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The Darboux transformation (DT) and generalized DT (GDT) have played important roles in constructing multisoliton solutions,
rogue wave solutions, and semirational solutions of integrable systems. The main purpose of this article is to extend the DT and
GDT to a conformable fractional two-component generalized Hirota (TCGH) equation for revealing novel dynamic characteristics
of fractional soliton and semirational solutions. As for the main contributions, specifically, we propose a fractional form of the
TCGH equation, provide the associated fractional Lax pair, and obtain fractional soliton and semirational solutions of the
fractional TCGH equation by constructing its fractional DT and GDT. In addition, we find that the dominant role of fractional
order leads to new dynamic characteristics of the obtained fractional soliton and semirational solutions, mainly including a certain
degree of tilt of wave crests and the variations in velocities and wave widths over time during propagation, which are not possessed
by the corresponding integer-order TCGH equation. Meanwhile, this study predicts the deceleration propagation of solitons in
fractional dimensional media and brings the possibility of exploring the asymmetric regulation mechanism of rogue waves from
the perspective of fractional-order dominance.

1. Introduction

Fractional calculus is very important and has a wide range
of applications [1]. As pointed out in [2], a connection
between fractional calculus and soliton theory can be estab-
lished. This makes it meaningful to generalize soliton inte-
grable systems to fractional orders, such as the fractional-
order version [3] of classical nonlinear Schrödinger (NLS)
equation. Recently, more and more fractional nonlinear
integrable systems have been proposed, such as the frac-
tional Korteweg–de Vries (KdV) equation [4], fractional
isospectral and nonisospectral Ablowitz–Kaup–Newell–Segur
(AKNS) hierarchies [5], fractional Kadomtsev–Petviashvili
(KP) equation [6], fractional NLS equation [7], fractional
modified KdV (mKdV) equation [8], fractional discrete NLS
equation [9], fractional NLS hierarchy [10], and higher-order
fractional NLS equation [11]. As is well known, studying ocean

waves is of great significance for human development.
Researchers often use some soliton integrable equations, for
example, the KP equation [12], to study water wave motion.
Wave motion is one of the most common phenomena in the
ocean and has its importance for coastal engineering, harbor
construction, and the evolution of beaches. The KP equation
[12], can be seen as an extension of the famous KdV equation
[13] to two-dimensional space, is an important model for
simulating ocean waves. One of the higher-order NLS equa-
tions, known as the celebrated Hirota equation [14], is a
combination of the NLS equation and the complex mKdV
equation.

Due to the importance [14–19] of studying the Hirota
equation and its generalizations, this paper considers the fol-
lowing fractional two-component generalized Hirota (TCGH)
equation:
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where uj j and vj j are two modules of the slowly varying com-
plex envelop potentials u x;ð tÞ and v x;ð tÞ; i2 ¼ − 1 gives the
imaginary unit, ∗ represents the complex conjugation, while
Dα
t ;D

α
x ;D2α

x ¼Dα
xDα

x and D3α
x ¼Dα

xDα
xDα

x denote the conform-
able fractional derivatives with respect to t and x [6, 20].When
α¼ 1, Equation (1) degenerates into the integer-order TCGH
equation [21] with the strength parameter ε¼ 1=12 identify-
ing the high-order effects from the third dispersion, self-
steepening, and the so-called inelastic Raman scattering [15].
In the fields of optics and ocean dynamics, the integer-order
case of Equation (1) can be used to illustrate the transmission
process of high-intensity ultrashort pulses through an optical
glass fiber [17] and deep water ocean wave collisions caused by
the adverse weather conditions [18].

