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Based on the wave function expansion method, the dynamic antiplane characteristics of a wedge-shaped quarter-space containing
a circular hole are studied in a complex coordinate system. The wedge-shaped medium is decomposed into two subregions along
the virtual boundary using the virtual region decomposition method. The scattering wave field in subregion I is constructed by the
mirror method, and the standing wave field in region II is constructed by the fractional Bessel function. According to the
continuity conditions at the virtual boundary and the stress-free boundary of the circular hole, the unknown coefficients of the
wave fields are obtained by the Fourier integral transform, and the analytical solution of the dynamic stress concentration
factor (DSCF) of the circular hole is then obtained. Through parametric analysis, the effects of incident wave frequency,
geometry of the wedge, and corner slope on the DSCF of the circular hole are discussed. The results show that when the SH-
wave is horizontally incidence at high frequencies, the DSCF of the circular hole can be significantly changed by introducing
the corner slope. Moreover, when the corner slope is high, the maximum DSCF can be amplified about 1.2 times. Finally, the
back propagation (BP) neural network prediction model of DSCF is established, and the coefficient of regression is found to
reach more than 0.99.

1. Introduction

In the field of engineering, there are inevitably different
types of defects in natural environments and engineering
materials, of which circular defects are the most common.
The presence of defects leads to the phenomenon of stress
concentration, which may lead to the failure of the structure
[1, 2]. Therefore, the stress concentration analysis of a cer-
tain structure has always been one of the important research
topics in the field of nondestructive testing and fatigue life
prediction.

Since a structure is prone to wear and fracture at the cor-
ner points during construction and use, the whole structure
can be regarded as a wedge structure with a corner slope.
The change in structure shape affects the stress concentra-
tion of the original structure and has a great influence on
the durability of structure [3, 4]. In recent years, researchers
have begun to pay attention to wedge-shaped mediums in

engineering applications. Based on the wave function expan-
sion method and weighted residual method, Lee et al. [5–7]
studied the diffraction of an elastic wave by an arbitrary
shape rigid body and depression in a wedge half-space, and
then the scattering problem of the SH-wave in the wedge
space was solved in polar coordinates with the virtual region
decomposition method [8]. Shi et al. [9–12] used the wave
function expansion method to obtain an analytical solution
for the DSCF of the corner point defect and circular hole
in the wedge space. Liu et al. [13] used the Green function
method and the complex function method together with
multipole coordinate transformation to analyze the dynamic
antiplane characteristics of a circular hole in an infinite
wedge space. Liang et al. [14, 15] considered the scattering
of SH waves by a circular canyon and an alluvial valley in
a wedge space and solved the problem using the great arc
theorem and the Fourier series expansion method. Kara
[16, 17] used the wave function expansion method and the
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image method to solve the SH-wave scattering problem in
a wedge space with a certain angle wedge space containing
circular hole or tunnel. Based on the complex function
method, Yang et al. [18, 19] studied the scattering of SH-
wave by a circular canyon in a wedge space of inhomogene-
ous medium.

The above researches have mainly used semianalytical
methods to study the antiplane characteristics of wedge
spaces. In addition, there are some researches based on the
boundary element method, the finite element method, and
other numerical methods. Treifi et al. [20] used the finite ele-
ment method to calculate the dynamic stress intensity factor
(DSIF) at the tip of a wedge joint under reverse plane shear
loading. Cheng et al. [21] analyzed the stress singularities
near the tip of a wedge joint by the boundary element
method and the characteristic expansion method. Ping
et al. [22] analyzed the mechanical stress at the tip of a
wedge combination based on a new finite element method.
Based on the theory of single-layer potential and boundary
element method, Liu et al. [23, 24] solved the scattering
problem of the SH-wave by creating circular holes and lin-
ings in an elastic wedge space. Mieczkowski et al. [25]
conducted finite element modeling of a wedge structure
and analyzed the singular stress field at the sharp corner.
In recent years, machine learning has been widely used
in structural damage prediction and fatigue life prediction
of materials [26]. There are also some studies on wedge
structure-related issues. Sen et al. [27] used an artificial
neural network to predict the load-bearing capacity of
two circular holes in a wedge composite laminate. Based
on the finite element method, Salman et al. [28] used arti-
ficial neural network to predict the geometric features of
defects in wedge specimens.

