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The extended conformable k-hypergeometric function finds various applications in physics due to its ability to describe complex
mathematical relationships arising in different physical scenarios. Here are a few instances of its uses in physics, including nuclear
physics, fluid dynamics, quantum mechanics, and astronomy. The main objectives of this paper are to introduce the extended
conformable k-hypergeometric and confluent hypergeometric functions by utilizing the new definition of the (a, k)-beta function
and studying its important properties, like integral representation, summation formula, derivative formula, transform formula, and
generating function. Also, introduce the extension of the Riemann-Liouville fractional derivative and establish some results related
to the newly defined fractional operator, such as the Mellin transform and relations to extended (a, k)-hypergeometric functions.

1. Introduction

In the 20th century, there have been various waves of interest
in special functions. A large number of special functions are
defined in applied mathematics using improper integrals
or infinite series. Special functions are essential tools for
addressing particular problems in a wide range of domains,
including scientific research, computational physics, chemis-
try, and statistical applications in technology [1-4]. Special
functions are of great importance due to their extensive use
in both pure and applied mathematics. One of the most
significant special functions is the hypergeometric function
[5, 6], which has many uses in the fields of evaluation of data,
statistical theory, radio frequency field theory, quantum
physics, and algebraic number theory [7-9]. The hypergeo-
metric series is introduced by John Wallis in his book Arithme-
tica Infinitorum. Leonhard Euler studied the hypergeometric
series, and Carl Friedrich Gauss (1813) presented the first com-
plete standard method. The hypergeometric function is defined
as follows:

Flpy, g3 pizs w) = %Mﬂ (1)

p=o (3), (P

where w € C and % (u,), % (1), R(u3)>0.

In order to extend the factorial to noninteger values, the
Swiss mathematician Leonhard Euler (1707-1783) intro-
duced the gamma function [10]. The definite integral defines
the Gamma function as follows:

ru) = [ @yds. @)

where I' is the Gamma function and %#(u;)>0. The beta
function [11] is a major and versatile special function that
has many uses in a wide range of scientific and engineering
fields. The beta function is used to express a variety of basic
functions and unique polynomials. Legendre and Euler were
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the first mathematicians to discover the concept of the beta
function by the name of Jacques Binet, using the symbol of
the capital Latin word B or the capital Greek word f. B(u,,
H3) is a common form of beta function. Also, it has a sym-
metrical form such as B(u,, 13) =B(us, p15). To obtain the
beta function integral representation as follows:

B(pa. pi3) /19”2‘1

where R(u,), Z(u3)>0. The given beta function can be
written in the form of a gamma function as follows:

9)m=149, (3)

Lyl ps (4)

B(/’l27/’l3) :Fﬂz +/"3 .

These functions often arise as solutions to differential
equations or integral equations that cannot be expressed using
elementary functions alone [2]. Special functions are defined by
explicit formulas, power series expansions, and integral repre-
sentations that allow for their computation and analysis. Many
researchers recently examined the extensions of the beta
function and hypergeometric functions [12, 13]. By utilizing
the extended beta function, Chaudhary et al. [14] introduced
extended hypergeometric and confluent hypergeometric func-

tions By (42, p3).-

) (w)
!

)= s By(py +p.ps — py

F(uy, pos pzs w
neee p=0 By, pi3 = )

()
where b>0, |w|<1, and R(u,), R(u,), R(u3)>0.

- ) (W)P

% By(uy + p. 3
B TR

Dy, p3s w) =
(2 ’ ) pgo B(llz’lls

where b>0, |w|<1, and & (u3)>R(u,)>0.

Extended beta function introduced by Shadab et al. [15].
The definition of the extended beta function is defined as
follows:

Bha H2s /43 /
0

_ _ -b
Mz 1 1 _ #3 IE((I) <—(19<1 — 19))>d19,
(7)
where b, a>0 and F(u3)>R(u)>0.