As far as we know, the fractional TCGH Equation (1) is
new, and its fractional soliton solutions and semirational
solutions have not been reported. From a mathematical point
of view, semirational solutions are a kind of rational exact
solutions coupled by e-exponential functions and external
independent variables. In terms of the spatial structures,
semirational solutions usually exhibit local characteristics
of solitons and rogue waves. There are many effective meth-
ods for constructing exact solutions of nonlinear evolution
systems, for example, the inverse scattering transform [22],
Hirota bilinear method [23], homogeneous balance method
[24], and exp-function method [25]. Because this paper
focuses on solving fractional integrable systems, we also intro-
duce somemethods such as Adomian decomposition method
[26], variational iteration method [27], and homotopy per-
turbation method [28] used in recent literature to handle
fractional-order nonlinear equations. Traditional Darboux
transformation (DT) [29] can construct the well-known soli-
ton solutions, while the generalized DT (GDT) [30] based on
DT [29] was originally designed to obtain rational solutions
and has recently been applied to the construction of rogue
wave solutions [31] and semirational solutions [32]. In this
present paper, we concentrate on constructing novel frac-
tional soliton and semirational solutions of the fractional
TCGH Equation (1) by introducing fractional DT and GDT.
The fractional DT and GDT mentioned in this paper empha-
size that the Lax pair they are based on is in the form of
fractional derivatives, and the series of operations processed
involve spatiotemporal variables that are all fractional powers.
These aspects are different from those of the traditional DT
[29] and GDT [30]. Although we have some preliminary stud-
ies [33, 34] on fractional DT and GDT, the starting point of
this work is to reveal the novel dynamic characteristics domi-
nated by fractional order of fractional soliton and semirational
solutions from a new fractional integrable system.

For the fractional TCGH Equation (1), considering the
needs of the next section, here we give its fractional Lax pair:

Dα
xφ¼Mφ;M ¼ λU0 þ U1 ; ð2Þ

Dα
t φ¼ Nφ;N ¼ λ3V0 þ λ2V1 þ λV2 þ V3 ; ð3Þ

in which φ represents the eigenfunction, λ is the eigenvalue,
and
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2
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with

e0 ¼ uj j2 þ vj j2; e1 ¼ uDα
xu∗ − u∗Dα

xu; e2 ¼ vDα
xv∗ − v∗Dα

xv ;

ð7Þ

e3 ¼ D2α
x uþ 2e0u; e4 ¼ D2α

x v þ 2e0v; e5 ¼ u∗Dα
xv − vDα

xu∗ :

ð8Þ

The framework of this paper is organized as follows. In
Section 2, we derive the fractional DT and GDT of Equation
(1) by extending the DT [29] and GDT [30]. Based on the
derived GDT, fractional soliton and semirational solutions of
Equation (1) are obtained in Section 3. At the same time,
dynamic features of the obtained fractional soliton and semi-
rational solutions are analyzed. The last section is the sum-
mary and discussion of this paper.

2. Fractional DT and GDT

In this section, following the steps of the DT [29] and GDT
[30], we present the fractional DT and GDT for the fractional
TCGH Equation (1).
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2.1. Fractional DT. To give the fractional DT for the frac-
tional TCGH Equation (1), we begin with a special gauge
transformation:

φ 1½ � ¼ Tφ¼ λI3 − Sð Þφ¼ λI3 − HΛH−1ð Þφ ; ð9Þ

with

Λ¼
λ1 0 0

0 λ∗1 0

0 0 λ∗1

2
64

3
75; H ¼

φ11 φ∗
12 φ∗

13

φ12 −φ∗
11 0

φ13 0 −φ∗
11

2
64

3
75 ; ð10Þ

where φ11; φ12; φ13ð ÞT is a solution of the fractional Lax pair,
as shown in Equations (2) and (3), in the case of λ¼ λ1, and
φ∗
12; −φ

∗
11; 0ð ÞTand φ∗

13; 0; −φ
∗
11ð ÞT satisfy the fractional Lax

pair, as shown in Equations (2) and (3), when λ¼ λ∗1.
According to the rules of fractional DT: Dα

xT þTM¼
M 1½ �T;Dα

t T þTN ¼N 1½ �T , we obtain the following relations
between former and new potentials by comparing the coeffi-
cients of the same powers of λ:

U 1½ �
1 S¼ Dα

xSþ SU1 ; ð11Þ

V 1½ �
3 S¼ Dα

xSþ SV3 ; ð12Þ

U 1½ �
1 ¼ U1 − SU0 þ U0S ; ð13Þ

V 1½ �
3 − V 1½ �

2 S¼ V3 − SV2 ; ð14Þ

V 1½ �
2 −

3
4
U 1½ �
1 S¼ V2 −

3
2
SU0 −

3
4
SU1 þ

3
2
U0S : ð15Þ

Through direct computation, we arrive at the potential
formulas:

u 1½ � ¼ uþ 3i λ1 − λ∗1ð Þ φ11φ
∗
12

φ11j j2 þ φ12j j2 þ φ13j j2 ; ð16Þ

v 1½ � ¼ v þ 3i λ1 − λ∗1ð Þ φ11φ
∗
13

φ11j j2 þ φ12j j2 þ φ13j j2 : ð17Þ

By means of the above preparations, the first step of
fractional DT of the fractional TCGH Equation (1) can be
written in a more straightforward way, that is:

T1 ¼ λ − λ∗1ð ÞI3 − λ1 − λ∗1ð Þφ1φ
H
1

φH
1 φ1

; ð18Þ

u 1½ � ¼ uþ 3i λ1 − λ∗1ð Þ φ1φ
H
1

φH
1 φ1

� �
12
; ð19Þ

v 1½ � ¼ v þ 3i λ1 − λ∗1ð Þ φ1φ
H
1

φH
1 φ1

� �
13
; ð20Þ

where the column vector φ1 ¼ φ11; φ12; φ13ð ÞT solves the
fractional Lax pair, as shown in Equations (2) and (3), with
λ¼ λ1, and H denotes the transpose and complex conjuga-
tion of the vector being acted on.

As shown in Equations (18)–(20), the fractional DT of
degree one has been presented. The N-fold fractional DT for
the fractional TCGH Equation (1) can be considered as a
superposition of the first-step fractional DT, namely:

Tn ¼ λ − λ∗nð ÞI3 − λn − λ∗nð Þφnφ
H
n

φH
n φn

; ð21Þ

u n½ � ¼ uþ 3i ∑
n

m¼1
λm − λ∗mð Þ φmφ

H
m

φH
mφm

� �
12
; ð22Þ

v n½ � ¼ v þ 3i ∑
n

m¼1
λm − λ∗mð Þ φmφ

H
m

φH
mφm

� �
13
; ð23Þ

where φm ¼ φm1; φm2; φm3ð ÞT satisfies the fractional Lax
pair, as shown in Equations (2) and (3), given by λ¼ λm.

2.2. Fractional GDT. With the help of above fractional DT,
we get T1φ1 ¼ 0. In this case, we cannot try to apply the
fractional DT on φ1 again. Setting γ 1½ � ¼φ1 λ1ð þ δÞ and
expanding γ 1½ � at λ1, we find that:

γ 1½ � ¼ φ1 λ1 þ δð Þ ¼ γ0
1½ � þ γ1

1½ �δþ γ2
1½ �δ2 þ⋯þ γn

1½ �δn þ⋯ ;

ð24Þ

where

γ 1½ �
k ¼ 1

k!
∂k

∂λk
φ1 λð Þ λ¼λ1

�� ; k¼ 0; 1; 2;⋯ð Þ: ð25Þ

As γ0
1½ � ¼φ1 λ1ð Þ satisfies the fractional Lax pair, as

shown in Equations (2) and (3), with the given λ¼ λ1 and
seed solutions u and v, we can drive the first-step fractional
GDT of the fractional TCGH Equation (1):

T1 1½ � ¼ λ − λ∗1ð ÞI3 − λ1 − λ∗1ð Þφ1φ
H
1

φH
1 φ1

; ð26Þ

u 1½ � ¼ uþ 3i λ1 − λ∗1ð Þ φ1φ
H
1

φH
1 φ1

� �
12
; ð27Þ

v 1½ � ¼ v þ 3i λ1 − λ∗1ð Þ φ1φ
H
1

φH
1 φ1

� �
13
: ð28Þ

Since φ1 has been determined in Equations (18)–(20),
then comparing Equations (26)–(28) with Equations (18)
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and (19), we conclude that there is no difference between the
fractional DT and fractional GDT in the first iteration.

