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The current paper scrutinized the flow dynamics of Eyring–Powell nanofluid on porous stretching cylinder under the effects of
magnetic field and viscous dissipation by employing Cattaneo–Christov theory. In order to study impacts of thermophoretic force
and Brownian motion, the two-phase (Buongiorno) model is considered. As a consequence, very nonlinear PDEs that govern flow
problem were formulated, transformed into ODEs via relevant similarity variables, as well as tackled by utilizing R-K-45 integra-
tion scheme along with the shooting technique in the MATLAB R2018a software. Consequently, the numerical simulations reveal
that Eyring–Powell fluid, curvature, velocity ratio parameters have the propensity to raise nanofluid velocity. Nanofluid tempera-
ture shows an increasing pattern with magnetic, curvature, dissipative heating, and thermophoresis parameters. Besides, Prandtl
number, Eyring–Powell fluid, velocity ratio, thermal relaxation time, and porous parameters indicate the declining impact against
the nanofluid temperature. Hence, the porous medium reasonably and successfully managed nanofluid temperature as well as the
overall thermal system in terms of system cooling. The concentration profile gets fall down with escalating values of Schmidt
number, magnetic, curvature, dissipative heating, thermophoresis, Brownian motion, and solutal relaxation time parameters.
Moreover, coefficient of the skin friction gets rise for larger values of Eyring–Powell fluid, magnetic and curvature parameters
however porous medium and velocity ratio parameters reveal the opposite trends on it. The magnetic, curvature, Eyring–Powell
fluid, velocity ratio, and dissipative heating parameters indicate increasing impacts on both Nusselt Nu and Sherwood Sh numbers
even though both Nu and Sh get cut down with the porous medium parameter. Moreover, an excellent and sound agreement was
attained up on comparing coefficients of the skin friction for the current result against that of previously published literatures
under some limiting cases.

1. Introduction

The great scientific breakthrough in fluid mechanics have
made non-Newtonian fluids to be very important fluids as
a result of their immense applications in biomedical, chemical
engineering, and manufacturing industries including food
processing, power engineering, petroleum production, paper
manufacturing, glass sheet blowing, polymer solutions, and
biological gels, etc. [1, 2]. From our real-life encounters, mate-
rials like blood, starch suspension, pharmaceuticals, tooth-
pastes, shampoos, paints, cosmetics, butter, honey, etc. are
excellent examples of non-Newtonian fluids. Such types of
fluids exhibit a property that the shearing stresses are non-
linearly related with the rates of strain. To put it in another

way, non-Newtonian fluids possess shear thinning/thickening
behaviors and frequently show the yielding stresses by which
the shearing stresses are nonlinearly proportional to the
deformation rates of strain resulting in so much complicated
and complex mathematical analysis [3]. In this perspective,
the well-known Navier–Stoke’s equations failed to express
adequately the prominent characteristics of such fluids. Nowa-
days, hence, various flow models for the non-Newtonian fluids
namely Carreau, Williamson, Maxwell, Micropolar, Casson,
Jeffery, Eyring–Powell, etc. have been formulated. Among these
fluids, Eyring–Powell [4] fluid model being formulated in 1994
through Eyring and Powell has obtained astonishing considera-
tions because of the facts indicated as follows: first, the model
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was obtained through liquids kinetic theories rather than the
experiential study; second, in the case of higher and lower rates
of shearing the model performs as that of the Newtonian fluids
but as that of the non-Newtonian fluids in the case of modest
rates of shearing.

Now a day, a number of research reports on Eyring–Powell
fluid have been communicated. For instance, Ibrahim and
Hindebu [5] analyzed MHD boundary layer flow of Eyring–
Powell nanofluids using the Cattaneo–Christov heat-mass
fluxes theories. The stretching cylinder prompted flow model
equations were solved numerically via the Keller-Box tech-
nique and they announced that the Nusselt number was
augmented with the Prandtl number, curvature parameter,
thermal relaxation time, and Eyring–Powell fluid parameter.
Meanwhile, Layek et al. [6] investigated the combined trans-
port of heat and mass for unsteady, incompressible, viscous
Eyring–Powell fluid along expanding/shrinking sheet with
suction/injection, Dufour and Soret effects. According to their
results, the fluid velocity is high for the Eyring–Powell fluid but
Prandtl number and thermal radiation lessen the fluid temper-
ature. Moreover, analysis of nonlinear stratified convection of
Eyring–Powell fluid past a sheet, which is inclined and stretch-
ing with Cattaneo–Christov heat-mass flux model is presented
by Jabeen et al. [7]. Their analysis revealed that the thermal
stratification parameter and Cattaneo–Chiristov time relaxa-
tion dampen the distribution of fluid temperature. Salah [8]
examined the flow and heat transfer of dissipative and chemi-
cally reacting MHD Eyring–Powell fluid past a sheet that
stretches in an exponential manner under non-Fourier’s
model. This examination revealed that the thermal relaxation
time and the Eyring–Powell fluid parameter are inversely
related to the temperature profile while the Eckert number
indicates an increasing effect on the temperature profile. Later
on, Akram et al. [9] presented the investigation of double
diffusion effect on the flow of MHD Eyring–Powell nanofluid
over the channel with not uniform property. Very recently, the
analysis of MHD Eyring–Powell fluid convection through a
sheet, which stretches in an exponential way was given by
Naseem et al. [10]. Their analysis considered the Cattaneo–
Christov model and hence, they concluded that both tempera-
ture field and thermal boundary layer thickness decline with
the time relaxation parameter but both escalate with the Eckert
number. It is also noticed that, fluid velocity for the
Eyring–Powell is larger than that of the viscous fluid but this
is the contrary scenario in the case of the fluid temperature,
moreover, the magnetic field revealed the retarding effect on
the velocity field but the enhancing effect on the temperature
distribution.