It can be seen from the existing studies that most of the
current problems are focused on the wedge space problem,
and the wedge combination problem where the horizontal
boundary and the inclined boundary are combined at arbi-
trary angles. There are few studies on the dynamic antiplane
characteristics of a wedge-shaped quarter-space containing a
circular hole. In this paper, the dynamic antiplane character-
istics of a shallow circular hole embedded in a wedge-shape
medium are investigated using the virtual region decomposi-
tion method in complex coordinates. The domain of the
wedge model is divided into subregion I with a rounded cor-
ner and subregion II with a cut corner (see Figure 1 for
details). The scattering wave field generated by the circular

hole and the virtual boundary in subregion I are constructed
by using the method of a mirror, and the standing wave field
in subregion II is constructed by using the fractional Bessel
function. By combining the boundary conditions and the
continuity conditions, the integral equations of the definite
solution are established and solved, and the analytical solu-
tion of the DSCF of the circular hole is obtained. A paramet-
ric analysis is then carried out to discuss the influence of
different factors on DSCF. Finally, the BP neural network
is used to build a prediction model for the dynamic anti-
plane characteristics of a circular hole embedded in an elas-
tic wedge-shaped quarter-space. The predicted results are in
good agreement with the expected results.

2. Theoretical Model and Boundary Conditions

The theoretical model of the problem is shown in Figure 2
where α0 is the incident angle of the SH-wave, which is pos-
itive when it rotates counterclockwise in the positive direc-
tion of the x-axis. In addition, Γ1, Γ2, Γ3, and Γ4 are the
horizontal boundary, vertical boundary, corner point slope
boundary, and the circular hole boundary, respectively. Note
that the angle between Γ1 and Γ3 is β. A global coordinate
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system with origin at o (xoy), and two local coordinate sys-
tems with origins o1 and o2 (x1o1y1 and x2o2y2) are consid-
ered. Note that a and b are the distances from the origin of
coordinate o to corner points o1 and o1 ′ (assuming a < b),
and c is the radius of the circular hole. Moreover, h and d
are the distances between the center of the circle and the
boundary Γ1 and Γ2, respectively.

In the polar coordinate system, the displacement func-
tion Wðr, θÞ generated by the steady-state incident SH-
wave satisfies the Helmholtz equation in the isotropic homo-
geneous continuous media, as follows

∂2W
∂r2

+ 1
r
∂W
∂r

+ 1
r2
∂2W
∂θ2

+ k2W = 0, ð1Þ

where k is the number of incident wave, its relationship with
the frequency ω, and the speed of the shear wave cs is k =
ω/cs, while the relationship between cs and media parameters
is cs =

ffiffiffiffiffiffiffi
μ/ρp

, where μ and ρ are the shear elastic modulus
and the density of the media, respectively.

The harmonic relation between the displacement func-
tion and the time is e−iωt . In Cartesian coordinates, Equation
(1) can be expressed as

∂2W
∂x2

+ ∂2W
∂y2

+ k2W = 0: ð2Þ

To facilitate the mutual conversion of the global coordi-
nate system and the local coordinate system, complex coor-
dinate system ðz, �zÞ is introduced to Equation (2). Therefore,
we have

∂2W
∂z∂�z

+ 1
4 k

2W = 0: ð3Þ

According to Hooke’s law, the radial stress τrz and the
circumferential stress τθz in the polar coordinate system
are expressed as

τrz = μ
∂W
∂z

eiθ + ∂W
∂�z

e−iθ
� �

,

τθz = iμ
∂W
∂z

eiθ −
∂W
∂�z

e−iθ
� �

,
ð4Þ

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
, θ = arctan ðy/xÞ, z = reiθ, �z = re−iθ, i is

imaginary number unit, andi2 = −1.
In the theoretical model, the boundaries Γ1, Γ2, Γ3, and

Γ4 satisfy the stress-free conditions

Γ1 : τθz = 0, θ = πð Þ, ð5Þ

Γ2 : τθz = 0, θ = 3π
2

� �
, ð6Þ

Γ3 : τθ1z1 = 0, θ1 = π + βð Þ, ð7Þ
Γ4 : τr2z2 = 0, 0 ≤ θ2 ≤ 2π, r2 = cð Þ, ð8Þ

where τθz is the circumferential stress at the boundaries Γ1
and Γ2; τθ1z1 is the circumferential stress at the boundary
Γ3; and τr2z2 is the radial stress at the boundary Γ4.

3. Virtual Region Decomposition and Wave
Field Construction

3.1. Virtual Region Decomposition. Due to the existence of
the specific boundary Γ3, it is difficult to directly obtain the
solutions to the wave field problem that satisfy the governing
equation and boundary conditions in the whole domain.
Therefore, the method of virtual region decomposition is
used to obtain the wave field solutions with regular bound-
ary subregions and then assembled to obtain the global solu-
tion. Virtual region decomposition is shown in Figure 1.
When a < b, b is taken as the radius and o as the center of
the circle to draw the arc for cutting (otherwise, a is taken
as the radius). The whole region is decomposed into subre-
gion I containing the circular hole and a subregion II con-
taining a special boundary Γ3 along the virtual boundary.

