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The mechanical behavior of the fine-grained piezoelectric/substrate structure with multiple interface cracks under the electrome-
chanical impact loading is investigated. Using the Laplace and Fourier integral transforms, the double-coupled singular integral
equations and single-valued conditions of the problems are formulated. Both the singular integral equation and single-valued
conditions are simplified into an algebraic equation through the Chebyshev point placement method and solved by numerical
calculation. Then, the expression of the dynamic energy release rate is given with the help of the dynamic intensity factors of
electric displacement and stress obtained. Finally, numerical results of the dynamic energy release rate with material parameters are
demonstrated. The results show that the dynamic energy release rate depends on the size of the interface cracks, coating thickness,
and the mechanical–electrical loading. Meanwhile, the fine-grained piezoelectric structures exhibit safer structural performance
compared to normal one.

1. Introduction

It is well-known that piezoelectric materials have played an
important role in the manufacturing of intelligent system com-
ponents due to their unique performance, such as sensors,
actuators, and transducers. However, due to manufacturing
processes and piezoelectric composite structures, various
defects and damages often occur at the interface during the
manufacturing process or under load conditions. When these
defects and damages further expand, they could lead to overall
structural failure. Compared to static loads, a deep understand-
ing of the fracture criteria for interface cracks in different pie-
zoelectric materials was crucial for the design during practical
engineering intelligence. In addition, the impact load poses
greater harm to the device due to the concealment of impact
damage. Therefore, it is particularly important to study the
mechanical behavior of interface cracks and defects in piezo-
electric composite materials under impact loads [1–4].

Wang et al. [5] systematically studied the problem of
Yoffe-type moving conductive cracks at the interface of

two piezoelectric materials by using the complex function
method. They provided an explicit expression for the field
components at the interface and discussed the influence of
moving cracks on the singularity of the field near the crack
tip in low, medium, and high-speed states through numerical
calculations. Li and Tang [6] examined the antiplane crack
problem of piezoelectric composite materials. They all use
integral transformation techniques to simplify mixed bound-
ary value problems into dual singular integral equations.
However, Chen and Worswick [4] discussed the effect of
antiplane dynamic loading on crack propagation. In the
end, they concluded that both the dynamic electric field
and crack size will have an impact on the electromechanical
response of dynamic loads. Wang and Yu [7] and Gu et al.
[8] used the linear piezoelectric theory to study the dynamic
response of a central crack perpendicular to the edge of a
piezoelectric strip under antiplane mechanical and electrical
impacts. They simplified the problem into a Cauchy integral
equation using integral transformation and dislocation den-
sity function, and then analyzed the transient response of
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load combinations, crack size on dynamic strength factor,
and energy release rate through numerical examples. Zhong
et al. [9] and Liu and Zhong [10] discussed the dynamic
response of two collinear cracks under in-plane impact loads.
They simplified the mixed initial boundary value problem
using Laplace transform and Fourier transform, and finally
analyzed the influence of permeable and impermeable cracks
on the normalized strength factor under impact load through
numerical examples. Aboudi [11] analyzed the transient
electroelastic field problem caused by local defects in piezo-
electric composite materials with periodic microstructures.
He solved the problem using representative element method
and wave propagation and compared it with the analytical
solution of the transient response of piezoelectric materials
with semi-infinite Type III cracks, verifying the effectiveness
of this solution method. Finally, the impact of electromechani-
cal coupling on dynamic response was analyzed through sev-
eral applications. Shin and Kim [12] analyzed the transient
response problem of type III interface cracks in orthotropic
functional gradient/piezoelectric composite structures. They
used Fourier and Laplace integral transformations to represent
the problem as a second type of Fredholm integral equation,
and through numerical calculations, the relevant factors were
ultimately discovered, which are beneficial for preventing tran-
sient fracture of interface cracks between the piezoelectric layer
and the FGOM layer. Fartash et al. [13] transformed the tran-
sient response problem of a composite piezoelectric layer con-
taining multiple interface cracks under electromechanical
impact loads into a singular integral equation problem using
Fourier and Laplace transforms. They obtained expressions for
the dynamic field intensity factor and dynamic energy release
rate of permeable and impermeable cracks. Through numerical
calculations, it was found that the interface crack geometry,
electromechanical coupling, and electrical boundary conditions
on the crack surface all affect the field intensity factor and
dynamic energy release rate at the crack tip. Wang et al. [14]
conducted experimental research on the fracture behavior of
piezoelectric ceramics under impact load using high-speed
photography technology. They provided the maximum voltage
at the time of material fracture and combined it with finite
element simulation to analyze the distribution characteristics
of stress and electric field near the crack during the fracture
process. Shin et al. [15] derived the transient response of cracks
in the interface layer of functionally graded piezoelectric mate-
rials between two different homogeneous piezoelectric layers
under antiplane shear. They found that the dynamic energy
release rate increases with the increase of the material perfor-
mance gradient of the functionally graded piezoelectric materi-
als (FGPM) layer, while the electric shock load hinders crack
propagation under certain conditions. At the same time,
increasing the thickness of the FGPM layer can improve its
transient fracture resistance. Bagheri [16] investigated the tran-
sient response problem of a piezoelectric half-plane with multi-
ple horizontal cracks under antiplane mechanical and in-plane
electrical shock. They obtained a singular integral equation sys-
temwith Cauchy-type singularity using dislocation density func-
tions and integral transformation techniques, and finally
discussed the effects of geometric parameters and crack

morphology on the dynamic field intensity factor. Ershad et al.
[17] solved the transient response of piezoelectric coatings with
several interface cracks and orthotropic functionally gradient
material bands. In this study, they obtained an analytical solution
for orthogonal anisotropic bands and used Fourier and Laplace
integral transformations to simplify the problem into a Cauchy
singularity integral equation system. Finally, they discussed the
effects of geometric parameters, material properties, viscous
damping, and crack arrangement on the dynamic fracture
behavior of cracks. Milan and Ayatollahi [18] derived the
transient response of a composite functionally graded magneto
electroelastic layer with multiple interface cracks under
magneto-electromechanical impact. They obtained analytical
solutions for dynamic magneto-electroelastic displacement
through Fourier transform and Laplace transform, and finally
analyzed the effects of crack spacing and functionally gradient
materials (FGM) index on dynamic intensity factor and energy
release rate through numerical solution. Yang et al. [19] explored
the transient response of piezoelectric material strips with par-
allel cracks under thermal shock and transient electrical loads.
They simplified the problem into a Cauchy-type singular inte-
gral equation system by applying Laplace transform, Fourier
transform, and dislocation density function. Finally, through
numerical examples, it was found that the electrical load is not
sensitive to the stress intensity factor but has a significant impact
on the potential shift intensity factor.

From the above overview, at present, most of the theoretical
research on defects in piezoelectric materials remains at the
normal grain size, but there is relatively little theoretical
research on interface defects in fine-grained dielectric materials
[20–22]. At the same time, the mechanical, dielectric, and pie-
zoelectric properties of fine-grained piezoelectric materials are
uncertain due to differences in grain size and preparation con-
ditions, and the relationship between them has been mostly
analyzed from an experimental perspective [23, 24]. In this
article, the transient behavior of multiple interface cracks in
fine-grained piezoelectric coatings/substrate structures under
impact loads is investigated. The interface fracture problem is
transformed into a singular integral equation system problem
with Cauchy kernel using Fourier and Laplace integral trans-
formations. The field strength factor and stress distribution
near the crack tip are derived, and an analytical expression
for the dynamic energy release rate is constructed. Finally,
the influence of various material parameters on the dynamic
energy release rate is discussed through numerical calculations
using the Chebyshev point placement method, which are
important for the theory study of the dynamic fracture char-
acteristics of piezoelectric intelligent composite structures.