Nanofluids are new class of liquids that are engineered
via homogeneous mixing of nanometer size (1 nm− 100 nm)
solid particles and conventional base liquids namely oils,
water, and ethyleneglycol. As far as the solid nanoparticles
are concerned, metals, metallic-oxides, and carbides are often
used to prepare nanofluids since they possess thermal con-
ductivity larger than that of the common base fluids. There-
fore, nanofluids own improved physico-thermal characteristics
namely dynamic viscosity, transfer rate of heat, thermal conduc-
tivity, and hence they have huge applications in biomedicine like

cancer therapy and nanodrug delivery as well as cooling process
in the industries namely microelectronics cooling, cooling of
microchips in computers, air-craft, vehicle cooling, nuclear reac-
tors cooling, chillers, refrigerators, food processing, paper pro-
duction, andmany others [11]. Nanofluids were introduced and
intensively studied by Choi [12] for the first time in 1995. After
the pioneering work of Choi, a great deal of research has been
explored for the convection of nanofluids over diverse geome-
tries and various aspects in [13–21].

The porous media amalgamation with the nanofluids can
further escalates the rates of heat energy transfers for many
thermal system managements. Indeed, solid matrixes posses-
sing the interconnected and networked pores/voided spaces
through which fluids can flow are referred to as porous media
[22]. Peculiar examples of natural porous media include rocks,
sands, soils, biological tissues like bones, lungs, and kidneys
whereas materials such as bread, sponges, cements, rubber,
foams, and ceramics can be considered as man-made porous
media. The enhanced thermo-physical properties of nano-
fluids may further improve because porous medium increases
areas of the contacting surfaces among solids and fluid parti-
cles so that flow interruptions are increasing. Porous medium
flow has many areas of applications including petroleum
product filtration, underground water movement, geother-
mal extraction, crude oil extraction, storage of radioactive
nuclear waste, heating and cooling in buildings, solar power
collectors, biomedical sciences, and so on [23, 24]. The first
description of transport phenomena via porous media was
proposed in 1956 through Darcy Henry [25]. At the present
time, following Darcy’s effortless work, fluid flows over a
porous medium are attracting the attention of a prodigious
scientific community including [26–32].

Magneto-hydro-dynamics (MHD) is the subject that
focuses on the analysis of communal interactions among
the imposed magnetic field and the fluid particles that also
conduct electrically while in the state of motion such as
electrolytes, metal fluids, plasma, and salt water. The phe-
nomenon of MHD plays an outstanding role in medicine,
technology, and engineering fields, like in metallurgy, treat-
ing of cancer tumors, reactors cooling, welding of plasmas,
magnetic cells separation, solidification of magmas, gratings
of optical, magnetic drug targeting, devices of astrophysics,
measurements of blood flow, and so on [33, 34]. Based on
these influencing attributes, currently a great deal of authors
from the research and academic world is publishing articles
consisting MHD flows under the different scenarios. To
mention some, Maxwell nanofluid flow over the vertical
sheet that stretches exponentially under second order slip
effect, viscous dissipation, radiative heat flux as well as
applied Lorentz force was analyzed by Abbas et al. [35]
applying Buongiorno’s model. The mathematical analysis
conducted for Eyring–Powell electrically conducting nano-
fluid motion created because of wedge surface elongating
under the influences of radiative heat, generation of heat,
and convectively imposed conditions on the boundaries
was done through Raju et al. [36]. Moreover, Arif et al.
[37] carried out a numerical study on the investigations of
both mass and heat transfers regarding the motion of
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Maxwell nanofluid through a heated sheet that also stretches
under the impact of applied magnetic field. Similar MHD
nanofluids flows are given in the relevant and up-to-date
literature [38–46] and the references therein.

Furthermore, the dynamics of mutual influences of
Viscous–Joule dissipations have many applications in the
thermal transport process of nanofluids over the surfaces
with stretching behaviors. The physical interpretation for
the viscous-dissipation is that, it is just the rate of energy
conversion per unit mass from its kinetic form to that of the
thermal one. Concerning this issue, Narender et al. [47] per-
formed a numerical study on heat and mass transport for
chemically reacting MHD nanofluid with the influences of
viscous-dissipation and radiative heat flux on a stretching
sheet. As they declared, both the temperature profile and
surface heat transfer rate enhance for flows with higher vis-
cous dissipation. Later on, Abbas and Megahed [48] explored
thermal radiation and viscous dissipation effects on the
steady flow of Eyring–Powell fluid over a stratified a stretch-
ing sheet embedded in a porous medium. The numerical
solution was obtained via the Chebyshev spectral method
and they pointed out that the temperature profile escalates
with the viscous dissipation and porous parameter.