In what follows, we derive the second-step fractional
GDT of the fractional TCGH Equation (1) through the limit
process:

lim
δ→0

T1 1½ � λ¼λ1þδ

��Â Ã
γ 1½ �

δ
¼ lim

δ→0

δþ T1 1½ � λ¼λ1

��Â Ã
γ 1½ �

δ
¼ γ 1½ �

0

þ T1 1½ � λ¼λ1

�� γ 1½ �
1 ¼ φ1 1½ � ;

ð29Þ

where γ 1½ �
0 and γ 1½ �

1 have been determined in Equation (24).
Thus, φ1 1½ � which is the next iterative function after φ1 can
be determined by means of Equation (29). When n¼ 2,
Equation (21) can be written as:

T2 ¼ λ − λ∗2ð ÞI3 − λ2 − λ∗2ð Þφ2φ
H
2

φH
2 φ2

: ð30Þ

Taking the limit λ2 → λ1 and substituting the new iter-
ated eigenfunction φ1 1½ � into Equation (30), we can derive
the second-step fractional GDT of the fractional TCGH
Equation (1), that is:

T1 2½ � ¼ λ − λ∗1ð ÞI3 − λ1 − λ∗1ð Þφ1 1½ �φH
1 1½ �

φH
1 1½ �φ1 1½ � ; ð31Þ

u 2½ � ¼ u 1½ � þ 3i λ1 − λ∗1ð Þ φ1 1½ �φH
1 1½ �

φH
1 1½ �φ1 1½ �

� �
12
; ð32Þ

v 2½ � ¼ v 1½ � þ 3i λ1 − λ∗1ð Þ φ1 1½ �φH
1 1½ �

φH
1 1½ �φ1 1½ �

� �
13
: ð33Þ

Similarly, we acquire the third iterated eigenfunction
φ1 2½ � via the following limit process:

lim
δ→0

T1 2½ � λ1 þ δð Þ½ � δþT1 1½ � λ1ð Þ
δ

h i
γ 1½ �

δ
; ð34Þ

¼ γ 1½ �
0 þ T1 1½ � λ1ð Þ þ T1 2½ � λ1ð Þ½ �γ 1½ �

1 þ T1 2½ � λ1ð ÞT1 1½ � λ1ð Þγ 1½ �
2

¼ φ1 2½ � ;
ð35Þ

where γ 1½ �
0 ; γ 1½ �

1 and γ 1½ �
2 are already determined, as shown in

Equation (25). Then, the third-step fractional GDT is derived
as follows:

T1 3½ � ¼ λ − λ∗1ð ÞI3 − λ1 − λ∗1ð Þφ1 2½ �φH
1 2½ �

φH
1 2½ �φ1 2½ � ; ð36Þ

u 3½ � ¼ u 2½ � þ 3i λ1 − λ∗1ð Þ φ1 2½ �φH
1 2½ �

φH
1 2½ �φ1 2½ �

� �
12
; ð37Þ

v 3½ � ¼ v 2½ � þ 3i λ1 − λ∗1ð Þ φ1 2½ �φH
1 2½ �

φH
1 2½ �φ1 2½ �

� �
13
: ð38Þ

3. Fractional Soliton and
Semirational Solutions

In this section, we employ the fractional GDT derived above
to construct fractional semirational solutions of the frac-
tional TCGH Equation (1).

3.1. Fractional Soliton Solutions. Starting from the seed solu-
tions u¼ 0 and v¼ 0, we solve the fractional Lax pair, as
shown in Equations (2) and (3), with λ¼ λ1 and yield that:

φ1 ¼
c1e−2iθ

c2eiθ

c3eiθ

2
64

3
75; θ ¼ λ1

α
xα þ 3λ21 λ1 þ 2ð Þ

4α
tα ; ð39Þ

where c1; c2 and c3 are complex constants. Substituting Equation
(39) into Equations (27) and (28), we can derive the fractional
one-soliton solutions of the fractional TCGH Equation (1):

u 1½ � ¼ 3i λ1 − λ∗1ð Þc1c∗2
c1j j2e3iθ∗ þ c2j j2e3iθ þ c3j j2e3iθ ; ð40Þ

v 1½ � ¼ 3i λ1 − λ∗1ð Þc1c∗3
c1j j2e3iθ∗ þ c2j j2e3iθ þ c3j j2e3iθ : ð41Þ

Especially when λ1 ¼ i; c1 ¼ 1; c2 ¼ 1, and c3 ¼ 1, we sim-
plify Equations (40) and (42) as follows:

u 1½ � ¼ v 1½ � ¼ −
6e

9 1þ2ið Þ
4α tαþ3

αx
α

2e
9
2αt

α þ e
6
αx

α

¼ −
3

ffiffiffi
2

p

2
e
9i
2αt

α
sech

3
α
xα −

9
4α

tα − ln
ffiffiffi
2

p� �
:

ð42Þ

As shown in Figures 1–3, four right propagating single
solitons with different fractional orders α¼ 1; α¼ 7=9; α¼
3=5, and α¼ 1=3 are shown. As shown in Figures 1–3, when
t is fixed to three different moments − 1; 0, and 1, the smaller
the value of fractional order α, the narrower the wave width,
and the greater the tilt of wave crest toward the vertical axis.
But soon, as shown in Figure 4, with the gradual disappear-
ance of the tilt, the wave peaks become wider and wider, until
the change becomes very slow or no longer occurs after a
long time. When t¼ 3;000, the wave peak with the fractional
order α¼ 1=3, as shown in Figure 5, has almost no tilt.

As for the velocity of the fractional single soliton deter-
mined by Equation (42), we have the following formulae:

v ¼ 3
2α−1
α 4−

1
αtα−1 9tα þ 2α ln 2ð Þ1−αα ; α 2 0; 1ð Þ ; ð43Þ
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FIGURE 1: Fractional single solitons determined by Equation (42) with the different fractional orders: (a) α¼ 1, (b) α¼ 7=9, (c) α¼ 3=5, and
(d) α¼ 1=3 at the time t¼ − 1.
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FIGURE 2: Fractional single solitons determined by Equation (42) with the different fractional orders: (a) α¼ 1, (b) α¼ 7=9, (c) α¼ 3=5, and
(d) α¼ 1=3 at the time t¼ 0.
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v ¼ 3
4
; α¼ 1ð Þ ; ð44Þ

which tell that in the case of α¼ 1, the velocity, as shown in
Equation (44), is the constant 3=4, while for 0<α<1, it is
time-varying. When confining the fractional order α2 0;ð 1Þ

and time interval t 2 0:001;½ 1;000�, we show the 3D image of
velocity, as shown in Equation (43) (Figure 6). Four profiles
of velocity, as shown in Equation (43), confined to the frac-
tional order α2 0;ð 1�, are shown by fixing the different times
t¼ 0:001; t¼ 0:1; t¼ 1, and t¼ 1;000. As shown in Figures 6
and 7, it can be seen that for a short period of after t¼ 0, the
velocity, as shown in Equation (43), under the condition of
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FIGURE 3: Fractional single solitons determined by Equation (42) with the different fractional orders: (a) α¼ 1, (b) α¼ 7=9, (c) α¼ 3=5, and
(d) α¼ 1=3 at the time t¼ 1.
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FIGURE 4: Fractional single solitons determined by Equation (42) with the different fractional orders α¼ 1; α¼ 7=9; α¼ 3=5, and α¼ 1=3 at
the times: (a) t¼ 5 and (b) t¼ 100.
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0<α<1, exhibits a significant rate of change, while at α¼ 1,
it always maintains v ≡ 3=4. For the specific fractional orders
α¼ 1; α¼ 7=9; α¼ 3=5, and α¼ 1=3, we have:

vj α¼1 ¼
3
4
; vj α¼7=9 ¼

39=7

411=7
; vj α¼3=5 ¼

35=3

210=3
; vj α¼1=3

¼ 27
64

; t →þ1ð Þ ;
ð45Þ

and show the evolution trends of velocity, as shown in Equa-
tions (43) and (44), over time t 2 0:001;½ 1;000� (Figure 8).
As shown in Figure 8, the changes in the velocities gradually
decrease until they stabilize. The initial velocities of frac-
tional solitons are greater than that of the corresponding
integer-order soliton, and then gradually becomes smaller
than the case of integer-order soliton. Obviously, the smaller
the fractional order α, the smaller the average speed calcu-
lated through Equations (43) and (44).