2. Problem Formulation

Consider that the fine-grain ceramic powder was sprayed
uniformly to the surface of the piezoelectric substrate by
plasma spraying technology to form fine-grain piezoelectric
coatings/substrate structure, as shown in Figure 1. The fine-
grain piezoelectric coating and piezoelectric substrate are
transversely isotropic behavior and are poled along the Z-
axis. The antiplane shear impact and the electric
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displacement impact are imposed on the cracks surfaces. In
Figure 1, the thickness of the coating is h1 and the substrate is
h2, the multiple Griffith interface cracks all within the same
orientation and occupying the intervals, x2 ðaj; bjÞ :; ðj¼ 1; 2;
…; nÞ :, respectively.

We consider only the out-of-plane displacement W and
the in-plane electric fields Φ such that:

U ¼ V ¼ 0;W¼W x; y; tð Þ;Φ¼ Φ x; y; tð Þ: ð1Þ
According to Chen and Worswick [4], the constitutive

equations have the following form:

σxz x; y; tð Þ ¼ c kð Þ
44

∂W
∂x

þ e kð Þ
15

∂Φ
∂x

; ð2Þ

Dx x; y; tð Þ ¼ e kð Þ
15

∂W
∂x

− ε kð Þ
11

∂Φ
∂x

; ð3Þ

σyz x; y; tð Þ ¼ c kð Þ
44

∂W
∂y

þ e kð Þ
15

∂Φ
∂y

; ð4Þ

Dy x; y; tð Þ ¼ e kð Þ
15

∂W
∂y

− ε kð Þ
11

∂Φ
∂y

: ð5Þ

In Equations (2)–(5), the σxzðx; y; tÞ:; σyzðx; y; tÞ: are stress
components, Dxðx; y; tÞ:;Dyðx; y; tÞ: are electric displacement

components. cðkÞ44 ; e
ðkÞ
15 ; e

ðkÞ
15 , and εðkÞ11 are the elastic modulus,

the piezoelectric, and dielectric constants, the superscript k
(k¼ 1; 2) stands for the upper and lower parts of the com-
posite structure, respectively.

The governing equations can be written as follows:

c kð Þ
44 r2Wþ e kð Þ

15 r2Φ¼ ρ kð Þ ∂
2W
∂t2

; ð6Þ

e kð Þ
15 r2W − ε kð Þ

11 r2Φ¼ 0; k¼ 1; 2ð Þ; ð7Þ

where r2 is the double-dimensional laplacian operator, and
ρðkÞ is the mass density of the piezoelectric material.

Assume that the antiplane impact load σ0HðtÞ: and in-
plane electric D0HðtÞ : are loaded on the surface of the Griffith
interface cracks. In addition, the mixed boundary conditions
of the problems can be described as follows:

σyz x; h1; tð Þ ¼ σyz x;−h2; tð Þ ¼ 0; ð8Þ

Dy x; h1; tð Þ ¼ Dy x;−h2; tð Þ ¼ 0; ð9Þ

σyz x; 0þ; tð Þ ¼ σyz x; 0−; tð Þ;   x ∉ aj; bj
À Á

; ð10Þ

Dy x; 0þ; tð Þ ¼ Dy x; 0−; tð Þ;   x ∉ aj; bj
À Á

; ð11Þ

W x; 0þ; tð Þ ¼W x; 0−; tð Þ;   x ∉ aj; bj
À Á

; ð12Þ

Φ x; 0þ; tð Þ ¼ Φ x; 0−; tð Þ;   x ∉ aj; bj
À Á

; ð13Þ

σyz x; 0þ; tð Þ ¼ σyz x; 0−; tð Þ ¼ −σ0H tð Þ;   x 2 aj; bj
À Á

;

ð14Þ

Dy x; 0þ; tð Þ ¼ Dy x; 0−; tð Þ ¼ −D0H tð Þ;   x 2 aj; bj
À Á

;

ð15Þ

where σ0;D0 are the amplitudes and HðtÞ : is the Heaviside
function.

3. Solution to the Problem

The Laplace and Fourier integral transforms of Equations (6)
and (7) are given as follows:

W∗ x; y;ωð Þ ¼ 1
2π

Z þ1

−1
A1k s;ωð Þe αkj jy þ B1k s;ωð Þe− αkj jyÂ Ã

cos sxð Þds;

ð16Þ

Φ∗ x; y;ωð Þ ¼ 1
2π

Z þ1

−1
A1k s;ωð Þe αkj jy þ B1k s;ωð Þe− αkj jyÂ Ã

cos sxð Þds

þ 1
2π

Z þ1

−1
A2k s;ωð Þesy þ B2k s;ωð Þe−sy½ �cos sxð Þds;

ð17Þ

where

αkj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ωp kð ÞÀ Á

2
q

; p kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ kð Þe kð Þ
11

e kð Þ2
15 þ c kð Þ

44 e
kð Þ
11

vuut : ð18Þ

The quantities A1kðs;ωÞ :;B1kðs;ωÞ :;A2kðs;ωÞ :, and B2k
ðs;ωÞ : are the unknown functions ðk¼ 1; 2Þ : and the super-
script ∗ denotes Laplace transform.

From the constitutive Equations (4) and (5), the stress
and the electric displacement are given as follows:

Piezoelectric coating

–D0H(t) Z
O

Y

Interface
–σ0H(t)

aj bj

h1

h2

X

Substrate

FIGURE 1: Mechanical model of multiple Griffith interface cracks
between the fine-grain piezoelectric coating/substrate under impact
loading.
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σ∗yz x; y;ωð Þ ¼ 1
2π

Z þ1

−1
c kð Þ
44 þ e kð Þ

15

� �
A1k s;ωð Þ αkj je αkj jy

− B1k s;ωð Þ αkj je− αkj jyÀ Áh
þ e kð Þ

15 A2k s;ωð Þsesy − B2k s;ωð Þse−syð Þ
i
cos sxð Þds;

ð19Þ

D∗
y x; y;ωð Þ ¼ 1

2π

Z þ1

−1
e kð Þ
15 þ ε kð Þ

11

� �
A1k s;ωð Þ αkj je αkj jy

− B1k s;ωð Þ αkj je− αkj jyÀ Áh
þ ε kð Þ

11 A2k s;ωð Þsesy − B2k s;ωð Þse−syð Þ
i
cos sxð Þds:

ð20Þ

The mixed boundary Conditions (8)–(15) of the pro-
blems in the Laplace transform domain can be expressed
as follows:

σ∗yz x; h1;ωð Þ ¼ σ∗yz x;−h2;ωð Þ ¼ 0; ð21Þ
D∗
y x; h1;ωð Þ ¼ D∗

y x;−h2;ωð Þ ¼ 0; ð22Þ
σ∗yz x; 0þ;ωð Þ ¼ σ∗yz x; 0−;ωð Þ;   x ∉ aj; bj

À Á
; ð23Þ

D∗
y x; 0þ;ωð Þ ¼ D∗

y x; 0−;ωð Þ;   x ∉ aj; bj
À Á

; ð24Þ
W∗ x; 0þ;ωð Þ ¼W∗ x; 0−;ωð Þ;   x ∉ aj; bj

À Á
; ð25Þ

Φ∗ x; 0þ;ωð Þ ¼ Φ∗ x; 0−;ωð Þ;   x ∉ aj; bj
À Á

; ð26Þ

σ∗yz x; 0þ;ωð Þ ¼ σ∗yz x; 0−;ωð Þ ¼ −σ0
ω

;   x 2 aj; bj
À Á

; ð27Þ

D∗
y x; 0þ;ωð Þ ¼ D∗

y x; 0−;ωð Þ ¼ −D0

ω
;   x 2 aj; bj

À Á
: ð28Þ

The problem reduces to the determination of the two
unknown functions. For that we introduce the density func-
tion as follows:

g∗ jð Þ
W x;ωð Þ ¼ ∂

∂x
W∗ jð Þ x; 0þ;ωð Þ −W∗ jð Þ x; 0−;ωð ÞÂ Ã

;