On the other hand, Joule heating (or Ohmic heating)
refers to a process of creating excessive heat in nanofluids
because of the applied magnetic field. Actually, Joule heating
comprises important attributes in the food industry, bulbs,
electrolysis, electric fuzes and heaters, conduction of oven,
flashlights, etc. In line with this, Olkha and Dadheech [49]
scrutinized the impact of Joule heating on the unsteady
MHD slip flow of the Eyring–Powell fluid as well as the
motile microorganisms across an inclined permeable stretch-
ing sheet embedded in porous channel with thermal radia-
tion and thermal sink. Their results revealed that the
magnetic and porosity parameters give rise in the thermal
heat transfer rate. In addition, the flow and heat transfer
characteristics examination of MHD nanofluid using Ag as
solid nanoparticles suspended in water with combined dissi-
pation of Viscous–Joule past a cylinder that stretches under
the slip conditions at the boundary as well as injection/suc-
tion was given by Mishra and Kumar [50]. The numerical
solutions were given via R-K-45 along the method of shoot-
ing. Thus, the Nusselt number falls down when the magni-
tudes of viscous dissipation and Joule heating parameters
increase. Babu et al. [51] demonstrated the analysis of ther-
mally radiating 2D MHD Eyring–Powell fluid flow over the
surface that stretches under a joint impact of Viscous–Joule
dissipations. They noticed that enhancing the viscous dissi-
pation as well as the Joule heating parameters enhances the
nanofluid temperature distribution. Indeed, a list of up-to-
date and relevant references from the literature with regard
to the joint influences of Viscous–Joule dissipations is reported
by Ramesh et al. [52], Sadighi et al. [53], and Jayanthi and
Niranjan [54].

Related literatures abovementioned motivated the cur-
rent study and therefore, the current study investigates
flow as well as mass and heat transport for Eyring–Powell
nanofluid on the cylinder that stretches under the applied

magnetic field. The survey of related literature established
that no such problem has been studied regarding the jointed
influences of Viscous–Joule heating caused by dynamic vis-
cosity, applied magnetic field, and porous medium by
employing the non-Fourier’s heat conduction model which
is also known as Cattaneo–Christov heat and mass flux
model. Moreover, same boundary conditions were not con-
sidered before. The solutions of the current study are given
via R-K-45 integration scheme coupled by the method of
shooting. As a consequence, parameter-dependent solutions
for the velocity profile, temperature profile, concentration
profile, wall sear stress, wall heat, and mass transfer rates
were investigated as well as displayed through graphs. More-
over, an excellent and sound agreement was attained up on
comparing results of the current numerical method coeffi-
cient of the skin frictions with the numerical solutions
reported by formerly available literatures on behalf of various
controlling cases. Therefore, it is a worthwhile attempt and
the author believes that the current results are authentic and
novel.

2. Problem Analysis and
Mathematical Modeling

Consider a steady, laminar, and viscous two-dimensional
MHD Eyring–Powell fluid past a porous cylinder with radius
R that stretches in the horizontal direction. Also, consider a
polar cylindrical coordinate system (x; r) as exhibited in
Figure 1. The flow direction for the Eyring–Powell nanofluid
is along x-axis as porous cylinder stretches linearly with the
uniform velocity uw.

Following Powell and Eyring [4], the shear stress for
Eyring–Powell model can be written as follows:

τij ¼ μ
∂ui
∂xj

þ 1
β
sinh−1

1
c
∂ui
∂xj

 !
¼ μ

∂u
∂r

þ 1
β
sinh−1

1
c
∂u
∂r

� �
;

ð1Þ

where τij is the Cauchy stress tensor for Eyring–Powell fluid,
u is the axial fluid velocity, nd μ is the dynamic viscosity
whereas β and c are the rheological Eyring–Powell fluid
model parameters. The Taylor’s series expansion of sinh−1

approximating to the second-order gives:

B0

R

u → U∞, T → T∞, C → C∞ 

u = uw, DB  = O, C = Cw 

Eyring–Powell nanofluid

+ 

r
v

xu

C TDT
r rT∞

FIGURE 1: Coordinate system and flow model.
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1
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−
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1
c
∂u
∂r

� �
3
;
1
c
∂u
∂r

����
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Thus, Equation (1) takes the form as follows:

τij ¼ μ
∂u
∂r

þ 1
βc

∂u
∂r

−
1

6βc3
∂u
∂r

� �
3
: ð3Þ

Moreover, it is assumed that a uniform magnetic field B0
is imposed opposite to the flow direction. The uniform sur-
face temperature Tw and surface concentration Cw are con-
sidered while T1 and C1 are temperature and concentration
in the free stream, respectively. The induced magnetic field is
considered as negligible when compared to the applied mag-
netic flux because of extremely small magnetic Reynolds
number. Besides, consider a homogeneous and isotropic porous
and two-phase Buongiorno model for nanofluids is applied in
formulating the energy and concentration equations. The zero
net surface mass flux of the nanoparticles is considered. More
importantly, instead of classical Fourier’s and Fick’s diffusion
models, the frame indifferent Cattaneo–Chiristov diffusion
model is considered.

Following the study by Christov [55], the Cattaneo–
Christov heat-mass flux model instead of the Fourier’s and
Fick’s models can be written as follows:

λE
∂q
∂t

þ U:∇q − q:∇U þ ∇:Uð Þq
� �

þ q¼ −k∇T; ð4Þ

λC
∂J
∂t

þ U:∇J − J:∇U þ ∇:Uð ÞJ
� �

þ J ¼ −DB∇C; ð5Þ

where U ¼ðu; vÞ represent the fluid velocity vector, q is heat
flux, J is mass flux, λE denotes the thermal relaxation time, λC
denotes the solutal relaxation time, k is fluid thermal con-
ductivity, and DB stands for molecular mass diffusivity of the
species, It is noteworthy that for λE ¼ λC ¼ 0, Equations (4)
and (5) are simplified to the classical Fourier’s and Fick’s
laws, respectively.

