ δ1

μ
:

ð9Þ

Case 6

δ4 ¼ k2 ¼ α2 ¼ 0; β4 ¼
α4 −3 α1 − α3ð Þ 2 − νð Þ þ α34

μ
; δ2 ¼ −β2μ; δ3 ¼ 2δ1;

δ1 ¼
1
2

−α3 3α21 − 3α3α1 þ α23 þ νð Þ þ 3 α3 − α1ð Þα24 − β3μð Þ;

β1 ¼
α3 − 2α1ð Þ α21 − α3α1 þ α23 þ νð Þ þ 3 α1 − α3ð Þα24 þ β3μ

2μ
:

ð10Þ

Case 7

δ4 ¼ k2 ¼ α2 ¼ 0; β1 ¼
β2γ2
γ1

−
α1 α21 þ νð Þ

μ
; δ2 ¼ −β2μ;

β3 ¼
γ1 −α3 3α21 − 3α3α1 þ α23 þ νð Þ − 3 α1 − α3ð Þα24ð Þ þ 2β2γ2μ

γ1μ
;

β4 ¼
α4 −3 α1 − α3ð Þ 2 − νð Þ þ α34

μ
; δ3 ¼

−2 β2γ2μ
γ1

:

ð11Þ

Case 8

δ4 ¼ k2 ¼ α2 ¼ α1 ¼ 0; β1 ¼
α3 α23 − 3α24 þ νð Þ

μ
þ β2γ1

γ2
þ β3;

δ3 ¼ −α3 α23 − 3α24 þ νð Þ − β3μ; β4 ¼
α4 −3α23 þ α24 − νð Þ

μ
;

γ4 ¼
2α3α4γ3
α23 − α24

; δ1 ¼ −α3 α23 − 3α24 þ νð Þ − β2γ1μ

γ2
− β3μ:

ð12Þ

Case 9

k1 ¼ δ2 ¼ α4 ¼ 0; δ4 ¼ −β4μ; β3 ¼ −
α3νþ α33 þ δ3

μ
;

δ1 ¼ −2β4μ; β2 ¼
−α2νþ α32 − 3α21α2 − 3α23α2 þ 6α1α3α2

μ
;

β4 ¼
α1 −3α22 þ 3α23 þ νð Þ þ α31 − 3α3α21 þ 3α22α3 þ β1μ

2μ
:

ð13Þ

Advances in Mathematical Physics 3



Case 10

k1 ¼ δ2 ¼ α4 ¼ 0; δ4 ¼ −β4μ; β3 ¼ −
α3νþ α33 þ δ3

μ
;

δ1 ¼
2γ3δ3

2γ3 − γ4
; β2 ¼

α2 α22 − 3 α1 − α3ð Þ 2 − νð Þ
μ

; β4 ¼
γ3δ3

γ4μ − 2γ3μ
;

β1 ¼ −

α1 −3α22 þ 3α23 þ νð Þ þ α31 − 3α3α21 þ 3α22α3 þ 2γ3δ3
2γ3−γ4

μ
:

ð14Þ

Case 11

k2 ¼ δ2 ¼ α4 ¼ 0; δ4 ¼ −β4μ; β2 ¼
α2 −3α21 þ α22 − νð Þ

μ
; α3 ¼ 2α1;

β1 ¼
−α1ν − α31 þ 3α22α1 − δ1

μ
; β3 ¼ −

2α1 α21 − 3α22 þ νð Þ þ δ3
μ

:
ð15Þ

Case 12

k1 ¼ α4 ¼ α2 ¼ 0; α3 ¼ α1; δ2 ¼ −β2μ; δ4 ¼ −β4μ;

β3 ¼ −
α1νþ α31 þ δ3

μ
; δ1 ¼ −α1ν − α31 − β1μ:

ð16Þ

Case 13

k2 ¼ α4 ¼ α2 ¼ 0; α3 ¼ 2α1; δ2 ¼ −β2μ; δ4 ¼ −β4μ;

β3 ¼ −
2α1 α21 þ νð Þ þ δ3

μ
; β1 ¼ −

α1νþ α31 þ δ1
μ

:

ð17Þ

Case 14

α2 ¼ α4 ¼ 0; δ1 ¼ −β4μ; α3 ¼ α1; δ2 ¼ −β2μ; δ4 ¼ −β4μ;

β3 ¼ −
α1νþ α31 þ δ3

μ
; β1 ¼ β4 −

α1 α21 þ νð Þ
μ

:

ð18Þ

Substituting these results into Equations (2) and (4), we
can obtain 14 different double-periodic soliton solutions to
Equation (1). These results have not been obtained in the
other literature.

