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There are some previous works on designing efficient and high-order numerical methods of density estimation for stochastic
partial differential equation (SPDE) driven by multivariate Gaussian random variables. They mostly focus on proposing numerical
methods of density estimation for SPDE with independent random variables and rarely research density estimation for SPDE is
driven by multivariate Gaussian random variables. In this paper, we propose a high-order algorithm of gPC-based density
estimation where SPDE driven by multivariate Gaussian random variables. Our main techniques are (1) we build a new multivari-
ate orthogonal basis by adopting the Gauss–Schmidt orthogonalization; (2) with the newly constructed orthogonal basis in hand,
we first assume the unknown function in the SPDE has the stochastic general polynomial chaos (gPC) expansion, second
implement the stochastic gPC expansion for the SPDE in the multivariate Gaussian measure space, and third we obtain and
numerical calculation deterministic differential equations for the coefficients of the expansion; (3) we used high-order algorithm of
gPC-based for density estimation and moment estimation. We apply the newly proposed numerical method to a known random
function, stochastic 1D wave equation, and stochastic 2D Schnakenberg model, respectively. All the presented stochastic equations
are driven by bivariate Gaussian random variables. The efficiency is compared with the Monte-Carlo method based on the known
random function.

1. Introduction

In modern science, no matter numerical model or physical
model, the study of uncertainty (randomness) is more impor-
tant and concerned. Such uncertainties arise from one or
more parameters of the model, sometimes related to each
other. Because of such uncertain parameters, the solution of
the model is also uncertain. For example, in the field of bio-
chemistry [1–3], in the field of structural engineering [3, 4],
and in hydrology engineering [3, 5].

For the random solution, there are usually two main
research aspects of moment estimation and density estimation
from the perspective of statistical properties. The research of
moment estimation, such as mean (expectation) and variance,
is based on obtaining the numerical solution of the model
by numerical calculation. The most direct method to obtain

numerical solutions is the Monte-Carlo method, which takes
samples from the sample space of parameters describing ran-
domness, assigns values to random parameters, and numeri-
cally calculates the random solutions. However, this method
has a large amount of calculation and a low convergence rate
[6]. If high precision approximation is required, stochastic
general polynomial chaos (gPC) expansion is a preferred
choice, such as the stochastic Galerkin spectral method. We
also can consider the stochastic perturbation-based finite ele-
mentmethod, and thismethod is a very efficient alternative for
higher-order spectral methods. The theoretical basis of the
method is Taylor’s expansion of all uncertain parameters
and state functions [7].

For the stochastic Galerkin spectral method, how to use
the weight function of random variables (joint probability
density function) to find the orthogonal basis is a major
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challenge. Especially when dealing with multivariate random
variables, a multivariate orthogonal basis is difficult to find [8].

Orthogonal basis can be used in relevant methods, includ-
ing measure-consistent chaos expansion [9, 10], domination
method [11], Gauss–Schmidt orthogonalization [12–18], and
mapping transformation method [8, 11, 19, 20]. After obtain-
ing the approximation of the random function, the moment
estimation can be carried out, and the mean or variance of the
random solution can be estimated as a whole.

In this paper, we discuss the differential equations driven
by multivariate Gaussian random variables. On the basis of
moment estimation, we estimate the density of random solu-
tion. When the random variable is univariate, standard kernel
density estimation [3, 21, 22] can be used from a statistical
point of view. In the study of Ditkowski et al. [3], numerical
solutions of random functions and density of stochastic dif-
ferential equations driven by univariate random variables and
multivariate linear independent random variables are dis-
cussed, mainly gPC-based estimation and Spline-based esti-
mation. For the multivariate random variable (DEPENDENT)
situation, it introduced briefly the application of multivariate-
spline-based estimation [3].

Based on the above excellent results and methods, this
paper aims at differential equations driven by multivariate ran-
dom Gaussian variables. A high-order algorithm of gPC-based
for density estimation based on polynomial chaos expansion is
designed to estimate the moment and density of the random
solution [3]. Our main techniques are (1) we build a new mul-
tivariate orthogonal basis by adopting the Gauss–Schmidt
orthogonalization; (2) with the newly constructed orthogonal
basis in hand, we first assume the unknown function in the
stochastic partial differential equation (SPDE) has the sto-
chastic gPC expansion, second implement the stochastic
gPC expansion for the SPDE in the multivariate Gaussian
measure space, and third we obtain and numerical calcula-
tion deterministic differential equations for the coefficients
of the expansion; (3) we used high-order algorithm of gPC-
based for density estimation and moment estimation. We
apply the newly proposed numerical method to a known
random function, stochastic 1D wave equation, and sto-
chastic 2D Schnakenberg model, respectively. The efficiency
is compared with the Monte-Carlo method based on the
known random function.

