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This article deals with the basic features of collisional radial displacements in a prestressed thin elastic tube filled having inviscid
fluid with the presence of nonlocal operator. By implementing the extended Poincare–Lighthill–Kuo method and a variational
approach, the new two-sided beta time fractional Korteweg-de-Vries (BTF-KdV) equations are derived based on the concept of
beta fractional derivative (BFD). Additionally, the BTF-KdV equations are suggested to observe the effect of related parameters on
the local and nonlocal coherent head-on collision phenomena for the considered system. It is observed that the proposed equations
along with their new solutions not only applicable with the presence of locality but also nonlocality to study the resonance wave
phenomena in fluid-filled elastic tube. The outcomes reveal that the BFD and other physical parameters related to tube and fluid
have a significant impact on the propagation of pressure wave structures.

1. Introduction

Nowadays, nonlinear partial differential equations of not
only integer but also fractional order are widely applicable
to describe the intricate phenomena in many environments,
for example, biomechanics, plasma physics, quantum theo-
ries, water wave theories, signal processing, etc. As a result, a
significant challenge to modern biological and medicinal sci-
ence is to extract clinically trustworthy information about
the disease because of the intricate dynamical interactions
of hemodynamic waves (e.g., pressure and flow) described by
such equations. Moreover, the analysis of nonlinear wave
form in artery provides clinically valuable information about
the local and global cardiovascular functions. Such functions
help us to investigate the basic features of several cardiovas-
cular diseases such as stenosis and predict how the blood
flow can be disturbed by the local imperfections occurred
in an artery. The arterial tree is stimulated by the pressure
and pulse flow that produces from the intermittent ejection
of blood. Taylor [1] has been demonstrated that the effect of

elastic properties of the vessel wall is noteworthy on the
velocity of blood in blood vessel based on the observed pres-
sure and theoretical predictions. To depict the mechanism of
action of blood wave through the use of weakly nonlinear
theories, theoretical analysis have been done by several
researchers [2–5]. They have found that the blood flow in
human arteries can be studied by various types of evolution
equations. A feasible explanation for the feature of the pulses,
for example, “peaking” and “steepening” in arteries can be
obtained from solitary wave model theories.

In contrast, the collisional solitary wave phenomenon is
another enthralling feature and the phase shift is its observ-
able effect. The overtaking, and head-on collisions are such
types of solitary wave interactions [6]. Though, the multi-
solution of KdV equation or any other evolution equations
outline a way to investigate the overtaking collision of solitary
waves. Whereas, the collision phenomena between two-
counter propagating soliton can be studied by deriving two-
sided evolution equations from the theoretical models via the
extended Poincare–Lighthill–Kuo method [6, 7]. A huge
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number of researchers [6–11] have already reported the wave
phenomena described by the evolution equations not only in
the earlier mentioned environments but also in many
branches of science and engineering without considering
the nonlocality. For instance, Erbay et al. [7] and Tait et al.
[9] have used the mathematical techniques to study propagat-
ing wave phenomena in fluid-filled elastic tube (FFET) with
the presence of locality. Demiray [8, 10] have reported the
collisional solitary waves in FFET with the consideration of
local media only. Recently, Akter et al. [12] have reported the
interactions of mulishocks in FFET with the presence of non-
local operator. Ferdous and Hafez [13] have reported the
collisional wave phenomena without considering the deriva-
tion of fractional wave equation in FFET. They have ignored
how to derive the evolution equation with the presence of
nonlocal operators. Very recently, Akter et al. [11] have
reported the collisional soliton around the critical value
only by formulating the coupled beta time fractional modified
Korteweg-de-Vries (BTF-mKdV) equation in FFET.

However, the collisional wave phenomena between two-
counter propagating soliton have not been previously reported
by formulating the coupled BTF-KdV equation in the nonlocal
dynamical systems to best of our knowledge. In fact, the non-
local parameter gives a clear idea of what happenwith the radial
displacements in FFETs when the system supports either com-
plexity or nonconservity due to certain time. In addition, what
will happen with the physical issues for the presence of both
past and future memories in the system? In such situations, the
coupled evolution equations with fractional temporal evolution
are only an arena to describe the collisional radial displace-
ments in FFETs. As a result, one needs to appropriate definition
along with their useful properties of fractional derivates. Many
researchers [13–20] have already used various types of frac-
tional operators (e.g. Coimbra, Riesz, Riemann-Liouville,
Hadamard, Gr¨unwald-Letnikov, Liouville-Caputo, Caputo-
Fabrizio, etc.) to study physical issues in various environments.
Such derivatives have some limitation to fulfill all the funda-
mental characteristics of calculus. Later, Atangana and his
research group [21] introduced the so called “beta-derivative”
of fractional order or beta fractional derivative (BFD). The
newly introduced derivative owned some characteristics that
can defeat some limitation of fractional derivative and is used to
model including of some physical problems. They have defined
the useful definition of BFD as:

0ADσ
τ f τð Þf g ¼ limεÀ!0

f τ þ ε τ þ 1=Γ σð Þð Þ1−σð Þ − f τð Þ
ε

;

ð1Þ

where σ is the beta fractional operator. Based on the above
definition, they have also showed that BFD is satisfied all
the fundamental properties of classical calculus. Some of
the useful properties are given below:

0ADσ
τ mf τð Þ þ ng τð Þf g ¼ m0ADσ

τ f τð Þf g þ n0ADσ
τ g τð Þf g;

ð2Þ

0ADσ
τ μf g ¼ 0; for any constant μ; ð3Þ

0ADσ
τ f τð Þ ⋅ g τð Þf g ¼ g τð Þ0ADσ

τ f τð Þf g þ f τð Þ0ADσ
τ g τð Þf g;

ð4Þ

0ADσ
τ f τð Þ=g τð Þf g ¼ g τð Þ0ADσ

τ f τð Þf g½
−f τð Þ0ADσ

τ g τð Þf g�=g2 τð Þ; ð5Þ

here m; n; μ 2R;g ≠ 0∼, and ∼f are σ differentiable func-
tions, 0<σ ≤ 1. Introducing ε ¼ τ þ 1=Γ σð Þð Þσ−1 h, when
∼εÀ! 0; hÀ! 0, ones obtain:

0ADσ
τ f τð Þf g ¼ τ þ 1=Γ σð Þð Þ1−σ df τð Þ

dτ
: ð6Þ

They have also defined the fractional integral operator as:

0AIστ f τð Þf g ¼
Z

τ
t þ 1

Γ σð Þ
� �

σ−1
f tð Þdt: ð7Þ

Thus, this work explores the collisional wave phenomena
for the radial displacements (RDs) in FFET by deriving the
coupled KdV equations involving of fractional order with the
consideration of BFD from the previously proposed model as
in [8]. With the variation of physical parameters, the colli-
sional RDs and their corresponding phase shift are presented
graphically with physical descriptions via the analytical solu-
tions of these new equations.

2. Governing Model Equations

To study the collisional wave phenomena with the presence
of nonlocality, the following normalized model equations are
considered:

2
∂U
∂T

þ λsr þ Uð Þ ∂W
∂Z

þ 2W
∂W
∂Z

¼ 0; ð8Þ

∂W
∂T

þW
∂W
∂Z

þ ∂P
∂Z

¼ 0; ð9Þ

P ¼ βc1U þ βc2U2
− αc0

∂2U
∂Z2 − αc1

∂U
∂Z

� �
2

þ αco
λsr

− 2αc1

� �
U
∂2U
∂Z2 þ

M
λsrλar

∂2U
∂T2 −

M
λ2srλar

U
∂2U
∂T2 :

ð10Þ

The details derivation of the above model equations are
given in [8]. The Equations (8–10) are normalized by intro-
ducing the nondimensionalized quantities z ¼ R0Z;
t ¼ R0

c0
T; u ¼ R0U ;w ¼ c0W;M ¼ Hρ0

R0ρf
; c20 ¼ μH

ρf R0
; and p ¼

ρf c20 p0 þ Pð Þ. All the physical variables/parameters involved
in the model equations are abbreviated in Table 1.

It is noted here that the constants βc1 and βc2 are calcu-
lated by the following density function [22, 23]:
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∑ ¼ 1
2α

exp α λ2sr þ λ2ar þ
1

λ2sr λ
2
ar

� �
− 3

� �
− 1

� �
: ð11Þ

As a result, one can obtain the coefficients βc1 and βc2 by
the following way:

f0 ¼
f

λsrλar
λsr −

1
λ3sr λ

2
ar

� �
; ð12Þ

f1 ¼
f

λsr λar
1þ 1

λ4sr λ
2
ar

� �
þ 2α λsr −

1
λ3sr λ

2
ar

� �
2

� �
; ð13Þ

f2 ¼
f

2λsr λar
−

12
λ5sr λ

2
ar
þ 6α 1þ 3

λ4sr λ
2
ar

� �
λsr −

1
λ3sr λ

2
ar

� �"

þ 4α2 λsr −
1

λ3sr λ
2
ar

� �
3

#
;

ð14Þ

βc1 ¼ f1 −
f0
λsr

; ð15Þ

and

βc2 ¼ f2 −
βc1
λsr

; ð16Þ

where f ¼ exp α λ2sr þ λ2ar þ 1
λ2sr λ

2
ar

� �
− 3

n o
.