For steady incompressible fluid flow, Equations (4) and
(5) reduce to:

λE U :∇q − q:∇U½ � þ q¼ −k∇T; ð6Þ

λC U :∇J − J:∇U½ � þ J ¼ −DB∇C: ð7Þ

Under the aforementioned considerations, the boundary-
layer PDEs are formulated and hence written according to the
following equations:

∂ ruð Þ
∂x

þ ∂ rvð Þ
∂r

¼ 0; ð8Þ

u
∂u
∂x

þ v
∂u
∂r

¼ μ

ρ

∂2u
∂r2

þ 1
r
∂u
∂r

� �
þ 1
ρβc

∂2u
∂r2

þ 1
r
∂u
∂r

� �

−
1

6ρβc3
1
r

∂u
∂r

� �
3
þ 3

∂u
∂r

� �
2 ∂2u
∂r2

� �
−
σ

ρ
B0

2u −
μ

ρk0
u;

ð9Þ

u
∂T
∂x

þ v
∂T
∂r

¼ αf
∂2T
∂r2

þ 1
r
∂T
∂r

� �
þ Ð³ DB

∂C
∂y

∂T
∂y

þ DT

T1

∂T
∂y

� �
2

� �
þ λE u2

∂2T
∂x2

þ v2
∂2T
∂r2

þ 2uv
∂2T
∂x∂r

þ u
∂u
∂x

∂T
∂x

þ u
∂v
∂x

∂T
∂r

�

þv
∂u
∂r

∂T
∂x

þ v
∂v
∂r

∂T
∂r

�
þ 1
ρcp

μþ 1
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� �
∂u
∂r

� �
2
−

1
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� �
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� �
þ σB0
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u
∂C
∂x

þ v
∂C
∂r

¼ DB
∂2C
∂r2

þ 1
r
∂C
∂r

� �
þ DT

T1

∂2T
∂r2

þ 1
r
∂T
∂r

� �
þþλC u2

∂2C
∂x2

þ v2
∂2C
∂r2

þ 2uv
∂2C
∂x∂r

þ u
∂u
∂x

∂C
∂x

þ u
∂v
∂x

∂C
∂r

�

þv
∂u
∂r

∂C
∂x

þ v
∂v
∂r

∂C
∂r

�
;

ð11Þ

where cp designates specific heat capacity, DT thermophore-

tic diffusion coefficient, Ð³¼ ðρcpÞp
ðρcpÞf is heat capacity ratio,

ðρcpÞp is nanoparticles heat capacity, and ðρcpÞf represents

base fluid heat capacity.
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Imposed boundary conditions are:

u¼ uw xð Þ ¼ u0
x
l

� �
; v ¼ 0;T ¼ Tw xð Þ ¼ T1 þ T0

x
l

� �
;DB

∂C
∂r

þ DT

T1

∂T
∂r

¼ 0; for r ¼ R and u¼ u1; v ¼ 0;C ¼ C1;

T ¼ T1 as r →1:

ð12Þ

To transform Equations (8)–(12) into ODEs the follow-
ing dimensionless variables are introduced.

η¼ r2 − R2

2R

ffiffiffiffiffi
u0
νl

r
;ψ ¼ ffiffiffiffiffiffiffiffiffiffi

uwνx
p

Rf ηð Þ; u¼ uwf 0 ηð Þ; v ¼ −
R
r

ffiffiffiffiffiffiffi
νu0
l

r
f ηð Þ; θ ηð Þ ¼ T − T1

Tw − T1
;ϕ ηð Þ ¼ C − C1

Cw − C1
: ð13Þ

Using Equation (13), Equation (8) is automatically satis-
fied while Equations (9)–(11) are transformed into the fol-
lowing ODEs:

1þ δð Þ 1þ 2γηð Þf 000 þ ff 00 − f 02 þ 2γ 1þ δð Þf 00 − 4
3
δλγ 1þ 2γηð Þf 003 − δλ 1þ 2γηð Þ2f 000f 002

− M þ Kð Þf 0 ¼ 0; ð14Þ

1þ 2γηð Þ
Pr

θ00 þ 2γ
Pr

θ0 þ f θ0 − αt f 2θ00 þ ff 0θ0ð Þ þ Nb 1þ 2γηð Þθ0ϕ0 þ Nt 1þ 2γηð Þθ02 þ Ecf 002 1þ δð Þ 1þ 2γηð Þ − 1
3
δλf 002

� �
þ Ec M þ Kð Þf 02 ¼ 0;

ð15Þ

1þ 2γηð Þϕ00 þ 2γϕ0 þ Scfϕ0
− Scαc f 2ϕ00 þ ff 0ϕ0ð Þ þ Nt

Nb
1þ 2γηð Þθ00 þ 2γθ0½ � ¼ 0; ð16Þ

where γ¼ 1=R
ffiffiffiffiffiffiffiffiffiffiffi
νl=u0

p
is the curvature parameter, δ¼ 1=μβc

is the Eyring–Powell fluid parameter, λ¼ u03x2=2c2l3ν is the
fluid parameter, M¼ σB0

2l=ρu0 is the magnetic parameter,
Pr¼ ν=αf is the Prandtl number, αt¼ λEu0=l is the thermal
relaxation time parameter, Nb¼Ð³DBðCw −C1Þ=ν is the
Brownian motion parameter, Nt¼Ð³DTðTw −T1Þ=νT1 is

the thermophoresis parameter, Sc¼ ν=DB is the Schmidt
number, αc¼ λCu0=l is the solutal relaxation time parameter,
K ¼ μl=u0ρk0 is porous parameter, and Ec¼ uw2=cpðTw −