This article is organized as follows: in Section 2, we dis-
cuss the high-order stochastic chaos expansion of random
functions and introduce the stochastic Galerkin spectral
method and the high-order approximation of the expansion
coefficients. In Section 3, the high-order algorithm of gPC-
based for density estimation based on polynomial chaos
expansion is introduced, and the numerical calculation pro-
cess of moment estimation and density estimation is intro-
duced. In Section 4, the moment and density estimation of a
known random function are calculated numerically, and the
efficiency problem is compared with theMonte-Carlomethod.
The proposed algorithm is applied to stochastic 1Dwave equa-
tion and stochastic 2D Schnakenberg model. In Section 5, the

algorithm and numerical results proposed in this paper are
summarized.

2. High-Order Stochastic gPC Expansion

We consider the boundary value problem of SPDE driven by
multivariate Gaussian measure

Lu ~x; ξ ωð Þð Þ ¼ h ~x; f ξ ωð Þð Þð Þ;  ~x 2 D ⊂ Rd;

Bu ~x; ξ ωð Þð Þ ¼ g ~x; f ξ ωð Þð Þð Þ;  x 2 ∂D;

(
ð1Þ

where the unknown function u ¼ u ~x;ð ξ ωð ÞÞ. ~x is the spatial
variable,L;B are some differential operator with respect to
~x . ξ ωð Þ 2 RK is a K-dimensional random vector with Gauss-
ian measure. f ; h;g are some known function. ξ ωð Þ is the
K-dimensional vector of random input variables, whose Joint
probability density function ρ ~yð Þ (~y 2 RK). ξ ¼ ξ1;ð ξ2;…;
ξKÞ typically represents the uncertainties in themodel [8, 23].

2.1. Stochastic General Polynomial Chaos Expansion. Given
a finite nonnegative integer N and K , we define a truncated
multi-indices set as follows [24]:

JN;K ¼ α ¼ α1;…; αKð Þ αi 2 0;…;Nf g;j jα∣ ¼ ∑
K

i¼1
αi ≤ N

� �
:

ð2Þ
The polynomial chaos expansion for random input

functions f ξð Þ, h ~x;ð ξÞ, and g ~x;ð ξÞ and the unknown func-
tion u ~x;ð ξÞ [8]

f N;K ξð Þ ¼ ∑
α2JN;K

bf αΦα ξð Þ;

hN;K ~x; ξð Þ ¼ ∑
α2JN;K

bhα ~xð ÞΦα ξð Þ;

gN;K ~x; ξð Þ ¼ ∑
α2JN;K

bgα ~xð ÞΦα ξð Þ;

uN;K ~x; ξð Þ ¼ ∑
α2JN;K

buα ~xð ÞΦα ξð Þ;

ð3Þ

where the polynomial chaos orthogonal basis Φα ξð Þ;f α 2
JN;Kg can be constructed with Gauss–Schmidt orthogonal-
ization method (more details, see [18]). Then, we can obtain
the following finite-dimensional and deterministic PDE prob-
lem: for all Φβ, finding uN;K such that

E LuN;K ~x; ξð ÞΦβ ξð ÞÂ Ã ¼ E hN;K ~x; ξð ÞΦβ ξð ÞÂ Ã
;  ~x 2 D ⊂ Rd;

E BuN;K ~x; ξð ÞΦβ ξð ÞÂ Ã ¼ E gN;K ~x; ξð ÞΦβ ξð ÞÂ Ã
;  ~x 2 ∂D:

ð4Þ

2.2. Higher-Order Calculation of Coefficients. In order to
high-order to solve Equation (4), the calculation of coeffi-
cients buα ~xð Þ as follows:
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buα ~xð Þ ¼ E uN;K ~x; ξ1;…; ξKð ÞΦα ξ1;…; ξKð Þ½ �
¼

