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The multilinear variable separation (MLVS) approach has been proven to be very useful in solving (2+ 1)-dimensional integrable
systems. Taking the (3+ 1)-dimensional Burgers hierarchy as an example, we extend the MLVS approach to a whole family of
(3+ 1)-dimensional Burgers hierarchy. New exact solutions and universal formulas are obtained, which lead to abundant
(3+ 1)-dimensional coherent structures. In particular, two ring-type soliton molecules and their interactions are shown in detail.
We also generalize the MLVS results of the (3+ 1)-dimensional Jimbo–Miwa (JM) equation and modified JM equation.

1. Introduction

Recently, soliton theory has been widely applied in almost all
branches of physics, like condensed matter physics, quantum
field theory, fluid dynamics, and nonlinear optics. One of the
most important research fields in soliton theory is to construct
exact solutions of nonlinear evolution equations (NLEEs), which
can be used to simulate natural phenomena. It is well known that
the Fourier transform and the variable separation approach are
the two most effective ways to find exact solutions for linear
equations. The inverse scattering transformation serves as a non-
linear Fourier transform for integrable NLEEs. However, it is
very difficult to extend the variable separation approach to non-
linear cases effectively. Fortunately, the multilinear variable sep-
aration (MLVS) approach has been proposed and proved to be a
powerful method for finding exact solutions of many (2+ 1)-
dimensional NLEEs [1–12] like the Davey–Stewartson equation,
the Nizhnik–Novikov–Veselov equation, the Broer–Kaup–Ku-
pershmidt equation and the long wave-short wave interaction
equation. We call all these NLEEs the MLVS solvable models.
We also can see that a (2+ 1)-dimensional universal formula is
valid for suitable fields or potentials of MLVS solvable NLEEs,

where at least one low-dimensional arbitrary function can be
included. Thus, a large class of (2+ 1)-dimensional coherent
structures, such as dromions, lumps, ring-solitons, breathers,
instantons, and compactons, have been obtained. These studies
are restricted to single-valued situations. For more complicated
cases, multivalued functions also have been used to construct
folded solitary waves and foldons. In [2, 3], it is also pointed out
that the interactions among ring-solitons and some types of
compactons are completely elastic, and the interactions among
peakons or among some other types of compactons are not
completely elastic because their shapes are changed during the
interactions.

However, the MLVS approach has rarely been successfully
generalized to higher dimensional NLEEs and hierarchies. As
far as we know, there are only the (3+1)-dimensional Burgers
equation [4, 5] and Jimbo–Miwa (JM) equation [8] that have been
successfully solved by using this approach. Thus, our goal is pri-
marily to apply the MLVS approach to a whole family of (3+1)-
dimensional NLEEs, namely, the following (3+1)-dimensional
Burgers hierarchy,
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ut þ ∑
N

j¼0
βj

∂
∂y

∂
∂y

þ u

� �
j
uþ γ1 2vux þ uxxð Þ þ γ2 2wuz þ uzzð Þ ¼ 0;

vy ¼ ux;

wy ¼ uz;

8>>><>>>: ð1Þ

where N is a positive integer and βj; γ1; γ2 are real constant
parameters. This is a direct generalization of the (2+ 1)-
dimensional Burgers hierarchy [12]. For N ¼ 1, γ2 ¼ 0, and
u ≡ uðx; y; tÞ :, Equation (1) corresponds to the (2+ 1)-
dimensional Burgers equation and authors have obtained
many new types of soliton structures of periodic waves
[13]. For γ1 ¼ γ2 ¼ 0 and u ≡ uðy; tÞ :, Equation (1) degener-
ates to the (1+ 1)-dimensional Burgers hierarchy [14], which
corresponds to the Burgers equation or the Sharma–Tas-
so–Olver equation when the positive integer N ¼ 1 or N ¼ 2.

The organization of this letter is as follows: Section 2 is
devoted to describing the process of getting MLVS solutions
of Equation (1) via the MLVS approach. New coherent struc-
tures, such as the two ring-type soliton molecules for the
universal formula, are obtained in Section 3. A brief sum-
mary and discussions are given in Section 4.