The boundary conditions at Γ1 and Γ2 should be satis-
fied when the wave field in subregion I is constructed. Sim-
ilarly, the boundary conditions at Γ1 and Γ3 should be
satisfied when the wave field in subregion II is constructed.
The continuity conditions of common boundaries Γ5 and
Γ5 are

WI r, θð Þ =WII r, θð Þ  π ≤ θ ≤ 3π/2, r = bð Þ, ð9Þ

τIrz r, θð Þ = τIIrz r, θð Þ  π ≤ θ ≤ 3π/2, r = bð Þ, ð10Þ
where WI and WII are wave fields in region I and II, while
τIrz and τIIrz are radial stresses in region I and II.

3.2. Construction of the Free Wave Field. According to the
available literature [29, 30], in the global coordinate system
ðz, �zÞ, the equivalent incident wave fieldWði,eÞ and the equiv-
alent reflected wave field Wðr,eÞ are expressed as

W i,eð Þ z, �zð Þ =W0 exp ik
2 ze−iα0 + �zeiα0
À Á� ��

+ exp ik
2 ze−iγ0 + �zeiγ0
À Á� ��

,

W r,eð Þ z, �zð Þ =W1 exp ik
2 ze−iα1 + �zeiα1
À Á� ��

+ exp ik
2 ze−iγ1 + �zeiγ1
À Á� ��

,

ð11Þ

where W0 is the displacement amplitude of the incident
wave, and W1 is the displacement amplitude of the reflected
wave. In this paper, we assumed that W1 =W0. In addition,
γ0 = π − α0 is the incident angle of the virtual point source in
the global coordinate system, α1 = −α0 is the reflection angle,
and γ1 = π − α1.

3.3. Construction of the Scattered Wave Field. According to
the available literature [9, 12, 31, 32], the scattered wave field
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Wðs1Þ at the corner point of the defect problem and the scat-
tered wave field Wðs2Þ in the half-space problem can be
expressed as:

W s1ð Þ r, θð Þ = 〠
∞

n=0
DnH

1ð Þ
2n krð Þ cos 2nθ,

W s2ð Þ r, θð Þ = 〠
∞

n=0
PnH

1ð Þ
2n krð Þ cos 2nθ

+ 〠
∞

n=0
QnH

1ð Þ
2n krð Þ sin 2n + 1ð Þθ,

ð12Þ

where Dn, Pn, Qn are the undetermined coefficients and
Hð1Þ

n ð⋅Þ is the Hankel function of the first class of order n,
n = 0, 1, 2⋯ .

Because of the existence of sine and cosine terms, these
two forms often need to use Graf’s addition theorem for
coordinate transformation, and the solution is relatively
complicated. Therefore, in this paper, the scattering wave
field generated by the circular arc depression of the corner
point and the circular hole in subregion I is constructed by
the method of mirror. The mirror model is shown in
Figure 3.

The scattered wave field Wðs3Þ of the circular arc depres-
sion is different from the existing scattered wave field form
of the corner point defects, and its expression is shown in
Equation (13). This form of the scattered wave field satisfies
the governing equation and the stress-free conditions at the
boundary, and does not include sine and cosine terms. In the
complex coordinate system, the mutual transformation
between the global coordinate system and the local coordi-
nate system can be easily done, and the problem-solving
process is simplified.

W s3ð Þ z, �zð Þ =W0 〠
∞

−∞
An

�
Hn

1ð Þ k zj jð Þ z
zj j

� �n

+Hn
1ð Þ k zj jð Þ z

zj j
� �−n

+ −1ð ÞnHn
1ð Þ k zj jð Þ

Á z
zj j

� �−n

+ −1ð ÞnHn
1ð Þ k zj jð Þ z

zj j
� �n�

,

ð13Þ

where An is an unknown coefficient that can be determined
by the continuity conditions of the circular arc at the depres-
sion boundary.