Z 1

−1
…

Z 1

−1
uN;KΦα ξ1;…; ξKð Þρ ξ1;…; ξKð ÞdξK…dξ1:

ð5Þ

Denote the integral transformation for ξ ¼ ξ1;ð …; ξKÞ

ξi ¼
ηi

1 − η2i
;  i ¼ 1; 2;…;K; ð6Þ

where η ¼ η1;ð η2;…; ηKÞ. Then Equation (5) can be rewrit-
ten as follows:

uα ~xð Þ ¼
Z 1

−1
…

Z 1

−1
uN;KΦα ξ1;…; ξKð Þρ ξ1;…; ξKð ÞdξK…dξ1

¼
Z

1

−1
…

Z
1

−1
uN;KΦα ηð Þρ ηð Þ 1þ η2K

1 − η2Kð Þ2 …
1þ η21
1 − η21ð Þ2 dηK…dη1:

ð7Þ

We choose mesh sizes Δηi>0; i ¼ 1;ð 2;…;KÞ with
Δηi ¼ 2=Si for Si even positive integers, and let the grid
points be as follows:

ηi;j ¼ −1þ jΔηi;  j ¼ 1; 2;…; Si − 1: ð8Þ

Then Equation (7) can be rewritten as follows where used
trapezoidal rules, denotes

I η1;…; ηKð Þ ¼ uN;K ~x; η1;…; ηKð ÞΦα η1;…; ηKð Þρ η1;…; ηKð Þ 1þ η2K
1 − η2Kð Þ2 …

1þ η21
1 − η21ð Þ2 ; ð9Þ

I ¼ ∑
S1−1

j1¼1
… ∑

SK−1

jK¼1

Z
η1;j1þ1

η1;j1

…

Z
ηK; jKþ1

ηK; jK

I η1;…; ηKð ÞdηK…dη1

¼ ∑
S1−1

j1¼1
… ∑

SK−1

jK¼1
I η1;j1 ; η2;j2…; ηK−1;jK−1 ; ηK;jK
À Á

þ I η1;j1 ; η2;j2…; ηK−1;jK−1 ; ηK;jKþ1

À Á
þ I η1;j1 ; η2;j2…; ηK−1;jK−1þ1; ηK;jK

À Á
þ I η1;j1 ; η2;j2…; ηK−1;jK−1þ1; ηK;jKþ1

À Á
þ  …  …  …  …  …  …  …

þ I η1;j1 ; η2;j2þ1…; ηK−1;jK−1þ1; ηK;jK
À Á

þ I η1;j1 ; η2;j2þ1…; ηK−1;jK−1þ1; ηK;jKþ1

À Á
þ I η1;j1þ1; η2;j2þ1…; ηK−1;jK−1þ1; ηK;jK

À Á
þ I η1;j1þ1; η2;j2þ1…; ηK−1;jK−1þ1; ηK;jKþ1

À Á
;

ð10Þ

buα ~xð Þ ¼ I
2K

∏
K

i¼1
Δηi ¼

I
2K

∏
K

i¼1

2
Si
¼ I

∏K
i¼1Si

: ð11Þ

In order to high-order approximation, the length of every
dimension Si needs to a lot more than usual.

3. Density and Moment Estimation

For random function u ¼ u ~x;ð ξ ωð ÞÞ, we may wish to know
its statistical properties as follows:

1. Moment estimation.

E u½ � ¼
Z

D
u ξ ωð Þð Þρ ξ ωð Þð Þdξ ωð Þ;  Var u½ � ¼ E u2½ � − E u½ �½ �2:

ð12Þ

2. Density estimation.

p zð Þ ¼ dP zð Þ
d zð Þ ; ð13Þ

where P is the cumulative distribution of u, ~z 2 RK .

3.1. Higher-Order Algorithm of gPC-Based

3.2. Accuracy of Algorithm. The error of density estimation
comes from the approximation for u ~x;ð t; ξÞ. Denote M ¼
K þ Nð Þ=!K!N!− 1 and the set Φα ξð Þ;f α 2JN;Kg equal to
Φm ξð Þ;f m ¼ 0; 1;…;Mg.

u ξð Þ − ∑
M

m¼0
bumΦm ξð Þ





 




2
∼ Ce−γM: ð14Þ

For some constant C; γ>0 [3, 25–27].