In [8], author has been considered the following stretched
coordinates and perturb expansions:

ξ

η

τ

0
B@

1
CA ¼

ϵ
1
2 Z − cpsT
À Áþ ϵF0 η; τð Þ þ ϵ

4
2F1 ξ; η; τð Þ þ⋯

ϵ
1
2 Z þ cpsT
À Áþ ϵG0 ξ; τð Þ þ ϵ

4
2G1 ξ; η; τð Þ þ⋯

ϵ
4
2T

0
BB@

1
CCAand

U ξ; η; τð Þ
W ξ; η; τð Þ
P ξ; η; τð Þ

0
B@

1
CA ¼

∑
1

i¼1
ϵiUi

∑
1

i¼1
ϵiWi

∑
1

i¼1
ϵiPi

0
BBBBBBB@

1
CCCCCCCA
; ð17Þ

where ξ and η are two counter-propagating trajectories.
Inserting Equation (17) consecutively into the Equations
(8–10), one obtains the set of partial differential equations
by depending on the order of ϵ.

For O ϵð Þ:

2cps −
∂U1

∂ξ
þ ∂U1

∂η

� �
þ λθ

∂W1

∂ξ
þ ∂W1

∂η

� �
¼ 0

cps −
∂W1

∂ξ
þ ∂W1

∂η

� �
þ ∂P1

∂ξ
þ ∂P1

∂η

� �
¼ 0

P1 ¼ L1U1

9>>>>>=
>>>>>;
; ð18Þ

For O ϵ2ð Þ:

2cps −
∂U2

∂ξ
þ ∂U2

∂η

� �
þ λ1

∂W2

∂ξ
þ ∂W2

∂η

� �

þ2
∂U1

∂τ
þ cps

∂F0
∂η

∂U1

∂ξ
−
∂G0

∂ξ
∂U1

∂η

� �� �

þλ1
∂F0
∂η

∂W1

∂ξ
þ ∂G0

∂ξ
∂W1

∂η

� �� �

þU1
∂W1

∂ξ
þ ∂W1

∂η

� �
þ 2W1

∂U1

∂ξ
þ ∂U1

∂η

� �
¼ 0;

ð19Þ

cps −
∂W2

∂ξ
þ ∂W2

∂η

� �
þW1

∂W1

∂ξ
þ ∂W1

∂η

� �
þ ∂P2

∂ξ
þ ∂P2

∂η

� �

þ2
∂W1

∂τ
þ c

∂F0
∂η

∂W1

∂ξ
−
∂G0

∂ξ
∂W1

∂η

� �� �

þ ∂F0
∂η

∂P1
∂ξ

þ ∂G0

∂ξ
∂P1
∂η

� �
¼ 0;

ð20Þ

P4 ¼ L1U4 þ L2U
2
1 þ

Mc2ps
λ1λ2

∂2U1

∂ξ2
− 2

∂2U1

∂ξ∂η
þ ∂2U1

∂η2

� �

−K1
∂2U1

∂ξ2
þ 2

∂2U1

∂ξ∂η
þ ∂2U1

∂η2

� �
:

ð21Þ

By simplifying O ϵð Þ and O ϵ2ð Þ equations, the following
two-sided KdV equations have derived [8]:

Uτ þ μ1UUξ þ μ2Uξξξ ¼ 0; ð22Þ

TABLE 1: List of abbreviations and symbols.