T1Þ is the Eckert number (or viscous dissipation parameter).
The imposed boundary conditions in Equation (12) become:

f 0 0ð Þ ¼ 1; f 0ð Þ ¼ 0; θ 0ð Þ ¼ 1;Ntθ0 0ð Þ þ Nbϕ0 0ð Þ ¼ 0; f 0 1ð Þ ¼ A; f 1ð Þ ¼ 0; θ 1ð Þ ¼ 0;ϕ 1ð Þ ¼ 0; ð17Þ

where A¼ u1=uw is the velocity ratio.
Engineering and industrial interest quantities are the skin

friction coefficient, the Nusselt number and the Sherwood
number. The skin friction coefficient Cf can be written as
follows:

Cf ¼
2τw
uw2 : ð18Þ

However, τw is the wall shear stress and it can be obtained
from the Cauchy stress tensor for the Eyring–Powell fluid as
follows:
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τw ¼ τij
Â Ã

r¼R ¼ μ
∂u
∂r

þ 1
βc

∂u
∂r

−
1

6βc3
∂u
∂r

� �
3

� �
r¼R

: ð19Þ

The nondimensional coefficient of skin friction Cf in
Equation (18) takes the form:

1
2
Cf

ffiffiffiffiffiffiffi
Rex

p
¼ 1þ δð Þf 00 0ð Þ − 1

3
δλf 003 0ð Þ: ð20Þ

The wall heat transfer rate or local Nusselt number Nu is
defined as follows:

Nu¼ xqw
k Tw − T1ð Þ ; ð21Þ

where qw ¼ − kð∂T∂rÞr¼R represents wall heat–flux. Thus, the
nondimensional Nu takes the following form:

Nuxffiffiffiffiffiffiffi
Rex

p ¼ −θ0 0ð Þ: ð22Þ

Similarly, the wall mass transfer rate or local Sherwood
number Sh is defined as follows:

Sh¼ xJw
DB Cw − C1ð Þ ; ð23Þ

where Jw ¼ −DBð∂C∂rÞr¼R designates wall mass-flux and thus,
the nondimensional form of Sh takes the following form:

Shxffiffiffiffiffiffiffi
Rex

p ¼¼ − ϕ0 0ð Þ: ð24Þ

3. Method of Numerical Solutions

The closed form solutions for the highly nonlinear governing
Equations (14)–(16) with boundary conditions Equation (17)
are not possible. Hence, this highly nonlinear governing
Equations (14)–(17) are numerically solved by using the
fourth–fifth order Runge–Kutta–Fehlberg integration scheme
in the MATLAB R2018a software. The initial conditions were
guessed by utilizing the shooting technique until the boundary
conditions were satisfied. Also, in the numerical calculations
the maximum step size Δη¼ 0:01. The criteria used for con-
vergence is the variation in the dimensionless velocity, temper-
ature, and concentration should be less than 10−7 between any
two consecutive iterations. The asymptotic boundary condi-
tions Equation (17) were approximated by using ηmax¼ 12;
θð12Þ¼ 0¼ϕð12Þ. Therefore, to transform the governing
BVPs Equations (14)–(17) into the first order IVP, the new
variables are defined as follows:

f ¼ y1;

f 0 ¼ y2;

f 00 ¼ y3;

f 000 ¼ y03;

θ ¼ y4;

θ0 ¼ y5;

θ00 ¼ y05;

ϕ¼ y6;

ϕ0 ¼ y7;

ϕ00 ¼ y07:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð25Þ

Using Equation (18) into Equations (14)–(16) yields the
following system of first order IVPs.

y01 ¼ y2;

y02 ¼ y3;

y03 ¼
y2

2 þ 4
3 δλγ 1þ 2γηð Þy33 − 2γ 1þ δð Þy3; þ M þ Kð Þy2

1þ δð Þ 1þ 2γηð Þ − δλ 1þ 2γηð Þ2y32
;

y04 ¼ y5;

y05 ¼

λty1y2y5 −
2γy5
Pr −y1y5 − Nb 1þ 2γηð Þy5y7 − Nt 1þ 2γηð Þy52

−Ecy3
2 1þ δð Þ 1þ 2γηð Þ − 1

3 δλy3
2

Â Ã
− Ec M þ Kð Þy22

1þ2γηð Þ
Pr −λt y12

;

y06 ¼ y7;

y07 ¼

Scλcy1y2y7 − 2γy7 − Scy1y7

−
Nt
Nb 1þ 2γηð Þ

λty1y2y5 −
2γy5
Pr −y1y5 − Nb 1þ 2γηð Þy5y7 − Nt 1þ 2γηð Þy52

−Ecy3
2 1þ δð Þ 1þ 2γηð Þ − 1

3 δλy3
2

Â Ã
− Ec M þ Kð Þy22

1þ2γηð Þ
Pr −λt y12

þ2γy5

2
666664

3
777775
:

ð26Þ

In this case, the prime represents the derivative with
respect to η. The transformed boundary conditions in

Equation (17) are written as follows:
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y1 0ð Þ ¼ 0;

y2 0ð Þ ¼ 1;

y3 0ð Þ ¼ u1;

y4 0ð Þ ¼ 1;

y5 0ð Þ ¼ u2;

y6 0ð Þ ¼ u3;

y7 0ð Þ ¼ −
Nt
Nb

u2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

; ð27Þ

where u1; u2; and u3 are the suitable values of the initial
guesses for f ‘‘ð0Þ; θ00ð0Þ and ϕð0Þ, respectively. Besides,
y1ð1Þ→A; y2ð1Þ→0; y4ð1Þ→0; y6ð1Þ→0. The suitable
values of the unknown initial conditions u1; u2; and u3 are
iteratively estimated until the solutions satisfy the boundary
conditions at η¼1 whereas R-K-45 is used to solve later on
at η¼ 0.