3.2. Fractional Semirational Solutions. Using the fractional
single-soliton solution, as shown in Equations (41) and (42),
and the second-step fractional GDT, as shown in Equations
(32) and (33), we obtain the fractional semirational solutions
of the fractional TCGH Equation (1):

u 2½ � ¼ u 1½ � þ 3i λ1 − λ∗1ð Þc1c∗2ζ ; ð46Þ

v 2½ � ¼ v 1½ � þ 3i λ1 − λ∗1ð Þc1c∗3ζ ; ð47Þ

where

ζ ¼ HG
qHe

3
4ip iD c1j j2e34ip∗ þ 4qe

3
4ip

À Áþ G c1j j2e34ip∗ 4 c1j j2e−3
4ip − iqFe−

3
4ip

∗À Á ;

ð48Þ

with

H ¼ iA c1j j2e−3
4ip þ 4qe−

3
4ip

∗
; G¼ 4 c1j j2e34ip∗ − iqBe

3
4ip ;

ð49Þ

A¼ −4iþ 12λ1
α

xα −
12λ∗1
α

xα − 3λ1tαð Þ

þ 9 λ∗1ð Þ2 −4þ 3λ1ð Þ
α

tα −
27 λ∗1ð Þ3

α
tα ;

ð50Þ

B¼ 4iþ 12λ1
α

xα þ 36λ21
α

tα þ 27λ31
α

tα

−
3λ∗1
α

4xα þ 3λ1 4þ 3λ1ð Þtα½ � ;
ð51Þ

D¼ −4iþ 12λ1
α

xα þ 36λ21
α

tα þ 27λ31
α

tα

−
3λ∗1
α

4xα þ 3λ1 4þ 3λ1ð Þtα½ � ;
ð52Þ

F ¼ 4iþ 12λ1
α

xα −
12λ∗1
α

xα − 3tαλ1ð Þ

þ 9 λ∗1ð Þ2 −4þ 3λ1ð Þ
α

tα −
27 λ∗1ð Þ3

α
tα ;

ð53Þ

p¼ λ1
α

4xα þ 3tαλ1 2þ λ1ð Þ½ �; p∗ ¼ λ∗1
α

4xα þ 3tαλ∗1 2þ λ∗1ð Þ½ �;
q¼ c2j j2 þ c3j j2 :

ð54Þ

Three special cases of the fractional semirational solu-
tions, as shown in Equations (46) and (47), read:

Case 1. When λ1 ¼ i; c1 ¼ 1; c2 ¼ 1, and c3 ¼ 1,

u 2½ � ¼ v 2½ � ¼ −

6e
9 1þ2ið Þ

4α tαþ3
αx

α
e
6
αx

α
4þ 27þ36i

α tα − 12
α x

α
À Áþ e

9tα
2α 8 − 54−72i

α tα þ 24
α x

α
À Áh i

8e
9
αt

α þ 2e
12
α x

α þ e
9tα
2αþ6

αx
α
8þ 2025

α2 tαð Þ2 − 648
α2 t

αxα þ 144
α2 xαð Þ2Â Ã : ð55Þ
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FIGURE 5: Fractional single solitons determined by Equation (42)
with the fractional order α¼ 1=3 at the time t¼ 3;000.
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FIGURE 6: 3D image of velocity, as shown in Equation (43), confined
to the fractional order α2 0;½ 1� and time interval t 2 0:001;½ 1;000�.
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Case 2. When λ1 ¼ − 1þ i; c1 ¼ 2; c2 ¼ 1, and c3 ¼ 1,