Notation Abbreviations

u RD
w Axial velocity
R0 Radius of cylindrical long thin tube
p0 Inner pressure
H Initial thickness
ρ0 Mass density of tube
ρf Mass density
λsr Initial stretch ratio in the circumferential direction
λar Axial stretch ratio
σ Beta fractional parameter
M Ratio between the tube and fluid body for mass density
z and t Spatial and time coordinate
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Vτ − μ1VVη − μ2Vηηη ¼ 0; ð23Þ

where U ξ;ð τÞ ∼ U1ξ ξ;ð τÞ, V η;ð τÞ ∼ U1η η;ð τÞ, and U1 ¼
U1ξ ξ;ð τÞ þ U1η η;ð τÞ are left to right propagating, right to
left propagating and resonance RDs, respectively (for sim-
plicity). The coefficients μ1 and μ2 are defined by:

μ1 ¼
5Cps

2λsr
þ λsrβc2

2Cps
; μ2 ¼

λsr
4Cps

MC2
ps

λsr λar
− αc0

� �
; ð24Þ

where

C2
ps ¼

λsrβc1
2

: ð25Þ

Additionally, the unfamiliar phase functions are repre-
sented [8] as:

F0 η; τð Þ ¼ λsr
8cps

6cps
λ2sr

−
2βc2
cps

 !Z
η

−1
U1η η0; τð Þdη0

G0 ξ; τð Þ ¼ λsr
8cps

6cps
λ2sr

−
2βc2
cps

 !Z
ξ

1
U1ξ ξ0; τð Þdξ0

9>>>>>=
>>>>>;
:

ð26Þ

However, the KdV equations in classical forms are not
appropriate to describe the nonlocal behavior of collisional

RD phenomena for this model. At this stage, one needs to
require the fractional order evolution equations by assuming
an appropriate fractional operator in investigating the fea-
tures of nonlocal lucid structures. Currently, many kinds of
nonlocal-operators are recently proposed by many research-
ers. One of the very effective fractional operators, so termed
as the BFD has been proposed by Atangana et al. [21]. Such
operator is perfectly full-filled all the useful properties of
classical calculus. It is therefore motivated to derive new
evolution equations, so called the two-sided BTF-KdV equa-
tions for reporting the nature of not only local but also
nonlocal collisional wave phenomena in the considered sys-
tem as mentioned earlier.

3. Formation of Two Sided BTF-KdV Equations

First of all, consider the potential functions P ξ;ð τÞ andQ η;ð τÞ
defined by U ξ;ð τÞ À! Pξ ξ;ð τÞ and V η;ð τÞ À! Qη η;ð τÞ
yields the potential Equations (22) and (23) in the following
form:

Pξτ ξ; τð Þ þ μ1Pξ ξ; τð ÞPξξ ξ; τð Þ þ μ2Pξξξξ ξ; τð Þ ¼ 0

Qητ η; τð Þ − μ1Qη η; τð ÞQηη η; τð Þ − μ2Qηηηη η; τð Þ ¼ 0

)
:

ð27Þ

Applying the variational principle [24, 25], one can con-
sider the functional of Equation (27) as:

J Pð Þ ¼
ZZ

ΩT
P ξ; τð Þ d1Pξτ ξ; τð Þ þ d2μ1Pξ ξ; τð ÞPξξ ξ; τð Þ þ d3μ2Pξξξξ ξ; τð ÞÀ Á

dξdτ

J Qð Þ ¼
ZZ

ΩT
Q η; τð Þ d1Qητ η; τð Þ − d2μ1Qη η; τð ÞQηη η; τð Þ − d3μ2Qηηηη η; τð ÞÀ Á

dηdτ

9>>=
>>;; ð28Þ

whereΩ and T are stands for space and time unit, respectively,
and di i ¼ 1;ð 2; 3Þ are Lagrange’s multipliers. Now, integrating

Equation (28) by parts along with PτjΩ ¼ PξjΩ ¼ PξjT ¼ 0,
QτjΩ ¼ QηjΩ ¼ QηjT ¼ 0 and yields

J Pð Þ ¼
ZZ

ΩT
−d1Pξ ξ; τð ÞPτ ξ; τð Þ − 1

2
d2μ1P3

ξ ξ; τð Þ þ d3μ2P2
ξξ ξ; τð Þ

� �
dξdτ

J Qð Þ ¼
ZZ

ΩT
−d1Qη η; τð ÞQτ η; τð Þ þ 1

2
d2μ1Q3

η η; τð Þ − d3μ2Q2
ηη η; τð Þ

� �
dηdτ

9>>>=
>>>;
: ð29Þ

Taking the variation of this functional with regard to P ξ;ð
τÞ,Q η;ð τÞ, and integrating each term by parts andmaking the
variation optimum, one can find the following expression:

2d1Pξτ ξ; τð Þ þ 3d2μ1Pξ ξ; τð ÞPξξ ξ; τð Þ þ 2d3μ2Pξξξξ ξ; τð Þ ¼ 0

2d1Qητ η; τð Þ − 3d2μ1Qη η; τð ÞQηη η; τð Þ − 2d3μ2Qηηηη η; τð Þ ¼ 0

)
:

ð30Þ

Comparing the expression (30) with the potential Equation
(27), one obtains the unknown constants di i ¼ 1;ð 2; 3Þ as:

d1 ¼
1
2
; d2 ¼

1
3
; d3 ¼

1
2
: ð31Þ

Additionally, the Lagrangian form of the potential func-
tion for two sided KdV equation from the functional expres-
sion given by in Equation (29) becomes
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L Pτ; Pξ; Pξξ
À Á ¼ −

1
2
Pξ ξ; τð ÞPτ ξ; τð Þ − 1

6
μ1P3

ξ ξ; τð Þ þ 1
2
μ2P2

ξξ ξ; τð Þ

L Qτ;Qη;Qηη

À Á ¼ −
1
2
Qη η; τð ÞQτ η; τð Þ þ 1

6
μ1Q3

η η; τð Þ − 1
2
μ2Q2

ηη η; τð Þ

9>=
>;: ð32Þ

By considering the following definition of BFD and beta
fractional integral [21]:

0ADσ
τ f τð Þf g ¼ limεÀ!0

f τ þ ε τ þ 1
Γ σð Þ

� �
1−σ

� �
− f τð Þ

ε
;

0AIστ f τð Þf g ¼
Z

τ
t þ 1

Γ σð Þ
� �

σ−1
f tð Þdt;

ð33Þ

the time-fractional Lagrangian of the potential equations,
like Equation (32) is defined as:

Lσ 0ADσ
τP; Pξ; Pξξ

À Á ¼ −
1
2
0ADσ

τP ξ; τð ÞPξ ξ; τð Þ − 1
6
μ1P3

ξ ξ; τð Þ þ 1
2
μ2P2

ξξ ξ; τð Þ

Lσ 0ADσ
τQ;Qη;Qηη

À Á ¼ −
1
2
0ADσ

τQ η; τð ÞQη η; τð Þ þ 1
6
μ1Q3

η η; τð Þ − 1
2
μ2Q2

ηη η; τð Þ

9>=
>;; ð34Þ

where 0ADσ
τ is the BFD operator. Now, the functional of the

potential equation in sense of BFD can be represented as:

Jσ Pð Þ ¼
ZZ

ΩT
Lσ 0ADσ

τP; Pξ; Pξξ
À Á

dξdτ

Jσ Qð Þ ¼
ZZ

ΩT
Lσ 0ADσ

τQ;Qη;Qηη

À Á
dηdτ

9>>=
>>;; ð35Þ

where the time-fractional Lagrangian of the potential equa-
tion is given by (33). Based on Agrawal’s method [25], the
variation of this functional as in Equation (35) with regard to
P ξ;ð τÞ and Q η;ð τÞ yields

δJσ Pð Þ ¼
ZZ

ΩT

∂Lσ

∂0ADσ
τP

� �
δ0ADσ

τP þ ∂Lσ

∂Pξ

� �
δPξ þ

∂Lσ

∂Pξξ

� �
δPξξ

� �
dξdτ

δJσ Qð Þ ¼
ZZ

ΩT

∂Lσ

∂0ADσ
τQ

� �
δ0ADσ

τQþ ∂Lσ

∂Qη

� �
δQη þ

∂Lσ

∂Qηη

� �
δQηη

� �
dηdτ

9>>>=
>>>;
: ð36Þ

By simplifying Equation (36) with the assumptions
δPjT ¼ δPjΩ ¼ δPξjΩ ¼ 0 and δQjT ¼ δQjΩ ¼ δQηjΩ ¼ 0
leads to

δJσ Pð Þ ¼
ZZ

ΩT
−0ADσ

τ
∂Lσ

∂0ADσ
τP

� �
−

∂
∂ξ

∂Lσ

∂Pξ

� �
þ ∂2

∂ξ2
∂Lσ

∂Pξξ

� �� �
δP

� �
dξdτ

δJσ Qð Þ ¼
ZZ

ΩT
−0ADσ

τ
∂Lσ

∂0ADσ
τQ

� �
þ ∂
∂η

∂Lσ

∂Qη

� �
−

∂2

∂η2
∂Lσ

∂Qηη

� �� �
δQ

� �
dηdτ

9>>>=
>>>;
: ð37Þ
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To archive it, one can assume that let f tð Þ;g tð Þ : a;½ b� À! R
be two functions such that f tð Þ;g tð Þ is beta-differentiable, thenZ