The scattered wave field Wðs4Þ generated by the circular
hole can be expressed as

W s4ð Þ z2, z2ð Þ =W0 〠
∞

n=−∞
Bn

n
H 1ð Þ

n k z2j jð Þ z2/ z2j j½ �n

+H 1ð Þ
n k z3j jð Þ z3/ z3j j½ �−n

+ −1ð ÞnH 1ð Þ
n k z4j jð Þ z4/ z4j j½ �−n

+ −1ð ÞnH 1ð Þ
n k z5j jð Þ z5/ z5j j½ �n

o
,

ð14Þ

where z2 = z + d + ih, z3 = z2 − i2h, z4 = z3 − 2d, and z5 = z2
− 2d. In addition, Bn is an unknown coefficient that can be
determined by applying stress-free boundary conditions of
stress-free at the circular hole.

3.4. Construction of the Standing Wave Field. The standing
wave field WD satisfying the boundary conditions at Γ1
and Γ3 in subregion II is constructed in the local coordinate
system ðz1, z1Þ and can be expressed as

WD z1, z1ð Þ =W0 〠
∞

n=−∞
Cn Jnp k z1j jð Þ z1

z1j j
� �np�

+ Jnp k z1j jð Þ z1
z1j j

� �−np�
,

ð15Þ

where z1 = z + a, Cn is an unknown coefficient that can be
determined by the boundary conditions, Jnpð⋅Þ is the frac-
tional Bessel function, and p = π/β (π/2 < β < π).

4. Equation Solving and Parametric Analysis

4.1. Equation Solving. According to Equations (8), (9), and
(10), the infinite algebraic equations containing wave field
coefficients An, Bn, and Cn are expressed as

〠
∞

n=−∞
Anξ

11ð Þ
n + 〠

∞

n=−∞
Bnξ

12ð Þ
n + 〠

∞

n=−∞
Cnξ

13ð Þ
np = ζ 1ð Þ,

〠
∞

n=−∞
Anξ

21ð Þ + 〠
∞

n=−∞
Bnξ

22ð Þ
n + 〠

∞

n=−∞
Cnξ

23ð Þ
np = ζ 2ð Þ,

〠
∞

n=−∞
Anξ

31ð Þ + 〠
∞

n=−∞
Bnξ

32ð Þ
n + 〠

∞

n=−∞
Cnξ

33ð Þ
np = ζ 3ð Þ,

ð16Þ
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Figure 3: The mirror model.
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where