E u½ � − E uN;K½ �j j ≤ u − uN;Kk k2; ð15Þ

Var uð Þ − Var uN;Kð Þj j ≤ σ uð Þ þ σ uN;Kð Þð Þ ⋅ u − uN;Kk k2;
ð16Þ

σ uð Þ − σ uN;Kð Þj j ≤ u − uN;Kk k2; ð17Þ

where σ ⋅ð Þ represent standard deviation. If u is analytic, the
truncated expansion (Equation (3)) has the exponential
accuracy [3, 27, 28].

4. Numerical Experiments

In this section, first, we text the accuracy of Algorithm 1 in
moment estimation and density estimation for a known ran-
dom function driven by bivariate Gaussian random variables.
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Secondly, let’s apply Algorithm 1 for the stochastic 1D wave
equation and stochastic 2D Schnakenberg model with the
same random variables as the known random function.

The bivariate Gaussian random variables ξ1;ð ξ2Þ ∼
N μ1;ð μ2; σ21; σ

2
2;RÞ (i.e., they are bivariate Gaussian random

variables). μ1; μ2; σ21; σ
2
2;R are some known constants

(μ1 ¼ μ2 ¼ 1; σ21 ¼ σ22 ¼ 1;R ¼ 0:6 is taken in our calcula-
tion later).

The covariance of ξ1;ð ξ2Þ is
σ21 Rσ1σ2

Rσ1σ2 σ22

� �
.

The joint probability density of the bivariate Gaussian
distribution is as follows:

ρξ y1; y2ð Þ

¼ 1

2πσ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

p e
−

y1−μ1=σ1ð Þ2−2R y1−μ1=σ1ð Þ y2−μ2=σ2ð Þþ y2−μ2=σ2ð Þ2
2 1−R2ð Þ

h i
:

ð18Þ

4.1. Example

4.1.1. gPC Chaos. We approximate a known random func-
tion with the truncated polynomial chaos expansion. Let the
random function be defined as follows:

f ξ1; ξ2ð Þ ¼ ξ21 − ξ1ξ2: ð19Þ

Let N ¼ 2;K ¼ 2, then M ¼ 5. We numerically com-
puted multivariate orthogonal polynomial basis based on
Gauss–Schmidt orthogonalization method [18], the Φα;f α 2
JN;Kg shows as Table 1.

4.1.2. Moment Estimation. Furthermore, we use the SG method
to find the coefficients of random function (Equation (19)), and
Table 2 summarizes our result.

Table 3 shows the exact mean and the approximate mean of
random function (Equation (19)), the exact variance and the
approximate variance, and the error between them, respectively.

4.1.3. Density Estimation. Based on Algorithm 1 and Tables 1
and 2, we can obtain the truncated expansion for the random
function and calculated its probability density function
(PDF). In order to sampling, we taken each dimension has
the same sample size, S ¼ Si; i ¼ 1;ð 2;…;KÞ.

f ξ1; ξ2ð Þ ¼ ∑
M

m¼0

bf mΦm ξ1; ξ2ð Þ; ð20Þ

f eξ1;eξ2� �
¼ ∑

M

m¼0

bf mΦm
eξ1;eξ2� �

: ð21Þ

ξ̃1;
À

ξ̃2Þ are sample points according to ρ ξ1;ð ξ2Þ. Here,
approximation usesS ¼ 1000 sample points.We used square
Euclidean distance to describe the error of gPC-based density
estimation.

ErrorgPC-based ¼
1ffiffiffi
2

p ∑
ffiffiffiffiffi
pf

p
−

ffiffiffiffiffiffi
pfN

p� �
2
: ð22Þ

Figure 1(c) shows the error of gPC-based are larger (red
dotted line) when the number of basis function M ≤ 4, and
the error has the spectral accuracy when M ≥ 5 (blue dot-
ted line).

TABLE 1: Orthogonal basis for bivariate Gaussian random variables.

Φ0 ¼ 1
Φ1 ¼ ξ2 − 1
Φ2 ¼ 1:25ξ1 − 0:75ξ2 − 0:5
Φ3 ¼ 0:8575ξ1ξ2 − 0:858ξ2 − 0:8574ξ1 þ 0:3428
Φ4 ¼ 1:0308ξ21 − 0:9078ξ1ξ2 − 1:1538ξ1 þ 0:9077ξ2 − 0:3632
Φ5 ¼ 1:10485ξ22 þ 0:3959ξ21 þ 0:52944ξ1 − 0:88775ξ2
− 1:3213ξ1ξ2 − 0:52845

(i) As integral transformation (Equation (6)).