ð29Þ

g∗ jð Þ
Φ x;ωð Þ ¼ ∂

∂x
Φ∗ jð Þ x; 0þ;ωð Þ − Φ∗ jð Þ x; 0−;ωð ÞÂ Ã

; j¼ 1; 2;…; nð Þ:
ð30Þ

From Equations (25) and (26), the dislocation density
function should satisfy the following single-valued condi-
tions:

Z
bj

aj

g∗ jð Þ
W t;ωð Þdt ¼ 0;  g∗ jð Þ

W x;ωð Þ ¼ 0 for x ∉ aj; bj
À Á

j¼ 1; 2;…; nð Þ;

ð31Þ

Z
bj

aj

g∗ jð Þ
Φ t;ωð Þdt ¼ 0;  g∗ jð Þ

Φ x;ωð Þ ¼ 0 for x ∉ aj; bj
À Á

j¼ 1; 2;…; nð Þ:

ð32Þ

From the boundary Conditions (21) and (22), we
obtained the following equations:

A11 s;ωð Þ ¼ B11 s;ωð Þe−2 α1j jh1 ;A21 s;ωð Þ ¼ B21 s;ωð Þe−2 α1j jh1 ;

ð33Þ

B12 s;ωð Þ ¼ A12 s;ωð Þe−2 α2j jh2 ;B22 s;ωð Þ ¼ A22 s;ωð Þe−2 α2j jh2 :

ð34Þ

Putting Equations (16) and (17) into Equations (29) and
(30), and inserting Equations (19) and (20) into the bound-
ary Conditions (21)–(24), (27), and (28), we get the following
equations:

c 1ð Þ
44 þ e 1ð Þ

15

� �
A11 s;ωð Þe α1j jh1 − B11 s;ωð Þe− α1j jh1À Á

þ e 1ð Þ
15 A21 s;ωð Þe α1j jh1 − B21 s;ωð Þe− α1j jh1À Á¼ 0;

ð35Þ

c 2ð Þ
44 þ e 2ð Þ

15

� �
A12 s;ωð Þe− α1j jh2 − B12 s;ωð Þe α1j jh2À Á

þ e 2ð Þ
15 A22 s;ωð Þe− α1j jh2 − B22 s;ωð Þe α1j jh2
À Á¼ 0;

ð36Þ

e 1ð Þ
15 þ ε 1ð Þ

11

� �
A11 s;ωð Þe α1j jh1 − B11 s;ωð Þe− α1j jh1À Á

þ ε 1ð Þ
11 A21 s;ωð Þe α1j jh1 − B21 s;ωð Þe− α1j jh1À Á¼ 0;

ð37Þ

e 2ð Þ
15 þ ε 2ð Þ

11

� �
A12 s;ωð Þe− α2j jh2 − B12 s;ωð Þe α2j jh2À Á

− ε 2ð Þ
11 A22 s;ωð Þe− α2j jh2 − B22 s;ωð Þe α2j jh2
À Á¼ 0;

ð38Þ

c 1ð Þ
44 þ e 1ð Þ

15

� �
A11 s;ωð Þ − B11 s;ωð Þð Þ þ e 1ð Þ

15 A21 s;ωð Þ − B21 s;ωð Þð Þ
¼ c 2ð Þ

44 þ e 2ð Þ
15

� �
A12 s;ωð Þ − B12 s;ωð Þð Þ þ e 2ð Þ

15 A22 s;ωð Þ − B22 s;ωð Þð Þ;
ð39Þ
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e 1ð Þ
15 þ ε 1ð Þ

11

� �
A11 s;ωð Þ − B11 s;ωð Þð Þ − ε 1ð Þ

11 A21 s;ωð Þ − B21 s;ωð Þð Þ
¼ e 2ð Þ

15 þ ε 2ð Þ
11

� �
A12 s;ωð Þ − B12 s;ωð Þð Þ − ε 2ð Þ

11 A22 s;ωð Þ − B22 s;ωð Þð Þ;
ð40Þ

A11 s;ωð Þ þ B11 s;ωð Þ − A12 s;ωð Þ − B12 s;ωð Þ
¼ i

ω

Z
bj

aj

g∗ jð Þ
W t;ωð Þeiωtdt ¼ G1;

ð41Þ

A21 s;ωð Þ þ B21 s;ωð Þ − A22 s;ωð Þ − B22 s;ωð Þ
¼ i

ω

Z
bj

aj

g∗ jð Þ
Φ t;ωð Þeiωtdt ¼ G2:

ð42Þ

From linear Equations (35)–(42), we have the following
equations:

A11 s;ωð Þ ¼ F1G1 þ F2G2

F
;   A12 s;ωð Þ ¼ F3G1 þ F4G2

F
;

ð43Þ

B11 s;ωð Þ ¼ F5G1 þ F6G2

F
;   B12 s;ωð Þ ¼ F7G1 þ F8G2

F
;

ð44Þ

A21 s;ωð Þ ¼ F9G1 þ F10G2

F
;   A22 s;ωð Þ ¼ F11G1 þ F12G2

F
;

ð45Þ

B21 s;ωð Þ ¼ F13G1 þ F14G2

F
;   B22 s;ωð Þ ¼ F15G1 þ F16G2

F
:

ð46Þ

The expressions of F and Fq ðq¼ 1; 2;…; 16Þ : are given in
Appendix A. Where the unknown functions Am1ðs;ωÞ:;
Am2ðs;ωÞ : and Bm1ðs;ωÞ :;Bm2ðs;ωÞ : ðm¼ 1; 2Þ : are depending
on G1 and G2.

The Equations (19) and (20) can be expressed as follows:

σÃyz x; y;ωð Þ ¼ 1
2π

Z þ1

−1

ey

F
c 2ð Þ
44 þ e 2ð Þ

15

� �
α2j je α2j jy F3 − F1e−2 α2j jyÀ Áþ e 2ð Þ

15 se
sy F11 − F15e−2sy
� �� �

G1

�

þ c 2ð Þ
44 þ e 2ð Þ

15

� �
α2j je α2j jy F4 − F8e−2 α2j jyÀ Áþ e 2ð Þ

15 se
sy F12 − F16e−2sy
� �� �

G2

�
cos sxð Þds;

ð47Þ

DÃ
yz x; y;ωð Þ ¼ 1

2π

Z þ1

−1

ey

F
e 2ð Þ
15 þ ε 2ð Þ

11

� �
α2j je α2j jy F3 − F1e−2 α2j jyÀ Áþ ε 2ð Þ

11 se
sy F11 − F15e−2sy
� �� �

G1

�

þ e 2ð Þ
15 þ ε 2ð Þ

11

� �
α2j je α2j jy F4 − F8e−2 α2j jyÀ Áþ ε 2ð Þ

11 se
sy F12 − F16e−2sy
� �� �

G2

�
cos sxð Þds:

ð48Þ

We let yÀ!0−, the integral Equations (47) and (48) will
be as follows:

σÃyz x; 0−;ωð Þ ¼ 1
2π

lim
y→0−

Z þ1

−1

ey

F
c 2ð Þ
44 þ e 2ð Þ

15

� �
α2j j F3 − F1ð Þ þ e 2ð Þ

15 s F11 − F15ð Þ
h i

G1

n
þ c 2ð Þ

44 þ e 2ð Þ
15

� �
α2j j F4 − F8ð Þ þ e 2ð Þ

15 s F12 − F16ð Þ
h i

G2

o
cos sxð Þds¼ −σ0

ω
;