ξ 11ð Þ
n = γn2 ⋅ e

iθ2 − λn2 ⋅ e
−iθ2 , ξ 12ð Þ

n

= φn2 ⋅ e
iθ2 − ψn2 ⋅ e

−iθ2 , ξ 13ð Þ
np = 0,

ξ 21ð Þ
n =Hn

1ð Þ k zj jð Þ z
zj j

� �
n+Hn

1ð Þ k zj jð Þ z
zj j

� �
−n+ −1ð ÞnHn

1ð Þ k zj jð Þ z
zj j

� �
−n

Á + −1ð ÞnHn
1ð Þ k zj jð Þ z

zj j
� �

n,ξ 22ð Þ
n

=H 1ð Þ
n k z + d + ihj jð Þ z + d + ih

z + d + ihj j
� �n

+H 1ð Þ
n k z + d − ihj jð Þ z + d − ih

z + d − ihj j
� �−n

+ −1ð ÞnH 1ð Þ
n k z − d − ihj jð Þ z − d − ih

z − d − ihj j
� �−n

+ −1ð ÞnH 1ð Þ
n k z − d + ihj jð Þ z − d + ih

z − d + ihj j
� �n

,

ξ 23ð Þ
np = −Jnp k z + aj jð Þ z + a

z + aj j
� �np

− Jnp k z + aj jð Þ z + a
z + aj j

� �−np

,

ξ 31ð Þ
n = γn ⋅ e

iθ − λn ⋅ e
−iθ, ξ 32ð Þ

n = φn ⋅ e
iθ − ψn ⋅ e

−iθ, ξ 33ð Þ
np

= δnp ⋅ e
−iθ − ϕnp ⋅ e

iθ,

ζ 1ð Þ = −i cos θ2 − α0ð Þ exp
� ik

2
�
z2 − d − ihð Þe−iα0

+ z2 − d − ihð Þeiα0
��

− i cos θ2 − γ0ð Þ exp

Á
� ik

2 z2 − d − ihð Þe−iγ0 + z2 − d − ihð Þeiγ0
� ��

− i cos θ2 − α1ð Þ exp
� ik

2
�
z2 − d − ihð Þe−iα1

+ z2 − d − ihð Þeiα1
��

− i cos θ2 − γ1ð Þ exp

Á
� ik

2
�
z2 − d − ihð Þe−iγ1 + z2 − d − ihð Þeiγ1

��
,

ζ 2ð Þ = − exp ik
2 ze−iα0 + �zeiα0
À Á

− exp ik
2 ze−iγ0 + �zeiγ0
À Á

− exp ik
2 ze−iα1 + �zeiα1
À Á

− exp ik
2 ze−iγ1 + �zeiγ1
À Á

,

ζ 3ð Þ = −i cos θ − α0ð Þ exp ik
2 ze−iα0 + �zeiα0
À Á� �

− i cos θ − γ0ð Þ exp ik
2 ze−iγ0 + �zeiγ0
À Á� �

− i cos θ − α1ð Þ exp ik
2 ze−iα1 + �zeiα1
À Á� �

− i cos θ − γ1ð Þ exp ik
2 ze−iγ1 + �zeiγ1
À Á� �

,

ð17Þ

wherein

γn2 =H 1ð Þ
n−1 k z2 − d − ihj jð Þ z2 − d − ih

z2 − d − ihj j
� �n−1

−H 1ð Þ
n+1 k z2 − d − ihj jð Þ z2 − d − ih

z2 − d − ihj j
� �−n−1

− −1ð ÞnH 1ð Þ
n+1 k z2 − d − ihj jð Þ z2 − d − ih

z2 − d − ihj j
� �−n−1

+ −1ð Þn H 1ð Þ
n−1 k z2 − d − ihj jð Þ z2 − d − ih

z2 − d − ihj j
� �n−1

,

λn2 =H 1ð Þ
n+1 k z2 − d − ihj jð Þ z2 − d − ih

z2 − d − ihj j
� �n+1

−H 1ð Þ
n−1 k z2 − d − ihj jð Þ z2 − d − ih

z2 − d − ihj j
� �−n+1

− −1ð ÞnH 1ð Þ
n−1 k z2 − d − ihj jð Þ z2 − d − ih

z2 − d − ihj j
� �−n+1

+ −1ð ÞnH 1ð Þ
n+1 k z2 − d − ihj jð Þ z2 − d − ih

z2 − d − ihj j
� �n+1

,

φn2 =H 1ð Þ
n−1 k z2j jð Þ z2

z2j j
� �n−1

−H 1ð Þ
n+1 k z2 − 2ihj jð Þ

Á z2 − 2ih
z2 − 2ihj j

� �−n−1
− −1ð ÞnH 1ð Þ

n+1 k z2 − 2d − 2ihj jð Þ

Á z2 − 2d − 2ih
z2 − 2d − 2ihj j

� �−n−1
+ −1ð Þn H 1ð Þ

n−1 k z2 − 2dj jð Þ

Á z2 − 2d
z2 − 2dj j

� �n−1
,

ψn2 =H 1ð Þ
n+1 k z2j jð Þ z2

z2j j
� �n+1

−H 1ð Þ
n−1 k z2 − 2ihj jð Þ

Á z2 − 2ih
z2 − 2ihj j

� �−n+1
− −1ð ÞnH 1ð Þ

n−1 k z2 − 2d − 2ihj jð Þ

Á z2 − 2d − 2ih
z2 − 2d − 2ihj j

� �−n+1
+ −1ð ÞnH 1ð Þ

n+1 k z2 − 2dj jð Þ

Á z2 − 2d
z2 − 2dj j

� �n+1
,
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γn =H 1ð Þ
n−1 k zj jð Þ z