(ii) For i ¼ 1; 2;…;K and j ¼ 1; 2;…; Si − 1, solve (Equation (4)) with η ¼ ηi; j to obtain u ~x;ð ηi; jÞ.
(iii) Calculated buα ~xð Þ based on Equation (10).

(iv) Approximate u ~x;ð ξÞ ≈ uN;K ~x;ð ξÞ ¼ ∑α2J buα ~xð ÞΦα ξð Þ.
(v) Approximate u ξ̃

À Á
≈ uN;K ⋅;ð ξ̃Þ on a sample of Si ≫ Si points ξ̃i

È ÉSi
i; l¼1 which are according to ρ ξð Þ.

(vi) Histogram method calculated PDF for u: phist zð Þ :¼1=S∑L
ℓ¼1 # of samples for which ul 2 Bℓð Þ ⋅ 1Bℓ

zð Þ;
1Bℓ

is the characteristic function of binBℓ 3; 22½ �:

If moment estimation is needed for u: E u ~x; t; ξð Þ½ � ≈ E uN;K ~x; t; ξð Þ½ � ¼ bu0 ~x; tð Þ;
Var u ~x; t; ξð Þ½ � ≈ Var uN;K ~x; t; ξð Þ½ � ¼ ∑α2J bu2

α ~x; tð Þ;
where 0 2J; 0 ¼ 0;ð 0;…; 0KÞ.

If density estimation needed for G uð Þ:
(vii) G u ξ̃

À ÁÀ Á
≈ G uN;K ⋅;ðð ξ̃ÞÞ:

(viii) histogram method calculated phist zð Þ for G uð Þ, the same as u.

ALGORITHM 1: gPC-based density estimation for multivariate Gaussian variables [3].
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TABLE 2: The coefficients of bf α corresponding to orthogonal basis.bf 0 ¼ 0:4 bf 1 ¼ − 0:4 bf 2 ¼ 0:8 bf 3 ¼ − 0:1372 bf 4 ¼ 0:9698 bf 5 ¼ − 0:0022

TABLE 3: The random function f ξ1;ð ξ2Þ: the exact mean, the approximate mean and error between them (the first row); the exact variance, the
approximate variance and error between them (the second row).

E f ξ1;ð½ ξ2Þ� E fM ξ1;ð½ ξ2Þ� E f ξ1;ð½ ξ2Þ− fM ξ1;ð ξ2Þ�
0:4 0:3999959359 4:0641E− 6
Var f ξ1;ð½ ξ2Þ� Var fM ξ1;ð½ ξ2Þ� Var f ξ1;ð½ ξ2Þ�− Var fM ξ1;ð½ ξ2Þ�
1:76 1:75921322 7:8678E− 4
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ξ1

f(ξ1, ξ2) = ξ2
1 – ξ1ξ1
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FIGURE 1: (a) Contours of the random function f ξ1;ð ξ2Þ. (b) The PDF of f ξ1;ð ξ2Þ (black diamond dotted line), the red line and blue line
represent its approximation by multidimensional spline-based and gPC-based Algorithm 1, respectively. (c) The error of PDF by gPC-based
approximation with the number of basis function.
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4.1.4. Efficiency. In this section, we focus on moment estima-
tion and density estimation for random function f ξ1;ð ξ2Þ in
contrast toMonte-Carlo simulation with different sample sizes.

Table 4 shows the mean and variance of f ξ1;ð ξ2Þ by
Monte-Carlo simulation; the error of mean and variance
gets smaller and smaller when the sample size of simulation
multiplies. In contrast to Table 3, it can be seen that high-
order methods are spectral accuracy when the degrees of
basis function are two orders (N ¼ 2). The error of mean
and variance by Monte-Carlo simulation can be spectral
accuracy when the sample size is enormous amount (T ¼ 108).