2. MLVS Solutions of the Burgers Hierarchy

Similar to the usual steps in solving (2+ 1)-dimensional
NLEEs via the MLVS approach [1–12], we construct the
following auto-Bäcklund transformation first,

u¼ ln fð Þy þ u0;

v ¼ ln fð Þx þ v0;

w¼ ln fð Þz þ w0;

8><>: ð2Þ

through the truncated Laurent expansions. Here, fu0 ≡ u0ðx;
y; z; tÞ; v0 ≡ v0ðx; y; z; tÞ;w0 ≡ w0ðx; y; z; tÞg: is a suitable
seed solution of Equation (1) and the unknown function f ≡
f ðx; y; z; tÞ: needs to be determined.

It is obvious that a simple seed solution of Equation (1)
can be selected as fu0 ¼ 0; v0 ¼ v0ðx; z; tÞ;w0 ¼w0ðx; z; tÞg :.
The substitution of Equation (2) with this seed solution into
Equation (1) transforms Equation (1) into the following:

fyt f − fyft
f 2

þ ∑
N

j¼0
βj
f jþ2ð Þyf − f jþ1ð Þyfy

f 2
þ γ1 2

fx
f
þ v0

� �
ffxy − fx fy

f 2

� ��
þ ffxxy − 2fx fxy − fxxfy

f 2
þ 2

f 2x fy
f 3

�
þ γ2 2

fz
f
þ w0

� �
ffzy − fzfy

f 2

� ��
þ ffzzy − 2fz fzy − fzz fy

f 2
þ 2

f 2z fy
f 3

�
¼ 0:

ð3Þ

To solve this equation, we change it to the form as fol-
lows:

f ∂y − fy
À Á

ft þ 2γ1v0 fx þ γ1 fxx þ 2γ2w0 fz þ γ2 fzz þ ∑
N

j¼0
βj f jþ1ð Þy

 !
¼ 0:

ð4Þ

Thus, we have the following:

ft þ 2γ1v0 fx þ γ1 fxx þ 2γ2w0 fz þ γ2fzz þ ∑
N

j¼0
βj f jþ1ð Þy

¼ A x; z; tð Þf :
ð5Þ

Next, the second step in the MLVS approach is to make an
appropriate assumption for the expansion function f ðx; y; z; tÞ:.
Essentially, the arbitrary functions in the MLVS solutions

originate from the seed solution with respect to the same vari-
ables. Since the seed solution fu0 ¼ 0; v0 ¼ v0ðx; z; tÞ;w0 ¼
w0ðx; z; tÞg: andA ≡ Aðx; z; tÞ: include three arbitrary functions
of fx; z; tg :, the unknown function f ðx; y; z; tÞ: is taken as the
following MLVS ansatz:

f ≡ ∑
3

i¼1
FiGi ¼ ∑

3

i¼1
Fi x; z; tð ÞGi y; tð Þ: ð6Þ

Substituting this expansion, Equation (6) into Equation (5)
arrives at the following:

∑
3

i¼1
Gi 2γ1v0Fix þ 2γ2w0Fiz − AFi þ Fit þ γ1Fixx þ γ2Fizzð Þ

 þ ∑
3

i¼1
Fi Git þ ∑

N

j¼1
βj Gið Þ jþ1ð Þy

 !
¼ 0:

ð7Þ
Obviously, Equation (7) can be divided into variable-

separated equations, which are in the form of the following:
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2γ1v0Fix þ 2γ2w0Fiz − AF1 þ Fit þ γ1Fixx þ γ2Fizz ¼ ∑
3

k¼1
cikFk;

Git þ ∑
N

j¼1
βj Gið Þ jþ1ð Þy ¼ − ∑

3

k¼1
ckiGk;  i¼ 1; 2; 3;

ð8Þ

where cik ≡ cikðtÞ :; ði; k¼ 1; 2; 3Þ: are arbitrary functions. In
order to construct the explicit expression of the MLVS solu-
tion, we have the following:

2γ1F1xv0 þ 2γ2F1zw0 − F1Aþ F1t þ γ1F1xx þ γ2F1zz ¼ 0;