ð49Þ

DÃ
yz x; 0−;ωð Þ ¼ 1

2π
lim
y→0−

Z þ1

−1

ey

F
e 2ð Þ
15 þ ε 2ð Þ

11

� �
α2j j F3 − F1ð Þ þ ε 2ð Þ

11 s F11 − F15ð Þ
h i

G1

n
þ e 2ð Þ

15 þ ε 2ð Þ
11

� �
α2j j F4 − F8ð Þ þ ε 2ð Þ

11 s F12 − F16ð Þ
h i

G2

o
cos sxð Þds¼ D0

ω
:

ð50Þ
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Equations (49) and (50) can be described as follows:

1
2π

Z þ1

−1

ey

F
Q1G1cos sxð Þdsþ

Z þ1

−1
Q2G2cos sxð Þds¼ −σ0

ω
;

ð51Þ
1
2π

Z þ1

−1

ey

F
Q3G1cos sxð Þdsþ 1

2π

Z þ1

−1

ey

F
Q4G1cos sxð Þds¼ D0

ω
;

ð52Þ

where

Q1 s;ωð Þ ¼ c 2ð Þ
44 þ e 2ð Þ

15

� �
α2j j F3 − F7ð Þ þ e 2ð Þ

15 s F11 − F15ð Þ;
ð53Þ

Q2 s;ωð Þ ¼ c 2ð Þ
44 þ e 2ð Þ

15

� �
α2j j F4 − F8ð Þ þ e 2ð Þ

15 s F12 − F16ð Þ;
ð54Þ

Q3 s;ωð Þ ¼ e 2ð Þ
15 þ ε 2ð Þ

11

� �
α2j j F3 − F7ð Þ þ ε 2ð Þ

11 s F11 − F15ð Þ;
ð55Þ

Q4 s;ωð Þ ¼ e 2ð Þ
15 þ ε 2ð Þ

11

� �
α2j j F4 − F8ð Þ þ ε 2ð Þ

11 s F12 − F16ð Þ:
ð56Þ

By replacing the expression of F1 andF2 into Equations (40)
and (41), we obtained the following equations:

1
2π

Z þ1

−1

i αj jQ1e αj jy

αH

Z
bj

aj

g∗ jð Þ
W tð Þeiαtdt

 !
e−iαxdα

þ 1
2π

Z þ1

−1

αj jQ2e αj jy

αH

Z
bj

aj

g∗ jð Þ
Φ tð Þeiαtdt

 !
e−iαxdα¼ −σ0;

ð57Þ

1
2π

Z þ1

−1

i αj jQ3e αj jy

αH

Z
bj

aj

g∗ jð Þ
W tð Þeiαtdt

 !
e−iαxdα

þ 1
2π

Z þ1

−1

αj jQ4e αj jy

αH

Z
bj

aj

g∗ jð Þ
Φ tð Þeiαtdt

 !
e−iαxdα¼ −D0:

ð58Þ

Through Equations (51)–(58), on the surface of the
crack, we obtain the following coupled the first kind Cauchy
singular integral equations:

Z
bj

aj

Q1∗

F∗

1
t − x

þ k1 x; t;ωð Þ
� �

g∗ jð Þ
W t;ωð Þdt

þ
Z

bj

aj

Q2∗

F∗

1
t − x

þ k2 x; t;ωð Þ
� �

g∗ jð Þ
Φ t;ωð Þdt ¼ −

πσ0
ω

;

ð59Þ
Z

bj

aj

Q3∗

F∗

1
t − x

þ k3 x; t;ωð Þ
� �

g∗ jð Þ
W t;ωð Þdt

þ
Z

bj

aj

Q4∗

F∗

1
t − x

þ k4 x; t;ωð Þ
� �

g∗ jð Þ
Φ t;ωð Þdt ¼ −

πD0

ω
:

ð60Þ

The expressions of F∗;Qm∗, and kmðx; t;ωÞ:; ðm¼ 1; 2;

3; 4Þ : are given in Appendix B. In these equations, g∗ðjÞW ðt;ωÞ:

and g∗ðjÞΦ ðt;ωÞ: are unknown functions with the following
single-valued condition:

Z
bj

aj

g∗ jð Þ
W t;ωð Þdt ¼ 0 and 

Z
bj

aj

g∗ jð Þ
Φ t;ωð Þdt ¼ 0;   j¼ 1; 2;…; nð Þ:

ð61Þ

By the principle of superposition and mixed boundary
conditions, Equations (59) and (60) can be formulated as
follows:

∑
n

j¼1

Z
bj

aj

Q1∗

F∗

1
tj − xk

þ k1 xk; tj;ω
À Á !

g∗ jð Þ
W tj;ω
À Á

dtj

 

þ
Z

bj

aj

Q2∗

F∗

1
tj − xk

þ k2 xk; tj;ω
À Á !

g∗ jð Þ
Φ tj;ω
À Á

dtj

!
¼ −

πσ0
ω

;

ð62Þ

∑
n

j¼1

Z
bj

aj

Q3∗

F∗

1
tj − xk

þ k3 xk; tj;ω
À Á !

g∗ jð Þ
W tj;ω
À Á

dtj

þ
Z

bj

aj

Q4∗

F∗

1
tj − xk

þ k4 xk; tj;ω
À Á !

g∗ jð Þ
Φ tj;ω
À Á

dtj ¼ −
πD0

ω

xk 2 ak; bkð Þ; j; k¼ 1; 2;…; nð Þ: ð63Þ
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4. Resolution of Singular Integral Equations

4.1. Normalization of Singular Integral Equations. According
to Gu et al. [8], the singular integral Equations (62) and (63)
are transformed into as follows:

∑
n

j¼1

Z
1

−1

Q1∗

F∗

a0j
a0jsj þ c0j − a0krk − c0k

þ a0jL1 rk; sj;ω
À Á !

f jð Þ
1 sj;ω
À Á

dsj

 

þ
Z

1

−1

Q2∗

F∗

a0j
a0jsj þ c0j − a0krk − c0k

þ a0jL2 rk; sj;ω
À Á !

f jð Þ
2 sj;ω
À Á

dsj

!
¼ −πσ0;

ð64Þ

∑
n

j¼1

Z
1

−1

Q3∗

F∗

a0j
a0jsj þ c0j − a0krk − c0k

þ a0jL3 rk; sj;ω
À Á !

f jð Þ
1 sj
À Á

dsj

 

þ
Z

1

−1

Q4∗

F∗

a0j
a0jsj þ c0j − a0krk − c0k

þ a0jL4 rk; sj;ω
À Á !

f jð Þ
2 sj
À Á

dsj

!
¼ −πD0:

ð65Þ

Based on the numerical method, the dislocation density

functions f ðjÞ1 ðsjÞ : and f ðjÞ2 ðsjÞ :  ðj¼ 1; 2;…; nÞ : in Equations (64)
and (65) are expressed as follows:

f jð Þ
1 sj;ω
À Á¼ g jð Þ

1 sj;ω
À Á

ω
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2j

q πσ0; ð66Þ

f jð Þ
2 sj;ω
À Á¼ g jð Þ

2 sj;ω
À Á

ω
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2j

q πD0; j¼ 1; 2;…; nð Þ; ð67Þ

where rj; sjf
ðjÞ
1 ðx;ωÞ :; f ðjÞ2 ðx;ωÞ :; Liðr; s;ωÞ:; a0j, and c0j ði¼ 1;

2; 3; 4Þ :; ðj¼ 1; 2;…; nÞ : are given in Appendix C. gðjÞ1 ðsj;ωÞ:

and f ðjÞ2 ðsj;ωÞ: are continuous function defined in the interval
[−1, 1].