4. Results and Discussions

4.1. Flow Field: Velocity Profile. Figure 2(a) is a double graph
displaying the velocity profile against the magnetic parame-
terM and Eyring–Powell fluid parameter δ. It is noticed that
the momentum boundary layer thickness and the velocity
profile considerably increase as the size of δ increases because
large value of δ indicates lower fluid viscosity so that it flows
easily. Thus, as δ increases, the velocity profile also increases
considerably. Therefore, velocity for the Eyring–Powell fluid

exceeds that of viscous Newtonian fluid. Reverse to this,
the momentum boundary layer thickness and the velocity
profile decrease with increasing values ofM. Physically, large
value of magnetic parameterM corresponds to large resisting
force that is called Lorentz resistance force, which dampens
the fluid flow. Thus, as M increases, both the fluid velocity
and the momentum boundary layer thickness decrease.
Impact of the curvature parameter γ on fluid velocity is
portrayed in Figure 2(b). Accordingly, both momentum
boundary layer thickness and fluid velocity escalate when
magnitude of γ rises. This can be justifiable because as γ
increases the radius of the cylinder decreases which results
in slender cylinder so that the contact surface area of the
cylinder with the fluid decreases.

Thus, the surface of the cylinder accounts lower friction
force on the movement of the fluid, which leads to an
increase of fluid velocity.

Figures 3(a) and 3(b) illustrate the effects of the porous
parameter K and the velocity ratio parameter A, respectively,
on the velocity profile. Fluid velocity and thickness of the
corresponding momentum boundary layer decrease as the
value of the porous parameter K increases (Figure 3(a)).
The argument behind this result is that bigger values of K
physically indicates stronger resisting forces on the motion of
the fluid that leads to the reduction of the fluid velocity.
Hence, the inclusion of porous medium slows down the
flow and a deceleration in the fluid velocity is observed
Figure 3(b) also illustrates that both fluid velocity and thick-
ness of the corresponding momentum boundary layer rise

0.2

0 2 4

δ = 0, 0.4, 0.8

6
η

8 10 12

0.4

f´ 
(η

)

0.6

0.8

1

K = 1, γ = 0.6, λ = 0.1, A = 0.1, Ec = 1, Pr = 1.2,
Nt = 0.1, Nb = 0.1, Sc = 1.3, αt = 0.1, αc = 0.1

M = 0.0
M = 2.0

ðaÞ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

γ = 0, 0.2, 0.4, 0.7

0 2 4 6
η

8 10 12

f´ 
(η

)

δ = 0.2, M = 0.2, K = 1, λ = 0.1, A = 0. 1, Ec = 1,
Pr = 1.2, Nt = 0.1, Nb = 0.1, Sc = 1.3, αt = 0.1, αc = 0.1

ðbÞ
FIGURE 2: Velocity field (a) against δ;M and (b) against γ.
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with increasing size of the velocity ratio parameterA because
physically, velocity ratio speeds up fluid motion that in turn
boosts the velocity profile.

4.2. The Temperature and Concentration Profiles. Both the
thickness of thermal boundary layer and fluid temperature

enhance for larger values of the magnetic parameterM as
depicted in Figure 4(a). Physically, when M increases the
Lorentzian resistant force increases and the friction between
fluids layers which produces more heat leading to the rise of
temperature profile. However, Figure 4(b) reveals the reverse
situation for the nanoparticles concentration because of the
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FIGURE 3: Velocity field (a) against K and (b) against A.
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FIGURE 4: (a) Temperature field against δ;M and (b) concentration field against δ;M.
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effect of cross diffusion. That is, small increase in temperature
may cause small decrease in the nanoparticles concentration.
Besides, as indicated in Figure 4(a), the thickness of thermal
boundary layer and fluid temperature decline for bigger
values of Eyring–Powell fluid parameter δ because bigger
values in δ implies less viscous fluid which results in the

lessening of friction among fluid particles and hence temper-
ature distribution in the fluid falls down. Therefore, tempera-
ture of viscous Newtonian fluid is bigger as compared to
temperature of non-Newtonian fluid past the porous cylinder
that stretches. Although, Figure 4(b) demonstrates the reverse
result for the case of the nanoparticles concentration.
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FIGURE 5: (a) Temperature field against γ and (b) concentration field against γ.
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FIGURE 6: (a) Temperature field against Ec;K and (b) concentration field against Ec;K .
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Temperature profile is increasing significantly with the
curvature parameter γ as exhibited in Figure 5(a). The phys-
ical interpretation can be, larger values of γ results in the
decrement of radius of the cylinder resulting in the reduction
of the friction force so that the velocity of the nanofluid rises
as elaborated in Figure 2(b). Thus, the enhanced fluid veloc-
ity results in the escalation of the nanofluid kinetic energy,