ð9Þ

2γ1F2xv0 þ 2γ2F2zw0 − F2Aþ F2t þ γ1F2xx þ γ2F2zz ¼ 0;

ð10Þ

2γ1F3xv0 þ 2γ2F3zw0 − F3Aþ F3t þ γ1F3xx þ γ2F3zz ¼ 0;

ð11Þ

G1t þ ∑
N

j¼1
βj G1ð Þ jþ1ð Þy ¼ 0; ð12Þ

G2t þ ∑
N

j¼1
βj G2ð Þ jþ1ð Þy ¼ 0; ð13Þ

G3t þ ∑
N

j¼1
βj G3ð Þ jþ1ð Þy ¼ 0; ð14Þ

by taking cik ¼ 0; ði; k¼ 1; 2; 3Þ : without losing generality.
Because v0;w0;A are arbitrary functions, we may treat

this problem alternatively. We now consider Fi; ði¼ 1; 2; 3Þ:

are arbitrary functions while v0;w0;A can be determined by
Equations (9)–(11). Namely, by using Cramer’s rule in linear
algebra, we can solve out v0;w0 and A as follows:

v0 ¼ −

F1t þ γ1F1xx þ γ2F1zz F1z F1
F2t þ γ1F2xx þ γ2F2zz F2z F2
F3t þ γ1F3xx þ γ2F3zz F3z F3

�����
�����

2γ1
F1x F1z F1
F2x F2z F2
F3x F3z F3

�����
�����

; ð15Þ

w0 ¼ −

F1x F1t þ γ1F1xx þ γ2F1zz F1
F2x F2t þ γ1F2xx þ γ2F2zz F2
F3x F3t þ γ1F3xx þ γ2F3zz F3

�����
�����

2γ2
F1x F1z F1
F2x F2z F2
F3x F3z F3

�����
�����

; ð16Þ

A¼

F1x F1z F1t þ γ1F1xx þ γ2F1zz
F2x F2z F2t þ γ1F2xx þ γ2F2zz
F3x F3z F3t þ γ1F3xx þ γ2F3zz

�����
�����

F1x F1z F1
F2x F2z F2
F3x F3z F3

�����
�����

; ð17Þ

from Equations (9)– (11). In addition, for linear
Equations (12)–(14), we have exact solutions of Gi; ði¼ 1;
2; 3Þ : such as

Gi ¼ 1þ ∑
M

k¼1
exp biky − ∑

N

j¼0
βjb

jþ1
ik

 !
t þ dik

" #
;  i¼ 1; 2; 3:

ð18Þ

Thus, exact MLVS solutions of the (3+ 1)-dimensional
Burgers hierarchy (Equation (1)) are obtained.

Remark 1. The (3+ 1)-dimensional JM equation [8, 15] in its
potential form, which can be expressed as follows:

uyt þ αuxxxy þ αβ uxuy
À Á

x þ γuxz ¼ 0: ð19Þ

By means of the following Bäcklund transformation:

u¼ 6
β

lnfð Þx þ u1 x; tð Þ þ u2 z; tð Þ; ð20Þ

and the MLVS ansatz

f ¼ F x; tð Þ þ G ξ; tð Þ;  ξ¼ y þ c0z; ð21Þ

we have the following:

−2þ F þ G
Fx

∂x
� �

Ft þ αFxxx þ αβFxu1x þ γc0Fxð Þ

þ −2þ F þ G
Gξ

∂ξ
� �

Gtð Þ ¼ 0:

ð22Þ

Thus, this equation can be separated into the following:

Ft þ αFxxx þ αβFxu1x þ γc0Fx ¼ c1 þ c2F þ c3F2;

ð23Þ

Gt ¼ −c1 þ c2G − c3G2; ð24Þ

where c1 ≡ c1ðtÞ :; c2 ≡ c2ðtÞ :; c3 ≡ c3ðtÞ : are arbitrary functions.
Because u1 is an arbitrary function, we may treat Equation (23)
alternatively. Now, we consider F to be an arbitrary function
while u1 can be determined by Equation (23), that is