According to Erdogan et al. [25], the Guss–Chebyshev
collocation method can be used to solve Equations (64) and
(65). Transform Equations (64)–(67) into the system of alge-
braic equations:

1
N

∑
N

R¼0
χR ∑

n

j¼1

Q1∗

F∗

a0j
a0jsjR þ c0j − a0krkq − c0k

þ a0jL1 rkq; sjR;ω
À Á !

g jð Þ
1 sjR;ω
À Á"

þ Q2∗

F∗

a0j
a0jsjR þ c0j − a0krkq − c0k

þ a0jL2 rkq; sjR;ω
À Á !

g jð Þ
2 sjR;ω
À Á#¼ −1;

ð68Þ

1
N

∑
N

R¼0
χR ∑

n

j¼1

Q3∗

F∗

a0j
a0jsjR þ c0j − a0krkq − c0k

þ a0jL3 rkq; sjR;  ω
À Á !

g jð Þ
1 sjR;  ω
À Á"

þ Q4∗

F∗

a0j
a0jsjR þ c0j − a0krkq − c0k

þ a0jL4 rkq; sjR;  ω
À Á !

g jð Þ
2 sjR;  ω
À Á#¼ −1;

ð69Þ
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∑
N

R¼0
χRg

kð Þ
1 skR;ωð Þ ¼ 0; ∑

N

R¼0
χRg

kð Þ
2 skR;ωð Þ ¼ 0; ð70Þ

where

χ0 ¼ χN ¼ 1
2
; χ1¼;…;¼χN−1 ¼ 1; ð71Þ

rkq ¼ cos
2q − 1ð Þπ
2N

;  sjR ¼ cos
Rπ
N

; ð72Þ

k¼ 1; 2;…; n; q¼ 1; 2;…;N; ð73Þ

where N is the node number of quadrature formula, sjR and
rkq are the zero points of the first and second kinds of Cheby-
shev polynomials. Once solving Equations (68)–(70) numer-

ically to get the solutions of gðjÞ1 ðsj;ωÞ : and gðjÞ2 ðsj;ωÞ :, which
can permit to get the stress and electric displacement.

4.2. Fracture Parameters. The intensity factors in Laplace
transform domain are defined by Chen and Worswick [4]:

K
∗aj
σ ¼ lim

x→a−j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π aj − x
À Áq

σ∗yz x; 0;ωð Þ; ð74Þ

K
∗bj
σ ¼ lim

x→bþj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π x − bj
À Áq

σ∗yz x; 0;ωð Þ; ð75Þ

K
∗aj
D ¼ lim

x→a−j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π aj − x
À Áq

D∗
y x; 0;ωð Þ; ð76Þ

K
∗bj
D ¼ lim

x→bþj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π x − bj
À Áq

D∗
y x; 0;ωð Þ;  j¼ 1; 2;…; n:

ð77Þ

From Equations (59) and (60), the singular part of σ∗yzðx;
0;ωÞ: and D∗

yðx; 0;ωÞ: are expressed as follows:

lim
x→a−j

σ∗yz x; 0;ωð Þ ¼ Q1∗

F∗
lim

sj→−1−

Z
1

−1

f 1ð Þ
1 sj;ω
À Á

sj − xj
dsj

þQ2∗

F∗
lim

sj→−1−

Z
1

−1

f 1ð Þ
2 sj;ω
À Á

sj − xj
dsj;

ð78Þ

lim
x→a−j

D∗
y x; 0;ωð Þ ¼ Q3∗

F∗
lim

sj→−1−

Z
1

−1

f 1ð Þ
1 sj;ω
À Á

sj − xj
dsj

þQ4∗

F∗
lim

sj→−1−

Z
1

−1

f 1ð Þ
2 sj;ω
À Á

sj − xj
dsj;

ð79Þ

lim
x→bþj

σ∗yz x; 0;ωð Þ ¼ Q1∗

F∗
lim
sj→1þ

Z
1

−1

f 1ð Þ
1 sj;ω
À Á

sj − xj
dsj

þQ2∗

F∗
lim
sj→1þ

Z
1

−1

f 1ð Þ
2 sj;ω
À Á

sj − xj
dsj;

ð80Þ

lim
x→bþj

D∗
y x; 0;ωð Þ ¼ Q3∗

F∗
lim
sj→1þ

Z
1

−1

f 1ð Þ
1 sj;ω
À Á

sj − xj
dsj

þQ4∗

F∗
lim
sj→1þ

Z
1

−1

f 1ð Þ
2 sj;ω
À Á

sj − xj
dsj:

ð81Þ

Substituting Equations (66) and (67) into
Equations (78)–(81), we obtain the following equations:

lim
x→a−j

σ∗yz x; 0;ωð Þ ¼ σ0Q1∗

F∗
lim

sj→−1−

g jð Þ
1 −1;ωð Þffiffiffiffiffiffiffiffiffiffiffiffi
s2j − 1

q

þ σ0Q2∗

F∗
lim

sj→−1−

g jð Þ
2 −1;ωð Þffiffiffiffiffiffiffiffiffiffiffiffi
s2j − 1

q ;

ð82Þ

lim
x→bþj

σ∗yz x; 0;ωð Þ ¼ σ0Q1∗

F∗
lim
sj→1þ

−g jð Þ
1 1;ωð Þffiffiffiffiffiffiffiffiffiffiffiffi
s2j − 1

q

þ σ0Q2∗

F∗
lim

sj→−1−

−g jð Þ
2 1;ωð Þffiffiffiffiffiffiffiffiffiffiffiffi
s2j − 1

q ;

ð83Þ

lim
x→a−j

D∗
y x; 0;ωð Þ ¼ D0Q3∗

F∗
lim

sj→−1−

g jð Þ
1 −1;ωð Þffiffiffiffiffiffiffiffiffiffiffiffi
s2j − 1

q

þD0Q4∗

F∗
lim

sj→−1−

g jð Þ
2 −1;ωð Þffiffiffiffiffiffiffiffiffiffiffiffi
s2j − 1

q ;

ð84Þ

lim
x→bþj

D∗
y x; 0;ωð Þ ¼ D0Q3∗

F∗
lim
sj→1þ

−g jð Þ
1 1;ωð Þffiffiffiffiffiffiffiffiffiffiffiffi
s2j − 1

q

þD0Q4∗

F∗
lim

sj→−1−

−g jð Þ
2 1;ωð Þffiffiffiffiffiffiffiffiffiffiffiffi
s2j − 1

q :

ð85Þ

Inserting Equations (82)–(85) into Equations (79)–(81),
we get the following equations:

K
∗aj
σ ¼ σ0

ffiffiffiffiffiffiffiffi
πa0j

p Q1∗

F∗
g jð Þ
1 −1;ωð Þ þ Q2∗

F∗
g jð Þ
2 −1;ωð Þ

� �
; ð86Þ

K
∗bj
σ ¼ −σ0

ffiffiffiffiffiffiffiffi
πa0j

p Q1∗

F∗
g jð Þ
1 1;ωð Þ þ Q2∗

F∗
g jð Þ
2 1;ωð Þ

� �
; ð87Þ

K
∗aj
D ¼ D0

ffiffiffiffiffiffiffiffi
πa0j

p Q3∗

F∗
g jð Þ
1 −1;ωð Þ þ Q4∗

F∗
g jð Þ
2 −1;ωð Þ

� �
; ð88Þ

K
∗bj
D ¼ −D0

ffiffiffiffiffiffiffiffi
πa0j

p Q3∗

F∗
g jð Þ
1 1;ωð Þ þ Q4∗

F∗
g jð Þ
2 1;ωð Þ

� �
:

ð89Þ
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From the inverse Laplace transformof Equations (86)–(89),
the intensity factors in the time domain can be obtained as
follows:

K
aj
σ tð Þ ¼ σ0

ffiffiffiffiffiffiffiffi
πa0j

p Q1∗

F∗
M jð Þ

1 tð Þ þ Q2∗

F∗
M jð Þ

2 tð Þ
� �

; ð90Þ

K
bj
σ tð Þ ¼ −σ0

ffiffiffiffiffiffiffiffi
πa0j

p Q1∗

F∗
M jð Þ

3 tð Þ þ Q2∗

F∗
M jð Þ

4 tð Þ
� �

; ð91Þ

K
aj
D tð Þ ¼ D0

ffiffiffiffiffiffiffiffi
πa0j

p Q3∗

F∗
M jð Þ

1 tð Þ þ Q4∗

F∗
M jð Þ

2 tð Þ
� �

; ð92Þ

K
bj
D tð Þ ¼ −D0

ffiffiffiffiffiffiffiffi
πa0j

p Q3∗

F∗
M jð Þ

3 tð Þ þ Q4∗

F∗
M jð Þ

4 tð Þ
� �

; ð93Þ

where

M jð Þ
1 tð Þ¼ 1

2πi

Z
βþi1

β−i1
g jð Þ
1 −1;ωð Þeωtdω;  M jð Þ

2 tð Þ

¼ 1
2πi

Z
βþi1

β−i1
g jð Þ
2 −1;ωð Þeωtdω;

ð94Þ

M jð Þ
3 tð Þ¼ 1

2πi

Z
βþi1

β−i1
g jð Þ
1 1;ωð Þeωtdω;  M jð Þ

4 tð Þ

¼ 1
2πi

Z
βþi1

β−i1
g jð Þ
2 1;ωð Þeωtdω:

ð95Þ

The functions gðjÞ1 ðÆ1;ωÞ: and gðjÞ
2 ðÆ1;ωÞ: can be calcu-

lated from Equations (68)–(70).
From Gu et al. [8], the energy release rate of piezoelectric

material has the following form:

G¼ 1
4
λ1K2

σ þ λ2KσKD þ λ3K2
D½ �; ð96Þ

where

λ1 ¼
Q4∗

F∗Δ
; λ2 ¼

Q3∗ − Q1∗

F∗Δ
; λ3 ¼

−Q1∗

F∗Δ
;Δ¼

Q1∗

F∗

Q2∗

F∗
Q3∗

F∗

Q4∗

F∗

2
664

3
775:
ð97Þ

5. Results and Discussion

In this section, we select PZT-5 piezoelectric ceramics as the
base material and fine-grained PZT-5 piezoelectric ceramics
as the coating material. PZT-5 material parameters are given
as follows:

e 2ð Þ
15 ¼ 12:3 C=m2; ε 2ð Þ

11 ¼ 8:1103 × 10−9 C=Vm; ð98Þ
c 2ð Þ
44 ¼ 2:11 × 1010 N=m2; ρ 2ð Þ ¼ 7:75 × 103 kg=m2: ð99Þ

5.1. The Single Interface Crack. In this part, to analyze the
influence of material parameters on the normalized dynamic
energy release rate, we selected the parameters as follows:

cð1Þ44 =c
ð2Þ
44 ¼ 2:5; h1 ¼ 1 mm; h1=h2 ¼ 1=100; a0 ¼ 5 mm, the

antiplane stress σ0 ¼ 4:2 Mpa, and the D0 ¼ 10−3 c=m2. The
electromechanical coupling factor is defined as ξ¼ D0e15

σ0ε11
.

According to Pak [1], G0 and t0 are given by the follow-
ing expressions:

G0 ¼
πl0
2

ε 2ð Þ
11 σ

2
0

c 1ð Þ
44 ε

2ð Þ
11 þ e 1ð Þ

11

� �
2 ;

t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0ð Þ2 c 2ð Þ

44 ε
2ð Þ
11 þ e 2ð Þ

11

� �
2

� �
ρ 2ð Þε 2ð Þ

11

vuut ;

ð100Þ

K0 ¼ σ
ffiffiffiffiffi
a0

p
: ð101Þ

To check the validity of analysis, the normalized stress
intensity factors versus h1=a is plotted (Figure 2).

The normalized stress intensity factors as a function of
h1=a0 are plotted in Figure 2. Figure 2 displays the normalized
stress intensity factors with h1=a0 for fine-grained piezoelec-
tric coating/substrate with single interface permeable crack
tips. It is observed that the normalized stress intensity factors
at the left and right tips of the same crack remain consistent.
Meanwhile, as h1=a0 increases the normalized stress intensity
factors gradually decrease and eventually tend to a static
value, which is consistent with the literature [6].

Next, we select h1 ¼ 1 mm; h1=h2 ¼ 1=100, and cð1Þ44 =c
ð2Þ
44 ¼

2:5 to change the size of the single interface crack, and Figure 3
is plotted.

Finally, maintaining h1 ¼ 1 mm; h1=h2 ¼ 1=100, and a0 ¼
5 mm, the influence of different elastic modulus ratios on the
normalized dynamic energy release rate was plotted by changing
the ratio of elastic modulus (Figure 4).

K σ
/K

0

0.9
0.2 0.4 0.6 0.8 1 1.2

h1/a0

1.4 1.6 1.8 2 2.2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

FIGURE 2: Variation of Kσ=K0 at the crack tip with h1=a0.
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Figure 3 shows the variation of the normalized dynamic
energy release rate with t=t0 for fine-grained piezoelectric
coating/substrate with single interface permeable crack tips.
It is observed that the dynamic energy release rate at the left
and right tips of the same crack remains consistent. Mean-
while, as t=t0 increases the dynamic energy release rate first
increases to high values and then decreases and finally tends
to static value.

Figure 4 displays the normalized dynamic energy release
rate of a fine-grained piezoelectric coating/substrate versus
normalized time t=t0 for different crack sizes. It can be seen
that the trends of dynamic energy release rates are similar for
different crack sizes, and the time to maintain the peak value

appears between t=t0 ¼ 0:4 ∼ 0:5. However, as the crack size
increases, the corresponding peak also increases.

Figure 5 illustrates the effect of the elastic modulus of the
material on the normalized dynamic energy release rate as it
changes with t=t0. It is observed that when the coating and
substrate are of the same material (i.e., cð1Þ44 =c

ð2Þ
44 ¼ 1), a similar

conclusion was obtained in [13]. Moreover, as the ratio of
material elastic modulus increases, the peak value of normal-
ized dynamic energy release rate also increases accordingly.
It is worth mentioning that when the normalization time
t=t0<0:4, the dynamic energy release rate increases rapidly.

–4
0.2 0.4 0.6

I0/h1 = 10
I0/h1 = 6
I0/h1 = 1

I0/h1 = 0.4
I0/h1 = 0.1

0.8 1 1.2 1.4 1.6
t/t0
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3

4

FIGURE 4: Variation of G=G0 with t=t0 under different cracks size.
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c44/c44 = 5.0(1) (2)

c44/c44 = 3.0(1) (2)

c44/c44 = 2.0(1) (2)

c44/c44 = 1.5(1) (2)

c44/c44 = 1.0(1) (2)
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FIGURE 5: Variation of G=G0 with t=t0 under different elastic
modulus.
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FIGURE 6: Variation of G=G0 with t=t0 under double consistent
interface cracks.
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FIGURE 3: Variation ofG=G0 at the crack tip with normalization time
t=t0.
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When t=t0>0:8, the dynamic energy release rate gradually
tends to astatic value.