b

a
f tð Þ0ADσ

t g tð Þdt ¼ f tð Þg tð Þjba −
Z

b

a
g tð Þ0ADσ

t f tð Þdt:
ð38Þ

Using δJ Pð Þ ¼ 0 and δJ Qð Þ ¼ 0 leads to

−0ADσ
τ

∂Lσ

∂0ADσ
τP

� �
−

∂
∂ξ

∂Lσ

∂Pξ

� �
þ ∂2

∂ξ2
∂Lσ

∂Pξξ

� �
¼ 0

−0ADσ
τ

∂Lσ

∂0ADσ
τQ

� �
þ ∂
∂η

∂Lσ

∂Qη

� �
−

∂2

∂η2
∂Lσ

∂Qηη

� �
¼ 0

9>>>=
>>>;
:

ð39Þ

Substituting the time-fractional Lagrangian Equation (33)
of the potential equation into this Euler–Lagrange Equation
(39) yields

0ADσ
τPξ ξ; τð Þ þ μ1Pξ ξ; τð ÞPξξ ξ; τð Þ þ μ2Pξξξξ ξ; τð Þ ¼ 0

0ADσ
τQη η; τð Þ þ μ1Qη η; τð ÞQηη η; τð Þ þ μ2Qηηηη η; τð Þ ¼ 0

)
:

ð40Þ

Now, replacing the potential function Pξ ξ;ð τÞ ¼ U ξ;ð τÞ
and Qη η;ð τÞ ¼ V η;ð τÞ leads to the following two-sided BTF-
KdV equations for the state function U ξ;ð τÞ and V η;ð τÞ:

0ADσ
τU ξ; τð Þ þ μ1U ξ; τð ÞUξ ξ; τð Þ þ μ2Uξξξ ξ; τð Þ ¼ 0;

ð41Þ

0ADσ
τV η; τð Þ − μ1V η; τð ÞVη η; τð Þ − μ2Vηηη η; τð Þ ¼ 0: ð42Þ

It is noted that many authors [26–31] have studied the
wave phenomena by considering the fractional evolution equa-
tions. They have ignored how to form such equations from the
evolution equations of integer orders. Very recently, Shahrina
and Hafez [31] have studied the collisional soliton in plasmas
without considering fractional evolution in plasmas. A few
authors [11, 32–35] have only demonstrated how to obtain
fractional evolution equations from the evolution equations
of integer orders. Being motivated by these facts, Equations
(41) and (42) are formulated for the first time with the presence

of beta fractional operator to study the collisional wave phe-
nomena in fluid filled elastic tube.

4. Solution of Two Sided BTF-KdV eEquations

Considering the properties of BFD and variable transforma-
tion, the solution of Equation (41) and Equation (42) is
defined as

U ξ; τð Þ ¼ χL ζLð Þ andV η; τð Þ ¼ χR ζRð Þ; ð43Þ

where

ζL ¼ ξ −
ν

σ
τ þ 1

Γ σð Þ
� �

σ

and ζR ¼ ηþ ν

σ
τ þ 1

Γ σð Þ
� �

σ

:

ð44Þ

Here, ν is the speed of the solitary wave. Equation (41)
and Equation (42) can then be converted to the following
ODE by plugging Equation (43) and Equation (44):

−νχ0L ζLð Þ þ μ1χL ζLð Þχ0L ζLð Þ þ μ2χ
0
L ζLð Þ ¼ 0; ð45Þ

νχ0R ζRð Þ − μ1χR ζRð Þχ0R ζRð Þ − μ2χ
0
R ζRð Þ ¼ 0: ð46Þ

By directly integrating Equation (45) and Equation (46),
the analytical solutions of two sided BTF-KdV equations are
attained as:

U ξ; τð Þ ¼ 3ν
μ1

sech2
ξ −

ν

σ
τ þ 1

Γ σð Þ
� �

σ

ffiffiffiffiffiffiffi
4μ2
ν

r
0
BBB@

1
CCCA; ð47Þ

V η; τð Þ ¼ 3ν
μ1

sech2
ηþ ν

σ
τ þ 1

Γ σð Þ
� �

σ

ffiffiffiffiffiffiffi
4μ2
ν

r
0
BBB@

1
CCCA: ð48Þ

5. Phase Shifts

Implementing Equations (47) and (48) into Equation (26),
the leading phase are obtained as