zj j
� �n−1

−H 1ð Þ
n+1 k zj jð Þ z

zj j
� �−n−1

− −1ð ÞnH 1ð Þ
n+1 k zj jð Þ z

zj j
� �−n−1

+ −1ð Þn H 1ð Þ
n−1 k zj jð Þ z

zj j
� �n−1

,

λn =H 1ð Þ
n+1 k zj jð Þ z

zj j
� �n+1

−H 1ð Þ
n−1 k zj jð Þ z

zj j
� �−n+1

− −1ð ÞnH 1ð Þ
n−1 k zj jð Þ z

zj j
� �−n+1

+ −1ð ÞnH 1ð Þ
n+1 k zj jð Þ z

zj j
� �n+1

,

φn =H 1ð Þ
n−1 k z + d + ihj jð Þ z + d + ih

z + d + ihj j
� �n−1

−H 1ð Þ
n+1 k z + d − ihj jð Þ z + d − ih

z + d − ihj j
� �−n−1

− −1ð ÞnH 1ð Þ
n+1 k z − d − ihj jð Þ z − d − ih

z − d − ihj j
� �−n−1

+ −1ð Þn H 1ð Þ
n−1 k z − d + ihj jð Þ z − d + ih

z − d + ihj j
� �n−1

,

ψn =H 1ð Þ
n+1 k z + d + ihj jð Þ z + d + ih

z + d + ihj j
� �n+1

−H 1ð Þ
n−1 k z + d − ihj jð Þ z + d − ih

z + d − ihj j
� �−n+1

− −1ð ÞnH 1ð Þ
n−1 k z − d + ihj jð Þ z − d + ih

z − d + ihj j
� �−n+1

+ −1ð ÞnH 1ð Þ
n+1 k z − d + ihj jð Þ z − d + ih

z − d + ihj j
� �n+1

,

δnp = Jnp+1 k z + aj jð Þ z + a
z + aj j

� �np+1

− Jnp−1 k z + aj jð Þ z + a
z + aj j

� �−np+1
,

ϕnp = Jnp−1 k z + aj jð Þ z + a
z + aj j

� �np−1

− Jnp+1 k z + aj jð Þ z + a
z + aj j

� �−np−1
:

ð18Þ

By using the orthogonality of the periodic functions,
the system of Equation (16) is expanded by Fourier series.
First, both sides of the system are multiplied by e−imθ and

then integrated. Thus, the following system of equations is
obtained

〠
∞

n=−∞
Anξ

11ð Þ
mn + 〠

∞

n=−∞
Bnξ

12ð Þ
mn + 〠

∞

n=−∞
Cnξ

13ð Þ
mnp = ζ 1ð Þ

m ,

〠
∞

n=−∞
Anξ

21ð Þ
mn + 〠

∞

n=−∞
Bnξ

22ð Þ
mn + 〠

∞

n=−∞
Cnξ

23ð Þ
mnp = ζ 2ð Þ

m ,

〠
∞

n=−∞
Anξ

31ð Þ
mn + 〠

∞

n=−∞
Bnξ

32ð Þ
mn + 〠

∞

n=−∞
Cnξ

33ð Þ
mnp = ζ 3ð Þ

m ,

  m = 0,±1,⋯ð Þ,

ð19Þ

where

ξ 11ð Þ
mn = 1

2π

ðπ
−π
ξ 11ð Þ
n ⋅ e−imθdθ,

ξ 12ð Þ
mn = 1

2π

ðπ
−π
ξ 12ð Þ
n ⋅ e−imθdθ,

ξ 13ð Þ
mnp =

1
2π

ðπ
−π
ξ 13ð Þ
np ⋅ e−imθdθ,

ξ 21ð Þ
mn = 1

2π

ðπ
−π
ξ 21ð Þ
n ⋅ e−imθdθ,

ξ 22ð Þ
mn = 1

2π

ðπ
−π
ξ 22ð Þ
n ⋅ e−imθdθ,

ξ 23ð Þ
mnp =

1
2π

ðπ
−π
ξ 23ð Þ
np ⋅ e−imθdθ,

ξ 31ð Þ
mn = 1

2π

ðπ
−π
ξ 31ð Þ
n ⋅ e−imθdθ,

ξ 32ð Þ
mn = 1

2π

ðπ
−π
ξ 32ð Þ
n ⋅ e−imθdθ,

ξ 33ð Þ
mnp =

1
2π

ðπ
−π
ξ 33ð Þ
np ⋅ e−imθdθ,

ζ 1ð Þ
m = 1

2π

ðπ
−π
ζ 1ð Þ ⋅ e−imθdθ,

ζ 2ð Þ
m = 1

2π

ðπ
−π
ζ 2ð Þ ⋅ e−imθdθ,

ζ 3ð Þ
m = 1

2π

ðπ
−π
ζ 3ð Þ ⋅ e−imθdθ:

ð20Þ

In parametric analysis, m and n specify the upper and
lower limits of the truncated series, whose values are uncer-
tain and mainly related to the nondimensional frequency.
The key to achieving a converged solution is that the value
of m should be four times or greater than n. Singular value
decomposition is applied to overdetermined equations, and
a unique least-norm square solution is obtained. For all the
numerical results demonstrated in this paper, m = 24 and
n =m/4 − 1 are selected in consideration of computational
efficiency.
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4.2. Degradation Verification. The unknown coefficients of
each wave field can be obtained by equation solving, and
then the DSCF τ∗2 expression can be obtained as follows:

τ∗2 = τ
tð Þ
θ2z2

/τ0
��� ���, ð21Þ

where τðtÞθ2z2 is the total circumferential stress of the circular
hole in the coordinate system ðz2, z2Þ, and τ0 = μkW0 is
the maximum value of the incident wave stress.