5.2. Multiple Interface Cracks. In this section, we choose
cð1Þ44 =c

ð2Þ
44 ¼ 2:5; h1 ¼ 1 mm; h1=h2 ¼ 1=100, and we let the load

conditions and expressions for G0 and t0 be consistent with
the single crack case. The double interface cracks of a0 ¼
5 mm. In the case of inconsistent size of double interface
cracks, select a1= 10, a2= 5mm (Figures 6 and 7). In the three
interface cracks, when the crack size is consistent, select a0 ¼
5 mm, and when the size is inconsistent, a1= 12, a2= 8, a3=
5mm (Figures 8 and 9).

Figures 6 and 7 demonstrate the variation of the normal-
ized dynamic energy release rate with t=t0 for fine-grained
piezoelectric coating/substrate with double interface crack
tips. From the figures, it can be seen that the normalized
dynamic energy release rate at the tip of double interface
crack is similar to that of single interface crack. As normali-
zation time t=t0 increases, it first increases sharply, then
decreases, and finally tends to a static value. However, the
peak value of the dynamic energy release rate corresponding
to the tips of double interface cracks is greater than that
corresponding to a single interface crack. Moreover, when
the sizes of double cracks are not consistent, the crack tips
near the inside of the two cracks also exhibit a higher peak
energy release rate than the external crack tips. The above
analysis indicates that the number and shape of cracks have a
significant impact on the dynamic energy release rate.

Figures 8 and 9 display the variation of the normalized
dynamic energy release rate with t=t0 for fine-grained piezo-
electric coating/substrate with three interface crack tips. It is
obvious from the obtained results that the peak normalized
dynamic energy release rate of the three interface crack tips is
higher than that of one or two interface crack tips. As
expected, the variation of normalized energy release rate
with the normalization t=t0 is consistent with the previous
conclusion. At the same time, when the structure has multi-
ple interface cracks, the peak of normalized dynamic energy
release rate near the internal tip is higher than that near the
external tips.

In addition, an imagination is found in Figures 3−8 that
during the initial stage of impact load and electric field load-
ing, the dynamic energy release rate shows a negative value
which indicates that the electromechanical coupling factor ξ
(where ξ¼ 0:36) at this time delayed the propagation of
cracks. But when the normalization time t=t0>0:25, the
dynamic energy release rate gradually increases to a positive
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FIGURE 7: Variation of G=G0 with t=t0 under double inconsistent
interface cracks.
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FIGURE 8: Variation ofG=G0 with t=t0 under three identical interface
cracks.
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FIGURE 9: Variation of G=G0 with t=t0 under three inconsistent
interface cracks.
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value and shows a trend of first increasing and then decreas-
ing with the increase of normalization time, finally tends to a
steady state. The results indicate that appropriate electrome-
chanical coupling factor can delay or promote crack propa-
gation at different loading stages.

6. Conclusions

In this paper, the transient response of the fine-grained
piezoelectric/substrate structure with multiple interface
cracks under the electromechanical impact loading is inves-
tigated. The effects of material parameters, impact load,
number of cracks, and crack size on the normalized dynamic
energy release rate are displayed through numerical exam-
ples. The study implies that:

(1) When t=t0<0:4, the normalized energy release rate
rapidly increases to its peak. As t=t0 continues to
increase, the normalized energy release rate gradually
decreases and eventually tends to a static value, and
the crack size has a very significant effect on the
normalized energy release rate.

(2) When changing the elastic modulus ratio of the
material, the trend of normalized dynamic energy
release rate with normalization time t=t0 remains
relatively unchanged, but its peak value has signifi-
cant changes. The magnitude of the elastic modulus

also has a significant impact on the dynamic energy
release rate, and the results show that fine-grained
piezoelectric materials have better structural proper-
ties than normal size materials.

(3) When the numbers of cracks are two or three, the
trend of normalized dynamic energy release rate with
normalization time t=t0 is similar to that of a single
crack, but a significant increase in its peak value is
observed. These indicate that the numbers of cracks
have a significant impact on it. At the same time,
when the size of multiple cracks is inconsistent, the
peak value of normalized dynamic energy release rate
also exhibits different phenomena compared to the
case of consistent size.

Appendix

A. Unknown Function Structure Expression

The expressions in Am1ðs;ωÞ :;  Am2ðs;ωÞ :, and Bm1ðs;ωÞ :;
 Bm2ðs;ωÞ:  ðm¼ 1; 2Þ : are as follows:

F ¼ a2a3 − a1a4; ðA:1Þ

F1 ¼
e−2 α1j jh1 a2a3 − a1a4ð Þ þ e−2 α1j jh1 1þ e−2 α1j jh1À Á

1 − e−4 αj jh1À Á
c 1ð Þ
44 þ e 1ð Þ

15

� �
a4 − e 1ð Þ

15 a2
h i

1þ e−2 α1j jh1À Á ; ðA:2Þ

F2 ¼
e−2 α1j jh1 1þ e−2 α1j jh1À Á

1 − e−4 α1j jh1À Á
e 2ð Þ
15 þ ε 2ð Þ

11

� �
a4 − ε 1ð Þ

11 a3
h i

1þ e−2 α1j jh1À Á ; ðA:3Þ

F3 ¼ 1 − e−4 α1j jh1À Á
c 1ð Þ
44 þ e 1ð Þ

15

� �
a3 − e 1ð Þ

15 a2
h i

; ðA:4Þ

F4 ¼ 1 − e−4 α1j jh1À Á
e 2ð Þ
15 þ ε 2ð Þ

11

� �
a4 − ε 1ð Þ

11 a3
h i

; ðA:5Þ

F5 ¼
a2a3 − a1a4 þ 1þ e−2 α1j jh1À Á

1 − e−4 α1j jh1À Á
c 1ð Þ
44 þ e 1ð Þ

15

� �
a4 − e 1ð Þ

15 a2
h i

1þ e−2 α1j jh1À Á ; ðA:6Þ

F6 ¼
1þ e−2 α1j jh1À Á

1 − e−4 α1j jh1À Á
e 2ð Þ
15 þ ε 2ð Þ

11

� �
a4 − ε 1ð Þ

11 a3
h i

1þ e−2 α1j jh1À Á ; ðA:7Þ

F7 ¼ e−2 α2j jh2 1 − e−4 α1j jh1À Á
c 1ð Þ
44 þ e 1ð Þ

15

� �
a3 − e 1ð Þ

15 a2
h i

; ðA:8Þ
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F8 ¼ e−2 α2j jh2 1 − e−4 α1j jh1À Á
e 2ð Þ
15 þ ε 2ð Þ