u 2½ � ¼ v 2½ � ¼ 6e
9 1−ið Þ
2α tαþ3 1þið Þ

α xα e
9
αt

α
−2þ 18þ9i

α tα − 6
α x

α
À Áþ 2e

6
αx

α
−2 − 18−9i

α tα þ 6
α x

α
À ÁÂ Ã

e
18
α t

α þ 4e
12
α x

α þ e
9
αt

αþ6
αx

α
4þ 810

α2 tαð Þ2 − 432
α2 t

αxα þ 72
α2 xαð Þ2Â Ã : ð56Þ

Case 3. When λ1 ¼ − 1þ i; c1 ¼ 1; c2 ¼ 2, and c3 ¼ 1,

u 2½ � ¼ v 2½ � ¼ 12e
9 1−ið Þ
2α tαþ3 1þið Þ

α xα 5e
9
αt

α
−2þ 18þ9i

α tα − 6
α x

α
À Áþ e

6
αx

α
−2 − 18−9i

α tα þ 6
α x

α
À ÁÂ Ã

25e
18
α t

α þ e
12
α x

α þ 5e
9
αt

αþ6
αx

α
2þ 405

α2 tαð Þ2 − 216
α2 t

αxα þ 36
α2 xαð Þ2Â Ã : ð57Þ

The 3D image of fractional semirational solution, as
shown in Equation (55), is shown in Figures 9–12. As shown
in Figure 9, the interactions between four right propagating
double solitons with different fractional order values α¼ 1;
α¼ 7=9; α¼ 3=5, and α¼ 1=3 generate second-order rogue
waves. We call in this paper such a fractional soliton com-
bined with fractional rogon as fractional solitrogon. As
shown in Figures 10–12, the fractional double solitons and
second-order solitrogons are shown at three different
moments t¼ − 1; t¼ 0, and t¼ 1. This indicates that the
head-on collision that occurred, as shown in Figure 9, is

elastic. Figures 10–12 also show that the fractional double
solitons and second-order solitrogons are asymmetric. With
the assistance of computer simulation, we found through
comparison that the fractional double solitons and second-
order solitrogons when 0<α<1 have a certain degree of tilt
toward the vertical axis, with the tilt caused by the soliton on
the right side, as shown in Figure 10(d), being more signifi-
cant. In the interval t 2 −½ 1; 1�, the wave widths of two-
soliton change, with the solitons near vertical axis becoming
narrower, while the other solitons become wider. The law of
change is that the smaller the value of fractional order α, the
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FIGURE 7: Profiles of velocity, as shown in Equation (43), confined to the fractional order α2 0;½ 1� at the times: (a) t¼ 0:001, (b) t¼ 0:1, (c)
t¼ 1, and (d) t¼ 1;000.
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narrower/wider the wave widths near/far from the vertical
axis, and the greater the tilt of wave crests toward the verti-
cal axis.

Under the dominant effect of fractional order α, the veloci-
ties of double solitons and second-order solitrogons deter-
mined by Equation (55) are also time-varying. For a long

period of time, the velocities have been decreasing, for example,
if the time is limited to t 2 0;½ 1;000�, the smaller the fractional
order α, the more significant the deceleration. Figure 13 shows
that the smaller the fractional order α, and the shorter the end
time of head-on collision interaction. At the beginning of the
end of the interaction, as shown in Figure 14, we can see that
the smaller the fractional order α, the slower the velocity of the
soliton on the left, and the greater the velocity of the soliton on
the right. At approximately t¼ 50, the propagation distances of
the right solitons, as shown in Figure 15, are basically the same,
while at t¼ 70, the propagation distances of the left and right
solitons are all smaller than those of the integer-order soliton.
As shown in Figures 13–16, as time increases, the tilt of the
wave crests gradually weaken. When t¼ 3;000, the double sol-
iton with the fractional α¼ 1=3, as shown in Figure 16, almost
no longer tilt.

4. Conclusion and Discussion

In summary, we would like to conclude that the proposed
fractional TCGH Equation (1) is a fractional Lax integrable
system. Owing to the fractional Lax pair, as shown in Equation
(2), the fractionalN-fold DT, as shown in Equations (21)–(23),

4
3
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5
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5
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t

FIGURE 9: 3D image of fractional second-order solitrogon deter-
mined by Equation (55) with the fractional order α¼ 7=9.
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FIGURE 8: Evolution images of velocity, as shown in Equation (42), with different fractional orders α¼ 1; α¼ 7=9; α¼ 3=5, and α¼ 1=3 at the
time intervals: (a) t 2 0:00001;½ 0:001�, (b) t 2 0:01;½ 0:1�, (c) t 2 0:1;½ 1�, and (d) t 2 1;½ 1;000�.
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FIGURE 10: Fractional double solitons determined by Equation (55) with the different fractional orders: (a) α¼ 1, (b) α¼ 7=9, (c) α¼ 3=5, and
(d) α¼ 1=3 at the time t¼ − 1.
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FIGURE 11: Fractional second-order solitrogons determined by Equation (55) with the different fractional orders: (a) α¼ 1, (b) α¼ 7=9, (c)
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FIGURE 12: Fractional double solitons determined by Equation (55) with the different fractional orders: (a) α¼ 1, (b) α¼ 7=9, (c) α¼ 3=5, and
(d) α¼ 1=3 at the time t¼ 1.