When the position parameters are h/r2 = 12:0, d/r2 =
12:0, and r2 = 1:0, and the shape parameters of the wedge

space are β = π/2 and a = b = r = 0, then Γ2 and Γ3 are col-
linear. For this case, the SH-wave scattering problem of the
wedge-shaped medium with a circular hole is simplified to
that of the rectangular-shaped medium. When SH-wave
incident vertically at different frequencies, the DSCF distri-
bution of the circular hole is shown in Figure 4. This numer-
ical result is consistent with that reported in reference [11],
which proves the correctness of the proposed method.

4.3. Parametric Analysis. Figures 5–7 show the DSCF distri-
bution of the circular hole when the circular hole is in differ-
ent positions and the SH-wave is incident vertically at
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Figure 4: Degradation verification.
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Figure 5: DSCF distribution of the circular hole at different
frequencies (d/r2 = 8:0 and h/r2 = 7:0).

10

8

6

4

2

0

2

4

6

8

10

D
SC

F

90
60

30

330

300
270

240

210

180

150

120

0

Figure 6: DSCF distribution of the circular hole at different
frequencies (d/r2 = 3:0 and h/r2 = 5:0).
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Figure 7: DSCF distribution of the circular hole at different
frequencies (d/r2 = 5:0 and h/r2 = 2:0).
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different frequencies. The position parameters of the circular
hole are randomly selected. The shape parameters of the
wedge space are set to β = 2π/3, b = 1:0, a = b/

ffiffiffi
3

p
, and r =

r2 = b = 1:0. According to Figure 5, when the position
parameters of the circular hole are d/r2 = 8:0 and h/r2 = 7:0
, the maximum value of the DSCF of the circular hole is
5.27 at low frequency incidence. In medium and high fre-
quency incidence, the maximum value of the DSCF is 5.78
and 5.89, respectively. As can be seen from Figure 6, when
the position parameters of the circular hole are d/r2 = 3:0,
and h/r2 = 5:0, the maximum value of the DSCF in high fre-
quency incidence is more than that in low and medium fre-
quency incidence. According to Figure 7, when the position
parameters of the circular hole are d/r2 = 5:0 and h/r2 = 2:0,

the maximum value of the DSCF in medium frequency inci-
dence is about 292.57% of that in low frequency incidence.
The maximum value of the DSCF in high frequency inci-
dence is about 365.71% of that in low frequency incidence.
Therefore, the DSCF of the circular hole changes dramati-
cally in the medium and high frequency incidence, and the
DSCF of the circular hole is the largest at the high frequency
incidence, which should be paid special attention to.

Figures 8–11 show the DSCF distribution of the circular
hole in the wedge space with different shapes when the SH-
wave is incident at different angles at high frequency. The
circular hole position parameters are set to h/r2 = 5:0 and d
/r2 = 2:0. The wedge shape parameters are set to β = π/2
(right angle case), β = 2π/3, β = 3π/4, β = 5π/6, and r = r2
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Figure 8: DSCF distribution of the circular hole for different values
of β (α0 = 90 ° ).
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Figure 9: DSCF distribution of the circular hole for different values
of β (α0 = 60 ° ).
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Figure 10: DSCF distribution of the circular hole for different
values of β (α0 = 30 ° ).
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Figure 11: DSCF distribution of the circular hole for different
values of β (α0 = 0 ° ).
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= 1:0. The values of a and b vary with β. According to
Figures 8 and 10, when the SH-wave is incident vertically
and at 30°, the appearance of the corner slope has a deam-
plification effect on the dynamic stress concentration of
the circular hole. As can be seen from Figure 9, when
the SH-wave is incident at 60°, the change has little influ-
ence on the DSCF distribution of the circular hole.
According to Figure 11, when the SH-wave is incident
horizontally, the maximum value of the DSCF of the cir-
cular hole is 6.51 at β = π/2. In the case of β = 2π/3, the
maximum value is 7.23, which is about 111.06% of that
in the case of β = π/2. In the case of β = 3π/4, the maxi-
mum value is 7.44, which is about 114.29% of that in
the case of β = π/2. In the case of β = 5π/6, the maximum

value is 7.47, which is about 114.75% of that in the case of
β = π/2. It can be seen that when the SH-wave is incident
horizontally at a high frequency, the appearance of the
corner slope will have an amplified effect on the dynamic
stress concentration of the circular hole.