11

� �
a4 − ε 1ð Þ

11 a3
h i

; ðA:9Þ

F9 ¼
e−2 α1j jh1 a2a3 − a1a4ð Þ þ e−2 α1j jh1 1þ e−2 α1j jh1

À Á
1 − e−4 α1j jh1
À Á

e 1ð Þ
15 þ ε 1ð Þ

11

� �
a1 − c 1ð Þ

44 þ e 1ð Þ
15

� �
a2

h i
1þ e−2 α1j jh1À Á ; ðA:10Þ

F10 ¼
e−2 α1j jh1 1þ e−2 α1j jh1À Á

1 − e−4 α1j jh1À Á
e 1ð Þ
15 þ ε 1ð Þ

11

� �
a1 − e 1ð Þ

15 a2
h i

1þ e−2 α1j jh1À Á ; ðA:11Þ

F11 ¼ 1 − e−4 α1j jh1À Á
e 1ð Þ
15 þ ε 1ð Þ

11

� �
a1 − c 1ð Þ

44 þ e 1ð Þ
15

� �
a2

h i
; ðA:12Þ

F12 ¼ 1 − e−4 α1j jh1À Á
e 1ð Þ
15 þ ε 1ð Þ

11

� �
a1 − e 1ð Þ

15 a2
� �

; ðA:13Þ

F13 ¼
a2a3 − a1a4 þ 1þ e−2 α1j jh1À Á

1 − e−4 α1j jh1À Á
e 1ð Þ
15 þ ε 1ð Þ

11

� �
a1 − c 1ð Þ

44 þ e 1ð Þ
15

� �
a2

h i
1þ e−2 α1j jh1À Á ; ðA:14Þ

F14 ¼
1þ e−2 α1j jh1À Á

1 − e−4 α1j jh1À Á
e 1ð Þ
15 þ ε 1ð Þ

11

� �
a1 − e 1ð Þ

15 a2
h i

1þ e−2 α1j jh1À Á ; ðA:15Þ

F15 ¼ e−2 α2j jh2 1 − e−4 α1j jh1
À Á

e 1ð Þ
15 þ ε 1ð Þ

11

� �
a1 − c 1ð Þ

44 þ e 1ð Þ
15

� �
a2

h i
; ðA:16Þ

F16 ¼ e−2 α2j jh2 1 − e−4 α1j jh1À Á
e 1ð Þ
15 þ ε 1ð Þ

11

� �
a1 − e 1ð Þ

15 a2
h i

; ðA:17Þ

where

a1 ¼ 1 − e−2 α2j jh2À Á
1þ e−2 α1j jh1À Á

c 2ð Þ
44 þ e 2ð Þ

15

� �
− 1 − e−2 α1j jh1À Á

1þ e−2 α2j jh2À Á
c 1ð Þ
44 þ e 1ð Þ

15

� �
; ðA:18Þ

a2 ¼ 1 − e−2 α2j jh2À Á
1þ e−2 α1j jh1À Á

e 2ð Þ
15 − 1 − e−2 α1j jh1À Á

1þ e−2 α2j jh2À Á
e 1ð Þ
15 ; ðA:19Þ

a3 ¼ 1 − e−2 α2j jh2À Á
1þ e−2 αj jh1À Á

ε 2ð Þ
11 þ 1 − e−2 αj jh1À Á

1þ e−2 αj jh2À Á
ε 1ð Þ
11 ; ðA:20Þ

a4 ¼ − 1 − e−2 α2j jh2
À Á

1þ e−2 α1j jh1
À Á

e 2ð Þ
15 þ ε 2ð Þ

11

� �
þ 1 − e−2 αj jh1
À Á

1þ e−2 αj jh2
À Á

e 1ð Þ
15 þ ε 1ð Þ

11

� �
; ðA:21Þ

B. The Structural Expression of First Kind of
Cauchy Singular Integral Equations

The expressions in equations (59) and (60) are as follows:

Q1∗ ¼ c 2ð Þ
44 þ e 2ð Þ

15

� �
c 1ð Þ
44 þ e 1ð Þ

15

� �
ε 2ð Þ
11 − ε 1ð Þ

11

� �
− e 1ð Þ

15 e 2ð Þ
15 − e 1ð Þ

15

� �h i
þ e 2ð Þ

15 e 1ð Þ
15 þ ε 1ð Þ

11

� �
c 2ð Þ
44 − c 1ð Þ

44 þ e 2ð Þ
15 − e 1ð Þ

15

� �
− c 2ð Þ

44 þ e 2ð Þ
15

� �
e 2ð Þ
15 − e 1ð Þ

15

� �� �h i
;

ðB:1Þ
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Q2∗ ¼ c 2ð Þ
44 þ e 2ð Þ

15

� �
e 2ð Þ
15 þ ε 2ð Þ

11

� �
e 2ð Þ
15 − e 1ð Þ

15 þ ε 2ð Þ
11 − ε 1ð Þ

11

� �
− ε 1ð Þ

11 ε 2ð Þ
11 − ε 1ð Þ

11

� �h i
þ e 2ð Þ

15 e 1ð Þ
15 þ ε 1ð Þ

11

� �
c 2ð Þ
44 − c 1ð Þ

44 þ e 2ð Þ
15 − e 1ð Þ

15

� �
− e 1ð Þ

15 e 2ð Þ
15 − e 1ð Þ

15

� �h i
;

ðB:2Þ

Q3∗ ¼ e 2ð Þ
15 þ ε 2ð Þ

11

� �
c 1ð Þ
44 þ e 1ð Þ

15

� �
ε 2ð Þ
11 − ε 1ð Þ

11

� �
− e 1ð Þ

15 e 2ð Þ
15 − e 1ð Þ

15

� �h i
þ ε 2ð Þ

11 e 1ð Þ
15 þ ε 1ð Þ

11

� �
c 2ð Þ
44 − c 1ð Þ

44 þ e 2ð Þ
15 − e 1ð Þ

15

� �
− c 2ð Þ

44 þ e 2ð Þ
15

� �
e 2ð Þ
15 − e 1ð Þ

15

� �� �h i
;

ðB:3Þ

x
Q4∗ ¼ e 2ð Þ

15 þ ε 2ð Þ
11

� �
e 2ð Þ
15 þ ε 2ð Þ

11

� �
e 2ð Þ
15 − e 1ð Þ

15 þ ε 2ð Þ
11 − ε 1ð Þ

11

� �
− ε 1ð Þ

11 ε 2ð Þ
11 − ε 1ð Þ

11

� �h i
þ ε 2ð Þ

11 e 1ð Þ
15 þ ε 1ð Þ

11

� �
c 2ð Þ
44 − c 1ð Þ

44 þ e 2ð Þ
15 − e 1ð Þ

15

� �
− e 1ð Þ

15 e 2ð Þ
15 − e 1ð Þ

15

� �h i
;

ðB:4Þ

F∗ ¼ e 2ð Þ
15 − e 1ð Þ

15

� �
ε 2ð Þ
11 − ε 1ð Þ

11

� �
− c 2ð Þ

44 − c 1ð Þ
44 þ e 2ð Þ

15 − e 1ð Þ
15

� �
e 2ð Þ
15 − e 1ð Þ

15 þ ε 2ð Þ
11 − ε 1ð Þ

11

� �
; ðB:5Þ

k1 x; t;ωð Þ ¼
Z 1

0

Q1 s;ωð Þ
F

−
Q1∗

F∗

� �
sin s t − xð Þð Þds;

ðB:6Þ
k2 x; t;ωð Þ ¼

Z 1

0

Q2 s;ωð Þ
F

−
Q2∗

F∗

� �
sin s t − xð Þð Þds;

ðB:7Þ
k3 x; t;ωð Þ ¼

Z 1

0

Q3 s;ωð Þ
F

−
Q3∗

F∗

� �
sin s t − xð Þð Þds;

ðB:8Þ
k4 x; t;ωð Þ ¼

Z 1

0

Q4 s;ωð Þ
F

−
Q4∗

F∗

� �
sin s t − xð Þð Þds:

ðB:9Þ

C. Elements in Dislocation Density Function

The expressions in equations (66) and (67) are as follows:

rj ¼
xj − c0j
a0j

;  sj ¼
tj − c0j
a0j

; ðC:1Þ

g∗ jð Þ
W x;ωð Þ ¼ f jð Þ

1 x;ωð Þ;  g∗ jð Þ
Φ x;ωð Þ ¼ f jð Þ

2 x;ωð Þ; ðC:2Þ

ki x; t;ωð Þ ¼ Li r; s;ωð Þ  i¼ 1; 2; 3; 4ð Þ; ðC:3Þ

a0j ¼
bj − aj

2
;  c0j ¼

bj þ aj
2

;   j¼ 1; 2;…; nð Þ: ðC:4Þ
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