Advances in Mathematical Physics 3



u1 ¼
Z

c1 þ c2F þ c3F2
− Ft − αFxxx − γc0Fx
αβFx

dx: ð25Þ

Considering the arbitrariness of the functions c1; c2, and
c3, it is quite straightforward to verify that the Riccati
Equation (24) has an exact solution as follows:

G¼ d1 tð Þ
d2 tð Þ þ d3 ξð Þ þ d4 tð Þ; ð26Þ

here, we rewrite c1; c2, and c3 as follows

c1 ¼
d4d01 þ d24d

0
2 − d1d04

d1
;  c2 ¼

d01 þ 2d4d02
d1

;  c3 ¼
d02
d1

:

ð27Þ

Thus, theMLVS solution, Equation (20)withEquations (21),
(25), and (26) of Equation (19) is obtained.

Remark 2. The (3+ 1)-dimensional modified JM (mJM)
equation in its potential form, which can be expressed as
follows:

uyt þ αuxxxy þ α −
3
2

uxyuxxy
uy

þ 3
4

u3xy
u2y

 !
þ 1
2
αβ uxuy
À Á

x

þ γuxz ¼ 0:

ð28Þ

By using the Bäcklund transformation, Equation (20),
and the MLVS ansatz, Equation (21), we have the following:

−2þ F þ G
Fx

∂x
� �

Ft þ αFxxx −
3
4
α
F2
xx

Fx
þ 1
2
αβFxu1x þ γc0Fx

� �
þ −2þ F þ G

Gξ
∂ξ

� �
Gtð Þ ¼ 0:

ð29Þ
So we have similar results.

3. Two Ring-Type Soliton Molecules

For (2+ 1)-dimensional MLVS solvable NLEEs, by setting
the following MLVS ansatz:

f ≡ a0 þ a1F þ a2Gþ a3FG
 ¼ a0 þ a1F x; tð Þ þ a2G y; tð Þ þ a3F x; tð ÞG y; tð Þ;

ð30Þ
a quite universal formula,

U1 ¼ λ lnfð Þxy ¼
λ a0a3 − a1a2ð ÞFxGy

a0 þ a1F þ a2Gþ a3FGð Þ2 ; ð31Þ

is derived to describe some special solutions for suitable
physical quantities. In this formula, parameters a0, a1, a2,
and a3 are arbitrary constants, and F ≡ Fðx; tÞ: is an arbitrary
function, and G ≡ Gðy; tÞ : may be an arbitrary function or an
arbitrary solution of a special equation such as Riccati-type
equation. Setting bF ¼ a0þa1F

a2þa3F
, we have ðln½bF þ G�Þxy ¼ðln½a0þ

a1F þ a2Gþ a3FG�Þxy. Thus, f ¼ FþG can be viewed as a
basic MLVS ansatz based on the corresponding Bäcklund trans-
formation. For the (3+1)-dimensional JM Equation (19) and
mJM Equation (28), we have extended the universal formula
(Equation (31)) to the following:

U2 ¼ λ lnfð Þxy ¼
−λFxGy

F þ Gð Þ2 ; ð32Þ

where F ≡ Fðx; tÞ : is an arbitrary function and G ≡ Gðyþ
c0z; tÞ: is Equation (26). Further, for the (3+ 1)-dimensional
Burger hierarchy (Equation (1)), we have two more general-
ized formulas as follows:

U3 ¼ λ ln ∑
3

i¼1
FiGi

� �� �
xy
; ð33Þ

U4 ¼ λ ln ∑
3

i¼1
FiGi

� �� �
zy
: ð34Þ

Because some arbitrary lower-dimensional functions
have been included in Equations (32)–(34), we believe that
abundant (3+ 1)-dimensional coherent structures can be
constructed directly.