Considering that the shape and size of the wedge space
are randomly selected in actual engineering, Figures 12–14
show the influences of different shape and size of the wedge
space on the dynamic stress concentration of the circular
hole under the condition of high frequency incidence of
SH-wave at horizontal angle. The circular hole position
parameters are set to h/r2 = 5:0 and d/r2 = 3:0. The wedge
shape parameters are set to β = π/2, β = 2π/3, β = 3π/4, β
= 5π/6, and r = r2 = 1:0. The values of a and b vary with β.
r/r2 represents the size of the circular hole, r2 = 1:0. As can
be seen from Figure 12, when r/r2 = 0:5, the change of β
has little influence on the DSCF of the circular hole. Accord-
ing to Figure 13, when r/r2 = 1:0, the maximum DSCF value
in β = 2π/3 is 6.74, which is about 122.99% of the maximum
DSCF value at β = π/2. According to Figure 14, when r/r2
= 2:0, the DSCF value at β = 2π/3 is the largest, which is
120.74% of the maximum DSCF value at β = π/2. It can be
concluded that when the corner slope is larger, the change
of β has a significant effect on the dynamic stress concentra-
tion of the circular hole.

5. Prediction Model

The BP neural network is a multilayer feedback artificial
neural network with error back propagation. The hidden
layer of the BP neural network model in this paper has 3
layers, and the number of neurons in the hidden layer is
10, 20, and 30, respectively. There are 5 inputs, which are
the SH-wave incident parameter, circular hole location
parameter, angle parameter of the circular hole boundary,
the wedge shape parameter, and size parameter of the wedge
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Figure 12: DSCF distribution of the circular hole with different β
(r/r2 = 0:5).
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Figure 13: DSCF distribution of the circular hole with different β
(r/r2 = 1:0).
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space, respectively. The output is the DSCF of the circular
hole. The DSCF is calculated under different conditions,
and the data is divided into training sets, verification sets,
and test sets. The performance is evaluated according to
the training results. The performance of the model is evalu-
ated according to the training results, and the evaluation
index is the regression coefficient (R) [26]. The specific
expression for the regression coefficient is as follows:

R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ∑N

i=1 yi − f ið Þ2
∑N

i=1 yi − �yð Þ2

s
, ð22Þ

where yi is the regression observation data, f i is the
regression fitting data, and �y is the mean value of the
observation data. N is the number of samples, and i
ranges from 1 ~N .

The BP neural network is used to learn and train the data
sets of the DSCF, and the obtained R results are shown in
Figure 15. The R values of the training set, verification sets,
and test sets all reached above 0.99. Figure 16 shows the
comparison between the predicted results and the actual
results at β = 2π/3 and r/r2 = 1:0 at the high frequency inci-
dence of SH-wave and at the horizontal angle. The predicted
results are in good agreement with the actual results. There-
fore, the BP neural network has a good prediction
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performance in estimating the DSCF of the circular hole in
the wedge space.

6. Conclusion

Considering the common application of wedge structures in
the field of engineering, the dynamic antiplane characteris-
tics of a circular hole in a wedge-shaped quarter-space are
studied based on the wave function expansion method. An
analytical solution for the DSCF of the circular hole is
obtained. Through the parametric analysis and prediction
results, the following conclusions can be drawn:

(1) The dynamic stress concentration of the circular
hole in the wedge space is more obvious in the case
of high frequency SH-wave compared to medium
and low frequency SH-wave

(2) When the SH-wave is in vertical incidence with high
frequency and 30° incidence, the corner point slope
will have a deamplification effect on the dynamic
stress concentration of the circular hole. On the con-
trary, the horizontal incidence of the SH-wave
amplifies the dynamic stress concentration of the cir-
cular hole. Among the case considered, the maxi-
mum value of DSCF at β = 5π/6 is 7.47, which is
about 114.75% of that at β = π/2

(3) When r/r2 = 0:5, the shape parameters of the wedge
space have little influence on the dynamic stress con-
centration of the circular hole. When r/r2 = 1:0 or r
/r2 = 2:0, the change of wedge shape parameters has
a great influence on the dynamic stress concentra-
tion of the circular hole, and in both cases, the max-
imum DSCF at β = 2π/3 is about 1.2 times the
maximum DSCF at β = π/2
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Figure 16: Comparison between actual results and predicted
results.

(4) Based on the BP neural network, the R value of the
DSCF prediction model of the circular hole in the
wedge space can reach more than 0.99, and the pre-
dicted results are in good agreement with the actual
results

The theoretical methods used in this paper can provide a
basis for the wedge combination and other related problems.
The conclusion and the prediction model can be a reference
for the nondestructive testing and fatigue life prediction of
the structure and provide a research idea for the inverse
problem of the dynamic response in the wedge space.
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