F0 η; τð Þ ¼ λsr
8cps

6cps
λ2sr

−
2βc2
cps

 !Z
η

−1
Uasech2

η0 þ ν

σ
τ þ 1

Γ σð Þ
� �

σ

Uw

0
BB@

1
CCAdη0

G0 ξ; τð Þ ¼ λsr
8cps

6cps
λ2sr

−
2βc2
cps

 !Z
ξ

1
Uasech2

ξ0 −
ν

σ
τ þ 1

Γ σð Þ
� �

σ

Uw

0
BB@

1
CCAdξ0

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð49Þ
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Simplifying Equation (49), one obtains

F0 η; τð Þ ¼ λsr
8cps

6cps
λ2sr

−
2βc2
cps

 !
UaUw tanh

ηþ ν

σ
τ þ 1

Γ σð Þ
� �

σ

Uw

0
BB@

1
CCAþ 1

2
664

3
775

G0 ξ; τð Þ ¼ λsr
8cps

6cps
λ2sr

−
2βc2
cps

 !
UaUw tanh

ξ −
ν

σ
τ þ 1

Γ σð Þ
� �

σ

Uw

0
BB@

1
CCA − 1

2
664

3
775

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð50Þ

For the weak collisional solitons, the trajectories as
defined in Equation (17) is converted to

ξ ¼ ϵ
1
2 Z − cpsT
À Áþ ϵH tanh

ηþ ν

σ
τ þ 1

Γ σð Þ
� �

σ

Uw

0
BB@

1
CCAþ 1

2
664

3
775þ⋯

η ¼ ϵ
1
2 Z þ cpsT
À Áþ ϵH tanh

ξ −
ν

σ
τ þ 1

Γ σð Þ
� �

σ

Uw

0
BB@

1
CCA − 1

2
664

3
775þ⋯

9>>>>>>>>>>>=
>>>>>>>>>>>;

; ð51Þ

where

H ¼ λsr
8cps

6cps
λ2sr

−
2βc2
cps

 !
UaUw: ð52Þ

Using the following relations as:

ΔF0 ¼ ϵ
1
2 Z − cpsT
À Á��

ηÀ!−1;ξ¼0 − ϵ
1
2 Z − cpsT
À Á��

ηÀ!1;ξ¼0

ΔG0 ¼ ϵ
1
2 Z þ cpsT
À Á��

ξÀ!−1;η¼0 − ϵ
1
2 Z þ cpsT
À Á��

ξÀ!1;η¼0

9=
;;

ð53Þ

the phase shifts due to collisional solitons are formulated as:

ΔF0 ¼ −ϵ
λsr
4cps

6cps
λ2sr

−
2βc2
cps

 !
UaUw

ΔG0 ¼ ϵ
λsr
4cps

6cps
λ2sr

−
2βc2
cps

 !
UaUw

9>>>>>=
>>>>>;
: ð54Þ

It is obviously found that the phase shift is independent
of fractional parameter.

6. Results and Discussion

It is well confirmed that the wave–wave interaction is
another fascinating feature of solitary wave phenomena
because the collision of solitary waves exhibits many particles
like features in the process of solitary wave propagation in
arteries. It has commonly been assumed that a system is
required to keep the solitary waves with striking colliding
properties. As a result, the phase shift is a striking effect of
such wave interactions. In the time of propagation solitary
wave encounters, the collisional waves are actually formed.
In this manuscript, the head-on collision between two soli-
tary waves (i.e., the angle between two propagation direc-
tions of two solitary waves is equal to π) have been studied
by employing a suitable asymptotic expansion. To do so, a
coupled evolution equations involving fractional parameters
have been derived. It is observed from the derived coupled
BTF-KdV equations that the nonlinear (AN) and dispersive
(BD) coefficients of such equations are strongly dependent on
the initial stretch ratio in the circumferential direction, axial
stretch ratio, mass density ratio between the tube and fluid
body, and material constant etc. Besides, the experimentally
founded average value of the parameters, that is, R0 ¼ 0:38 cm;
H ¼ 0:02 cm; ρ0 ¼ 1:04g=cm4; ρf ¼ 1:05g=cm4; λsr ¼ 1:6,
and λar ¼ 1:6 in [3, 15], have applied to study the pressure waves
in dogs’ blood. That is why, the values of the parameters are
considered by taking very close to the above experimental
observational data, that is, R0 ¼ 0:48 cm;H ¼ 0:02 cm;
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ρ0 ¼ 1:04g=cm4; ρf ¼ 1:05g=cm4; λsr ¼ 1:6, λar ¼ 0:6, and
ν ¼ 1 cm=s in the presented analysis. In addition, the effect of
fractional parameter and some other parameters on the radial
displacement of pressure wave for the collisional soliton is pre-
sented graphically along with the physical interpretations. Using
these experimental average data, the collisional RDs are displayed
by 3D, 2D, and contour plots. Figures 1 and 2 show the 3D