E(4) (w) is the Mittag—Leffler function [16] which is defined
as follows:
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x P
Eq(w) = pgom’ (8)

where a, w € C. Recently, a novel concept known as conform-
able fractional calculus derivatives and integrals of fractional
order, depending upon the fundamental limit explanation for
derivatives [17]. The main point of the conformable fractional
calculus principle is how to calculate the derivative and inte-
gral for either rational numbers or real numbers in fractional
order. The conformable fractional calculus can be used to
simulate complicated events in a variety of scientific and engi-
neering fields.

The objectives of the manuscript are as follows: In Section 2,
we list some basic definitions and terminologies that are needed
in the paper. In Section 3, we introduce the extended conform-
able k-beta function and discuss its properties. In Section 4, we
introduce the extended conformable k-Gauss and confluent
hypergeometric functions and obtain integral and differenti-
ation formulas. In addition, transformation, summation for-
mulas, and generating functions are established. Extensions of
the Riemann-Liouville fractional derivatives are presented in
Section 5. Lastly, we highlight our observations and outlook in
Section 6.

2. Preliminaries and Basic Concepts

In this section, we discuss some basic definitions and termi-
nologies which are used further in this research.

Definition 1. Given a function f : [0, 00) — Z. Then the “con-
formable fractional derivative” of f of order « is defined by
Khalil et al. [18] as follows:

Da(f)( ) o llmf(’u + €(/")1_a) _f(/’t) i (9)

e—0 £

where y>0, a€(0,1).

Definition 2. Let a € (0, 1), the conformable fractional inte-
gral [18] of the continuous f : p, ¢ C [0, 00) — R of order a as
follows:

L(F) () = L3(u'f) = /p e pydp. (10)

where the integral is the usual Riemann improper integral.

Definition 3. Daiz introduced the k-gamma function and k-
beta function [19]. Many scholars were inspired by this work
and investigated the properties of the k-beta function and k-
hypergeometric function [20-22].

Let k>0, then the definition of the k-Gamma function is
defined as follows [23]:
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Ik (pk)*!
Ti(uy) = lim 22290
k(ﬂl) pl»ngc (ﬂl)[;,k

, (11)

where y; € C, k€R* and is (u;),, Pochhammer k-symbol,
the Pochhammer k-symbol defined as follows:

)+ Ry + 2K). (i + (p = 1R); i pEN

(ﬂl)p,k* 1: B .
; p=0

(12)

The relationship between Pochhammer k-symbol and
k-gamma function as follows:

T (py + pk)
), = TP 13
( l)p.k Fk(ﬂl) ( )
where p; € C, k€RY, pe N, and the integral form of I is
expressed below:

o) = / 9165 dg. (14)
0

Note that I'y(p;) = I'(u;) for k — 1 where I'(u;) is the
classical gamma function (2).

Definition 4. Let k>0, then the k-beta matrix function is
defined as follows:

1

]. Uy H3
Bl ) = 1 / §71(1 - 9)149. (15)
0

The relationship between the k-beta function and k-gamma
function is as follows:

Bi(pz. pt3) = Do) (s ) T (s + pis). (16)

Also, the relationship between By (u,, p3) and B(p,, u3) is
as follows:

L s ps
By (s, :fB(—,—). 17
i (M2, 13) o\k Tk (17)
Note that By (p, pt3) — B(u,, p3) for k — 1 where B(u,, y3)

is the classical beta function (3).

Definition 5. Mehmet Zeki Sar1 kaya introduced the conform-
able k-gamma function [24]. It is denoted by the I"¢(z). Con-
formable k-gamma functions are useful in the solution of
specific integrals and differential equations with power func-
tions and exponential terms.

Let € (0,1) —» %, for 0<p<oo, conformable gamma
function I'{ is given by the following:

pta— 1_1

laP kP ;
re(u) = lim M, (18)
p=oo (ﬂ);k

where is (#)? , Pochhammer (a, k)-symbol, then Pochham-
mer (a, k)-symbol defined as follows:

(W)= (u+a-1)(u+a—-1+ka)(u+a-1+2ka)....
(H+a-14+(p-1)ka).
(19)

Integral form of (a, k)-gamma function is represent as
follows:

gka
ki

re(u) = [ (9-1ed, 9. (20)

0\8

Note that Iy (p;) = ['k(u;) for a — 1 where I'y(p) is
the k-gamma function (14).