which in turn augments the heat energy of the nanofluid.
Consequently, the nanofluid temperature increases as the
curvature parameter γ increases. Additional insight into the
effect of the same parameter on the concentration profile can
be noticed from Figure 5(b). This figure reveals that the
concentration profile significantly decreases with the increas-
ing values of γ.
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FIGURE 7: (a) Temperature field against A and (b) concentration field against A.
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FIGURE 8: (a) Temperature field against Pr;Nt and (b) concentration field against Pr;Nt.
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As revealed in Figure 6(a), both the thickness of thermal
boundary layer and fluid temperature escalate remarkably as
the viscous dissipation factor (or Eckert number Ec) rises. The
physical interpretation for this result is that the increment of
Ec accumulates heat energy in the nanofluid because of heat-
ing caused by friction. Therefore, both temperature profile as
well as the thickness of thermal boundary layer escalate as
magnitude of Ec rises. The influence of the viscous dissipation

parameter Ec on the concentration profile is reversed because
of the cross-diffusion effect (Figure 6(b)). Figure 6(a) also
displays the impact of the porous parameter K on the nano-
fluid temperature. Rising the values ofK result in the lowering
of the nanofluid temperature because the nanofluid velocity
declines for larger values of K which in turn lowers the kinetic
energy and thus, less heat energy is generated in the flow
regime that leads to a low-nanofluid temperature.
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FIGURE 9: (a) Temperature field against αt and (b) concentration field against αc.
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Therefore, the porousmedium reasonably and successfully
managed nanofluid temperature as well as the overall thermal
system in terms of system cooling, however, Figure 6(b) pre-
sented an opposite effect for the nanoparticles concentration.

Figure 7(a) illustrates that the temperature profile has
shown a retarding pattern as the value of velocity ratio param-
eter A enhances whereas the concentration profile has indi-
cated an opposite scenario as demonstrated in Figure 7(b).

The influences of thermophoresis Nt as well as Prandtl
number Pr against the fluid temperature are demonstrated in
Figure 8(a). It can be witnessed from the figure that the
nanofluid temperature falls down strongly with rising Pr.
Physically, large value of Pr represents a smaller thermal
conductivity and hence there is a weak heat energy diffusion
which results in a significant fall down of temperature pro-
file. Besides, from the same figure, one can notice that
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FIGURE 11: Skin friction coefficient with varying (a) A;K and (b) γ; δ.
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FIGURE 12: (a) Nusselt number with varying γ; δ and (b) Sherwood number with varying γ; δ.
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nanofluid temperature enhances for increasing magnitudes
of thermophoresis parameter Nt. In fact, thermophoresis is a
process by which nanoparticles are moving out toward the
cold region from the hot one and hence greater value of Nt
corresponds to the tougher thermophoresis forces that favor
the hot nanoparticles movement toward the cold fluid result-
ing in higher temperature distribution throughout the

boundary layer flow. The influences of Pr and Nt on the
concentration profile are also portrayed in Figure 8(b) where
the scenarios are reversed because of the cross-diffusion
effect.

Figure 9(a) portrayed the thickness of thermal boundary
layer and temperature field against the Cattaneo–Christov
time relaxation αt. Consequently, an increment of αt
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FIGURE 14: (a) Nusselt number with varying Ec and (b) Sherwood number with varying Ec.
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indicates a decreasing pattern for the temperature profile. In
physical sense, as αt increases, the nanofluid acquires addi-
tional more periods for transferring heat energy into the
surrounding and thus, nanofluid temperature falls down.
Therefore, a falling down of nanofluid temperature is
observed when a magnitude of αt rises. Indeed, for the mixed

convection of nanofluid over a porous cylinder the Cattaneo–
Christovmodel produces more heat when compared to the heat
conduction laws of Fourier (αt¼ 0). Therefore, the Cattaneo–
Christov heat flux model is favorable in regulating large heat
flux situations when compared to the heat conduction laws of
Fourier. Similarly, Figure 9(b) reveals variation of the
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concentration profile with assorted values of solutal relaxation
time parameter αc. The nanoparticle concentration shows a
decreasing behavior with the escalating values of αc

Figure 10(a) illustrates that the concentration profile
drops in response to a rise in the Schmidt number Sc. Physi-
cally, big value of Sc indicates a small mass diffusion in the
flow regime and thus nanoparticles concentration drops
when a size of Sc increases. Moreover, Figure 10(b) displayed
impacts of Brownian motion factor Nb against nanoparticles
concentration. Both the thickness of concentration boundary
layer and nanoparticles concentration decline with the esca-
lating sizes of Nb: This is the case since large value of Nb
shows an enhanced nanoparticles collision as well as random
movements that in turn declines the nanoparticles concen-
tration throughout flow regime.

4.3. Skin Friction Coefficient, Nusselt Number, and Sherwood
Number. Figures 11(a) and 11(b) are presented to visualize
the effects of velocity ratio parameter A, porous parameter K ,
curvature parameterγ, and Eyring–Powell fluid parameterδ
on coefficient of skin friction Cf where M (magnetic param-
eter) is used for scaling the horizontal axis. From Figure 11(a)
it is clearly examined that Cf gets cut down with increasing
values of K and A. However, Cf gets rise up for increasing
values of γ and δ as elucidated in Figure 11(b).

Escalating the magnitudes of γ (curvature parameter)
as well as δ (Eyring–Powell fluid parameter) results in the
enhancement of both Nu (Nusselt number) and Sh (Sherwood
number) as illustrated in Figures 12(a) and 12(b), respectively,
with scaled values of the magnetic parameter M. Furthermore,
Nu and Sh are rising with the velocity ratio parameter A but
both are falling with the porous parameter K as displayed in
Figures 13(a) and 13(b), respectively. The Eckert number Ec is

directly related to both Nu and Sh (Figures 14(a) and 14(b)).
The thermophoresis parameter Nt has revealed a retarding
effect on Nu but a rising effect on Sh as demonstrated in
Figures 15(a) and 15(b), respectively. In addition, Figures 16(a)
and 16(b) displayed that the Nusselt number Nu increases with
the increasing values of Prandtl number Pr and thermal relaxa-
tion time αt. Furthermore, Schmidt number Sc indicates a
retarding influence on Shwhile solutal relaxation time αc shows
a rising impact on Sh as portrayed in Figures 17(a) and 17(b),
respectively.