3. Discussion and Results

In this section, we discuss the dynamic properties by setting
some special values for the free parameters in these solutions.
For example, substituting:

α1 ¼ β1 ¼ μ¼ ν¼ α2 ¼ 1; α3 ¼ γ2 ¼ α4 ¼ γ4 ¼ −1;
k2 ¼ γ1 ¼ γ3 ¼ 2;

ð19Þ

into Equation (5), we can obtain the following double-
periodic solito solution:

u¼ 40½ e16tþ3xþ5y cos x − 27yð Þ − 2 sin x − 27yð Þ½ � þ 8e16tþxþ27y cos½ x − 3yð Þ
− 2 sin x − 3yð Þ� − 10 e2xþ44y þ e6xð Þ þ 4e4xþ22y 5½ cos 2 x − 15yð Þ½ �
þ 6 sin 24yð Þ − 8 cos 24yð Þ��= 2½ e16tþ5y þ e3x 2 cos x − 27yð Þ − sin x − 27yð Þ½ �
þ exþ22y sin x − 3yð Þ þ 2 cos x − 3yð Þ½ ��2;

ð20Þ

v ¼ −½ 8e16tþ5y þ 2e3x cos x − 27yð Þ − 3 sin x − 27yð Þ½ �
− 2exþ22y 3 sin x − 3yð Þ þ cos x − 3yð Þ½ ��= 2½ e16tþ5y þ e3x�2 cos x − 27yð Þ
− sin x − 27yð Þ� þ exþ22y sin x − 3yð Þ þ 2 cos x − 3yð Þ½ ��:

ð21Þ
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The dynamic properties to Equation (20) are described in
Figures 1–3. Figure 1 shows the interaction between two peri-
odic soliton solutions for different values of t. Figure 2 shows
the interaction between two periodic soliton solutions for

different values of x. Figure 3 is the corresponding contour
plots of Figure 2. The dynamic properties to Equation (21) are
shown in Figures 4–6. Other solutions can be discussed in the
same way but we will not repeat them here.
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FIGURE 2: Solution (20) when (a) x¼ − 10, (b) x¼ 0, and (c) x¼ 10.
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FIGURE 3: Corresponding contour plots (a–c) of Figure 2.
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FIGURE 1: Solution (20) when (a) t¼ − 1, (b) t¼ 0, and (c) t¼ 1.
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FIGURE 5: Solution (21) when (a) x¼ − 10, (b) x¼ 0, and (c) x¼ 10.
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FIGURE 6: Corresponding contour plots (a–c) of Figure 5.

–10
–5
0
5

5

0

–5 –5

0

5

x-Axis

y-Axis

10
v

ðaÞ

–10
–5
0
5

5

0

–5 –5

0

5

x-Axis

y-Axis

10
v

ðbÞ

–10
–5
0
5

5

0

–5 –5

0

5

x-Axis

y-Axis

10
v

ðcÞ
FIGURE 4: Solution (21) when (a) t¼ − 1, (b) t¼ 0, and (c) t¼ 1.
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4. Conclusion

Periodic soliton solution is one of the most important soliton
solutions. It is usually obtained by using the three-wave
method. Many scholars at home and abroad have conducted
relevant research and obtained many good conclusions. With
the development of computer [24–50], the three-wave
method has been modified continuously to obtain more and
different types of periodic soliton solutions of NLPDES. In
this paper, a modified three-wave method is used to obtain 14
different two-periodic soliton solutions to the Ito equation,
none of which have been seen in other literature. The modi-
fied three-wave method contains more arbitrary parameters
than the traditional three-wave method, which can obtain
more forms of accurate solutions and include more different
physical structures. We analyze and demonstrate these results
using some 3D and contour graphs. Although, the expression
of this method is very complicated, it is direct and effective. In
particular, with the help of symbolic computing software, we
can apply this method to many other NLPDES. In the future,
we will combine neural network algorithms to consider more
solutions to the (2+ 1)-dimensional Ito equation. Best of all,
the calculation code for the paper is quite complex. If readers
need the calculation source program for the paper, they can
contact the corresponding author of the paper via email, and
we will provide it for free.
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