For (3+ 1)-dimensional case, it should be pointed out that
we just can draw projective figures along some particular
directions. So here we still give some (2+ 1)-dimensional
coherent structures and their interactions. Of course, this
also applies to the (3+ 1)-dimensional case, such as in
Equation (32), because ξ¼ yþ c0z. We will not discuss all the
possible coherent structures but only list a new particular
example, the ring-type solitonmolecule. There are some types
of elliptic, parabolic, and hyperbolic coherent structures,
which are not equal to zero identically at some quadratic
curves and decays exponentially apart from the curves [2].
By restricting the functions F ≡ Fðx; tÞ :;G ≡ Gðy; tÞ:, as some
summation forms of the exponential functions as follows:

F ¼ exp −
x − 4tð Þ2
15

þ 12

� �
þ exp −

x þ 4tð Þ2
15

þ 6

� �
;

G¼ exp
y2

20
− 3

� �
;

ð35Þ

and λ¼ 30, we can obtain a structure of two ring-type soli-
tons for Equation (32) (see Figure 1). The interaction of two
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ring-type solitons has been studied in [2]. If functions are
changed to the following:

F ¼ exp −
x − 4tð Þ2
15

þ 12

� �
þ exp −

x þ 4tð Þ2
15

þ 6

� �
;

G¼ exp
y2

20
þ 6

� �
;

ð36Þ

the ring-type soliton on the right degenerates into a lump-
type structure (see Figure 2). This is different from the com-
monly defined lump structure, which is formed by rational
functions.

Next, we investigate a new coherent structure, the ring-
type soliton molecule, and its interaction. It is well-known
that a soliton molecule is a bound state of solitons. The
research on soliton molecules has attracted considerable
attention and has focused on experimental and numerical
fields. Recently, many novel forms of soliton molecules
have been found in (1+ 1)-dimensional and (2+ 1)-dimen-
sional integrable systems, such as the kink-type soliton mole-
cules, dromion molecules, and breather molecules. Here, by
means of the following:

F ¼ exp −
x − 4tð Þ2
15

þ 12

� �
þ exp −

x þ 4tð Þ2
15

þ 6

� �
;

G¼ exp
y2

20
− 3

� �
þ exp

−y2

20
þ 3

� �
;

ð37Þ

and λ¼ 30, we can obtain four ring-type solitons. Because of
the special construction of the function G in Equation (37),
which is independent of the time variable t, we have actually
obtained a structure of two ring-type soliton molecules for
Equation (32) (see Figure 3). In density Figures 4–8, we plot the
interaction property of the two ring-type soliton molecules for
Equation (32) with the selection at the times t¼ − 7; − 3; 0; 3;
7, respectively.We can see that after the head-on collision of two
ring-type soliton molecules, they preserve their shapes totally. In
other words, the collision between the two ring-type soliton
molecules is completely elastic.

4. Summary and Discussions

Exact solutions of NLEEs play a key role in understanding
possible behaviors of natural phenomena [16–18]. There are
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(Equation (32)) with Equation (35), t¼ − 7.
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many powerful methods for constructing exact solutions of
NLEEs, such as the inverse scattering transform method, the
Darboux transformation, Hirota’s bilinear method, the Lie
group method, and so on. The MLSA approach is one of the
most efficient methods because the constructed exact solu-
tion contains low-dimensional arbitrary functions, which

allows us to construct abundant coherent structures. Since
the MLVS approach has been widely applied to the (2+ 1)-
dimensional NLEEs [1–12], how can it work for (3+ 1)-
dimensional NLEEs or hierarchies? The (3+ 1)-dimensional
Burgers equation and JM equation [8, 15] are the only two
NLEEs that have been solved out their MLVS solutions via
this approach. In this letter, we have considered the (3+ 1)-
dimensional Burgers hierarchy (Equation (1)) by using the
MLVS approach. Namely, starting from the auto-Bäcklund
transformation (Equation (2)) and taking MLVS ansatz
(Equation (5)), we can obtain much more general exact solu-
tions of Equation (1). In Remarks 1 and 2, we improve the
results of the (3+ 1)-dimensional JM equation and construct
MLVS solutions of the (3+ 1)-dimensional mJM equation,
respectively. We also have investigated a new coherent struc-
ture, the ring-type soliton molecule, and its interaction.

It is worth considering to construct other forms of vari-
able separation solutions based on the Darboux transforma-
tion. We hope that the MLVS approach can be used to solve
other high-dimensional equations or hierarchies [19–21].
How to construct (3+ 1)-dimensional coherent structures
and study the properties of elastic or inelastic collisions is
worthy of further study.
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