Table 5 shows the PDF error of f ξ1;ð ξ2Þ by Monte-Carlo
simulation. In contrast to Figure 1, the proposed method can
achieve high precision with only six expansion terms, and
Monte-Carlo simulation requires a huge amount of compu-
tation to achieve close precision. Although the accuracy of
Monte-Carlo simulation is limited and the calculation cost is
high, this method is easy to implement and is very simple
and useful. Then it can be seen that high-order methods are
superior to the Monte-Carlo simulation, as it gives suffi-
ciently accurate results [29, 30].

4.2. Application. In this section, we used the gPC-based den-
sity estimation to the stochastic 1D wave equation and Sto-
chastic 2D Schnakenberg model. We assume that the
unknown function has periodic boundary conditions in the
x− or y− direction, and we will use the Fourier spectral
method to approximate the unknown function u in the x−
or y− direction [31–33]. The ξ1;ð ξ2Þ are bivariate Gaussian
distribution, same as Equation (19).

4.2.1. Stochastic 1D Wave Equation. The stochastic 1D wave
equation.

∂2u
∂t2

¼ ξ21
∂2u
∂x2

;  x 2 −40; 40½ �;
u0 xð Þ ¼ ξ2sech xð Þ;

ð23Þ

where ~x ¼ x.
Table 6 shows the mean and variance of u x;ð t; ξ1; ξ2Þ at

different time t ¼ 0;ð 5; 10; 20Þ when x ¼ 0. With the pas-
sage of time, the mean amplitude of the wave gradually
decreases, and the variance gradually decreases and tends
to zero, while Figure 2 (top and middle) also demonstrates
this phenomenon. When t ¼ 0; x ¼ 0, the E u 0;ð½ 0; ξ1; ξ2Þ�
evaluated at point 0.5, so, the value of PDF for u 0;ð 0; ξ1; ξ2Þ
are huge at location u nearby point 0.5.

P u 0; 0; ξ1; ξ2ð Þ ≥ 0:5f g
¼ 1 − P u 0; 0; ξ1; ξ2ð Þ<0:5f g ¼almost

1:
ð24Þ

As the wave energy dissipates, the value of PDF for u 0;ð
5; ξ1; ξ2Þ and u 0;ð 10; ξ1; ξ2Þ gradually close to the location
of u nearby zero.

P −0:2 ≤ u 0; 0; ξ1; ξ2ð Þ ≤ 0:2f g ¼almost
1: ð25Þ

Until the wave energy almost runs out, the value of PDF
for u 0;ð 20; ξ1; ξ2Þ evaluated at location of u nearby zero and
the interval length of u 0;ð 20; ξ1; ξ2Þ is small than before. At
the location of u 0;ð 0; ξ1; ξ2Þ ¼ 0, the value of PDF for u 0;ð 0;
ξ1; ξ2Þ almost equal to 1.

P 0 − δ ≤ u 0; 0; ξ1; ξ2ð Þ ≤ 0þ δf g ¼almost
1; ð26Þ

where 0−ð δ; 0þ δÞ is a small neighborhood with centered
on 0 point.

4.2.2. Stochastic 2D Schnakenberg Model. The Stochastic 2D
Schnakenberg model and Schnakenberg model belong to the
reaction-diffusion system.

TABLE 4: The random function f ξ1;ð ξ2Þ: the exact mean, the approximate mean by Monte-Carlo simulation and error between them (the first
row); the exact variance, the approximate variance by Monte-Carlo simulation and error between them (the second row).

T ¼ 103 T ¼ 104 T ¼ 105 T ¼ 106 T ¼ 107 T ¼ 108

0:0241 0:0056 0:005 2:0633E− 4 4:4070E− 4 3:4844E− 5
0:0162 0:0314 0:0083 0:0019 0:0021 5:0490E− 4

T represents the sample size of Monte-Carlo simulation.

TABLE 5: The random function f ξ1;ð ξ2Þ: the exact PDF, the approximate PDF by Monte-Carlo simulation and error between them.

T ¼ 100 T ¼ 1000 T ¼ 104 T ¼ 105 T ¼ 106 T ¼ 107 T ¼ 108

1:4450 1:1056 0:8846 0:8006 0:6930 0:6770 0:5364

T represents the sample size of Monte-Carlo simulation.