In order to validate the accuracy of the current numerical
technique, comparison is done in the case of the skin friction
coefficients for the present results with some limited condi-
tions against that of already available literatures. Thus, an
excellent as well as a sound agreement is attained up on
comparing with Ibrahim and Hindebu [5] and Layek et al.
[6] as witnessed in Table 1.
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ðbÞ
FIGURE 17: Sherwood number with varying (a) Sc and (b) αc.

TABLE 1: Comparison of − 1=2Cf
ffiffiffiffiffiffiffi
Rex

p
in the case of varying λ

values for Pr¼ 1:7; Sc¼ 2; δ¼ 0:2;Nt¼ 0:1¼Nb, and M¼ γ¼
αt¼ αc¼K ¼ Ec¼ 0.

−
1
2Cf

ffiffiffiffiffiffiffi
Rex

p

λ Ibrahim and Hindebu [5] Layek et al. [6] Present results

0.1 1.0940 1.0940 1.0940
0.2 1.0925 1.0924 1.0925
0.3 1.0909 1.0909 1.0909
0.4 1.0894 1.0894 1.0894
0.5 1.0878 1.0878 1.0878
0.6 1.0863 1.0862 1.0863
0.7 1.0847 1.0847 1.0847
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5. Conclusions

The current study aims to scrutinize the flow dynamics of
Eyring–Powell nanofluid on porous stretching cylinder
under the effects of magnetic field and viscous dissipation
by employing Cattaneo–Christov theory. In order to study
impacts of thermophoretic force and Brownian motion, the
two-phase (Buongiorno) model is considered. As a consequence,
very nonlinear PDEs that govern flow problem were formulated,
transformed intoODEs via relevant similarity variables, as well as
tackled by utilizing R-K-45 integration scheme along with the
shooting technique in the MATLAB R2018a software. Hence,
the effects of pertinent embedded thermo-physical parameters
on velocity, temperature, and concentration profiles as well as
on the skin friction coefficient, the wall heat transfer and mass
transfer rates are investigated and displayed through graphs.
Based on the results and discussions made under the previous
section, the major findings of the current investigation are sum-
marized as follows:

(i) The Eyring–Powell fluid parameter δ, curvature
parameter γ, and velocity ratio parameter A have
a propensity to raise the momentum boundary
layer thickness and the velocity profile.

(ii) The thickness of thermal boundary layer as well as
temperature profile show rising trend as the magni-
tudes ofM (magnetic parameter), γ (curvature param-
eter), viscous dissipation factor (or Eckert number Ec),
and thermophoresis parameter Nt enhance.

(iii) The Eyring–Powell fluid parameter δ, Prandtl
number Pr, porous parameter K , velocity ratio
parameter A, and thermal relaxation time αt indi-
cate a retarding effect on the temperature profile
and thermal boundary layer thickness.

(iv) The concentration profile gets fall down with rising
values of the magnetic parameter M, curvature
parameter γ, Eckert number Ec and thermophor-
esis parameterNt, Brownian motion parameterNb,
Schmidt number Sc, and solutal relaxation time αc.

(v) The skin friction coefficientCf escalates for increas-
ing values of the Eyring–Powell fluid parameter δ,
M (magnetic parameter), and γ (curvature parame-
ter) while it falls downwhen bothK (porous param-
eter) as well as A (velocity ratio parameter) rise.

(vi) The curvature parameter γ, magnetic parameterM,
Eyring–Powell fluid parameter δ, velocity ratio
parameter A, and Eckert number Ec revealed an
escalating pattern against both Nusselt number
Nu and Sherwood number Sh while both get cut
down with the porous parameter K .

(vii) The Nusselt number Nu increases with increasing
values of Prandtl number Pr and thermal relaxa-
tion time αt.

(viii) The Sherwood number Sh indicates a decreasing
pattern with rising sizes for Sc (Schmidt number)
while αc (solutal relaxation time) shows an increas-
ing effects on Sherwood number Sh:

Nomenclature

A: Velocity ratio parameter
B0: Uniform magnetic field strength
C: Nanoparticles concentration
Cf : Coefficient of skin friction
Cw: Concentration at the surface of the cylinder
C1: Concentration at the free stream
DB: Brownian diffusion coefficient
DT : Thermal diffusion coefficient
Ec: Eckert number
f : Dimensionless stream function
K : Porous parameter
k: Thermal conductivity of fluid
M: Dimensionless magnetic parameter
Nb: Brownian motion parameter
Nt: Thermophoresis parameter
Nu: The Nusselt number
Pr: The Prandtl number
Sc: The Schmidt number
Sh: The Sherwood number
T : Nanofluid temperature
Tw: Surface temperature
T1: Free stream temperature
uw: Stretching velocity of the cylinder
U1: Velocity at the free stream
αt: Relaxation time parameter in the case of temperature
αc: Relaxation time parameter in the case of concentration
δ: Eyring-fluid parameter
γ: Dimensionless stretching parameter
Ψ: Dimensional stream function
H: Similarity variable
θ: Dimensionless nanofluid temperature
Φ: Dimensionless nanoparticles concentration.
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