profile of left and right soliton propagation towards each other,
whereas Figures 3 and 4 represent the 3D collisional radial dis-
placementU1 ¼ U1ξ ξ;ð τÞ þ U1η η;ð τÞ profile described by two-
sided BTF-KdV equations for the fractional parameter values
σ ¼ 0:95 and σ ¼ 1, respectively. Also, the respective contour
plots for σ ¼ 0:95 and σ ¼ 1 are shown in Figures 5 and 6. It is
seen that anM-shaped solitary wave is formed after the head-on
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FIGURE 1: Left and right soliton propagation for σ ¼ 0:95.
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collision described by two-sided BTF-KdV equations for the
considered model equations. Effect on the variation of fractional
parameter σ for τ ¼ 0:8 and M ¼ 0:07 to the radial displace-
mentU1 ¼ U1ξ ξ;ð τÞ þ U1η η;ð τÞ for pressurewaves is shown in
Figure 7. From which it is seen that fractional parameter has a
significant change on the head-on collision structures. The
amplitude and width of the M-shaped solitary wave is slightly
increased and decreased, respectively, due to the increase of frac-
tional parameter. Figure 8 illustrates the effect of time variation
for σ ¼ 0:95,M ¼ 0:05 to the radial displacementU1 ¼ U1ξ ξ;ð
τÞ þ U1η η;ð τÞ which shows there is a minor modify in the wave

peak, however the width is significantly increased for increasing
values of time. Also, the effect of M for τ ¼ 1 and σ ¼ 0:95 is
shown in Figure 9. It is observed that the increase ofM causes the
enhance in both the M-shaped solition amplitude and width
subsequent to the collision of solitons. Finally, the variation of
phase shift (ΔF0) with regards to the reference speed v forM ¼
0:01 (red color),M ¼ 0:04 (green color), andM ¼ 0:05 (orange
color) is displayed in Figure 10. It is found that the time delayed is
decreased with the increase of M. The collisional structures
clearly indicated that the right propagating solitons is to begin
with ξ ¼ 0; ηÀ! −1, left propagating solitons is to begin with
η ¼ 0; ξÀ!þ1, and afterward such waves asymptotically
remote from each other. The completely overturn situations
are obtained for τ À!Æ1, as it is expected. After that, the
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merged soliton profiles are produced by the composition pro-
cesses of collisional solitons. Due to the deviation far from their
initial position, the time delayed are obtained. The above discus-
sion is concluded that the outcome attained in this study may be
helpful for better understanding the collisional solitons described
by not only the coupled BTF-KdV equations but also the coupled
KdV equations in biomedical science, shallow water wave theo-
ries, plasma physics [36], etc.

7. Conclusion

A variational approach has been implemented to derive the
new BTF-KdV equations with the presence of BFD. The
exact solutions of BTF-KdV equations have been extracted
by employing the suitable wave transformation based on the

convenient properties of BFD. The nonlinear collisional
wave structures along with the influence of various physical
parameters involved in the system are determined by con-
sidering the physically relevant experimental data. It is
observed that the proposed equations along with their new
solutions are not only applicable with the presence of locality
but also nonlocality to study the resonance wave phenomena
in FFETs. In addition, the amplitude and width of the M-
shaped solitary wave slightly gains and losses energy, respec-
tively, due to the increase of fractional parameter. The mass
density also has a significant impact on the collisional radial
displacement in which the collisional radial displacements
grow with the increase of mass density. From the physical
point of view, it is observed that the nonlocal parameter gives
a clear idea of what will happen with the radial displacements
when the system has been arisen discontinuity due to a cer-
tain time. The idealized problem in this work predicts that
the unlike values for initial stretch ratio to the circumferen-
tial direction and axial stretch ratio exhibit critical values and
large amplitude single soliton. Consequently, the obtained
negative potential creates stumbling block for the future
mathematical analysis. We verify these predictions by per-
forming numerical simulations. In such situation, one needs
to search higher order correction via mKdV equations to
study the interactions between couple single-soliton and
their corresponding phase shifts around the critical values
in fluid-filled elastic tube based on their earlier proposed
model equations more accurately in the physical system.
We will work with the experimental issue in near future.
Hence, the findings of this study would be supportive of
further theoretical and laboratory studies.
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