−3 −2 −1 1 2 3

ǀuǀ

x

1

2

3

4

α = 1
α = 7/9

α = 3/5
α = 1/3

ðaÞ

−3 −2 −1 1 2 3

ǀuǀ

x

1

2

3

4

α = 1
α = 7/9

α = 3/5
α = 1/3

ðbÞ
FIGURE 13: Continued.
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was derived. Based on the derived fractional N-fold DT, as
shown in Equations (21)–(23), the first-step fractional GDTs,
as shown in Equations (26)–(28), second-step fractional GDTs,
as shown in Equations (31)–(33), and third-step fractional
GDTs, as shown in Equations (36)–(38), of the fractional
TCGH Equation (1) were constructed, respectively. Then, the
fractional soliton solutions, as shown in Equations (40) and
(41), and semirational solutions, as shown in Equations (46)
and (47), were obtained by using Equations (27), (28), (32), and
(33). This indicates that one advantage of the fractional DT and
GDT presented in this article is that they can be used to handle
fractional integrable systems.

Because the fractional TCGH Equation (1) is a high-
order integrable system, its integrability requires that the
degree of the matrix polynomial M of spectral parameter λ
in the x-part of fractional Lax pair, as shown in Equations (2)
and (3), remains unchanged, that is, U0 and U1 are fixed,
then the matrix N in the t-part of fractional Lax pair, as

shown in Equations (2) and (3), must be a cubic polynomial
of λ with the coefficients V0;V1;V2, and V3. Based on the
fractional Lax pair, as shown in Equations (2) and (3), in this
case, we obtained the fractional N-soliton solutions, as
shown in Equations (22) and (23), for arbitrary integer
N ≥ 1, but did not specifically discuss higher-order soliton
solutions, nor we obtain semirational solutions of third order
or higher. On one hand, it is because this article focused on
studying the feasibility of obtaining semirational solutions
through examples, and on the other hand, it is not only the
complexity of higher-order semirational solutions but also
the similarity of their dynamic properties.

As it is well known, the results obtained by numerical
algorithms are usually approximations of real solutions that
satisfy a certain degree of accuracy. However, it is generally
difficult or even impossible for numerical algorithms to
obtain either exact solutions with complex representations
or high-precision approximate solutions under complex ini-
tial conditions, such as the semirational solutions, as shown
in Equation (46), or fractional N-soliton solutions, as shown
in Equations (22) and (23). This is a significant advantage of
the fractional DT and GDT over numerical methods.

It is shown that compared to integer-order solitons and
solitrogons, the fractional ones obtained in this paper have
significant characteristics. One is that fractional solitons and
solitrogons tilt to a certain extent, gradually decelerate and
widen until their velocities and wave widths stabilize and the
tilt gradually disappears, and the other is the similar asym-
metry [34] of fractional solitons and solitrogons. The decel-
eration propagation of fractional solitons and solitrogons is
consistent with the anomalous diffusion phenomenon that
occurs in the background of fractional dimensions. These are
novel for fractional integrable systems, which indicate the
propagation laws of decelerating solitons and solitrogons in
fractional dimensional media, and also provide useful refer-
ences for the regulatory mechanism dominated by fractional
order to form highly asymmetric rogue waves.
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FIGURE 14: Fractional double solitons determined by Equation (55)
with the different fractional orders α¼ 1; α¼ 7=9; α¼ 3=5, and
α¼ 1=3 at the time t¼ 4.
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FIGURE 13: Fractional double solitons determined by Equation (55) with the different fractional orders α¼ 1; α¼ 7=9; α¼ 3=5, and α¼ 1=3
at the times: (a) t¼ 0:01, (b) t¼ 0:05, (c) t¼ 0:07, and (d) t¼ 0:15.
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