TABLE 6: The random function u x;ð t; ξ1; ξ2Þ: the approximate mean
(the first row) and the approximate variance (the second row) at
different times (t= 0, 5, 10, 20) when x ¼ 0.

t 0 5 10 20
E u½ � 0:4516 0:0617 0:0199 0:0087
Var u½ � 0:2258 0:0068 0:0012 2:6823E− 4
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FIGURE 2: The mean amplitude of Equation (23) solution at different times (t= 0, 5, 10, 20 (top)). The trend fluctuations of mean amplitude for
Equation (23) solution at every time (middle). The PDF of Equation (23) solution at different times (t= 0, 5, 10, 20 (bottom)).
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TABLE 7: The random function u x;ð y; t; ξ1; ξ2Þ: the approximate mean (the first row) and the approximate variance (the second row) at
different times (t= 0, 0.05, 0.1, 0.15) when x ¼ 0;ð y ¼ 0Þ.
t 0 0:05 0:1 0:15
E u½ � 0 0:7934 0:7429 0:7436
Var u½ � 0 4:8203E− 5 4:111E− 5 4:2182E− 5
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FIGURE 3: The pattern transformation and PDF function for the Schnakenberg model at different times (t= 0, 0.05, 0.1, 0.15).
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∂u
∂t

¼ ∂2

∂x2
þ ∂2

∂y2

� �
uþ γ ξ1 − uþ u2vð Þ;

∂v
∂t

¼ d
∂2

∂x2
þ ∂2

∂y2

� �
v þ γ ξ2 − u2vð Þ;

ð27Þ

where ~x ¼ x;ð yÞ 2 −π;½f π�× −π;½ π�g, γ ¼ 100; d ¼ 26.
In stochastic 2D Schnakenberg model, u x;ð y; t; ξ1; ξ2Þ

and v x;ð y; t; ξ1; ξ2Þ can be described as the concentration
of some material. Table 7 shows the mean and variance of
u x;ð y; t; ξ1; ξ2Þ at different time t ¼ 0;ð 0:05; 0:1; 0:15Þ
when x ¼ y ¼ 0. From Table 5, we know, as the beginning,
the mean and variance of u 0;ð 0; 0; ξ1; ξ2Þ is zero, and the
mean and variance of u 0;ð 0; 0:05; ξ1; ξ2Þ is increase when
time increase. when t ¼ 0:05, the mean and variance of
u 0;ð 0; 0:05; ξ1; ξ2Þ almost same as u 0;ð 0; 0:1; ξ1; ξ2Þ and
u 0;ð 0; 0:15; ξ1; ξ2Þ, just a small change when time increase.

When t ¼ 0; x ¼ y ¼ 0, the E u 0;ð½ 0; 0; ξ1; ξ2Þ� equal
zero, so, the value of PDF for u 0;ð 0; 0; ξ1; ξ2Þ evaluated at
location of u nearby zero and the interval length of u 0;ð 0; 0;
ξ1; ξ2Þ is small.

P 0 − δ ≤ u 0; 0; 0; ξ1; ξ2ð Þ ≤ 0þ δf g ¼almost
1; ð28Þ

where 0−ð δ; 0þ δÞ is a small neighborhood with centered
on 0 point.

As the reaction goes on, the value of PDF for u 0;ð 0; 0:05;
ξ1; ξ2Þ, and u 0;ð 0; 0:15; ξ1; ξ2Þ almost same each other with
little change.

P u 0; 0; 0; ξ1; ξ2ð Þ ≤ 0:85f g
¼ 1 − P u 0; 0; 0; ξ1; ξ2ð Þ>0:85f g ¼almost

1:
ð29Þ

The pattern of Figure 3 demonstrates the mean concen-
tration of u x;ð y; t; ξ1; ξ2Þ transformation phenomenon at
different times (0, 0.05, 0.1, 0.15).

5. Concluding Remarks

We have proposed a newly high-order spectral numerical
method for the density estimation of bivariate Gaussian ran-
dom variables, based on gPC expansion. The new method
can be of spectral accuracy in space and as well as in random
space, at least for some smooth problems. This efficient and
accurate numerical method was applied to study moment
estimation and density estimation for stochastic 1D wave
equation and stochastic 2D Schnakenberg model, respec-
tively. In the future, we plan to construct the analytic formula
of the cumulative distribution function for the unknown
solution of stochastic partial/ordinary differential equation
driven by multivariate Gaussian random variables.
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