Definition 6. Let a € (0,1), the (a, k)-beta function [24] is
given by the formula as follows:

1

1 123 H3
Bi(uns) = g, [ (951 9)571d,0, (1)

0

Note that By (p, tt3) = Bi(pa, p3) for a—1 where
By (uy, p13) is the k-beta function (15).

The (a, k)-beta function is an extensively studied mathe-
matical function with applications in areas such as probability
theory, statistics, mathematical physics, and engineering. It
plays a fundamental role in various mathematical and statis-
tical models.

Proposition 1. Assume p, € €, k>0, and |w| < 3, the follow-
ing identity holds [19]:

> (m)p,kg — (1 - kw) ™. (22)

3. Extended (a, k)-Beta Function B}’ 2 (P2 H3)

Here, we introduce a new extension of the extended (a, k)-
beta function and investigate various properties.

Definition 7. Let k>0 and a € (0, 1), then the extended (a, k)
-beta function as follows:



“lE ~2
VA Bl ) k(1 -9y )%

(23)

1
1 uz 1
Bk‘h‘b Has U3 :E/ 1_
0

where all the real %(u,), R(u3)>0, 9€C, Q>0 and

Ekg .q0) 18 mittag-laffler k-function.

Remark 1 If we consider a =1, k=1, in Equation (23), we

obtain B% 9 (ﬂz > ﬂ3)
Big,qz (Mo H3) = ngqz (M2 13). (24)

Now, we discover some interesting relations between sum-
mation formulas and integral representation for Bk s (pa, t3).

Theorem 1. Let a € (0,1) and k>0, then following integral
representations holds:

[N

Bi2 (42, 13)

2 Wy 1, M3
:E/(cosﬁ)ﬁ 1(sinf) "E(kg1.02)
0
_Ok
B SR V)
k(cos?d sin?0)
(25)

|

B2 !
k.q1.92 ﬂ2’ﬂ3 E COS
0

After some algebraic manipulation, the last expression
reads as follows:

Bz:g,qz (IMZ’IM?))
—i](COSH)h;f‘I(sinH)zil_s‘lE @ d,0
" ka (kdr.a) k(cos*@sin?0) ) """
0
(30)
And 9 =1%; 9=12 put in Equation (23) and obtain
Equations (26) and (27) O

Theorem 2. The function B}’
summation formula:

3 (ua, 3) has the following

q
BZ,‘ﬁ,qz (2o p3) = 2. Bk 10 (ua + pka, p3 + gka — pka),
p=
(31)

where k>0 a € (0,1) and R (u,), R(u3)>0.
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00 _i_ _Qk(1+9)2

———)d,0
/ )_2 l‘_i kql‘iz)( k6O a™>
0

a,Q _
Bk P /427,“3

(26)
Bzng (/42, ﬂ3)
i b —4Q¢
= o /(1 + 6)(11( 1( g)k"E(k,ql-Qz) (m> d,ﬂ,
-1
(27)

where R(u,), R(uz)>0.

Proof. Using the definition (23),

B2 (42, t3)
1

— L [ - 9iE @ N,
ka ko) \ko(1-9) )"
0
(28)
by substituting 9 = cos?0 in Equation (28),
—QF
1 — COS 9) E(k,q] ) (kcosze(l—cosze)) 2C0$(9)Slﬂ(9)da0. (29)

Proof. From the definition of extended (a, k)-beta function
(23), we have the following:

B2 (42, 13)
1

L [0 - 9iE @ N,
ka ke \ ko(1 - 9) )"
0
(32)
Bz:g.qz(ﬂbﬂs)
—1](9)“—1-1(1 - 9)F 9+ (1 - 9)E - d,9
Tka) ’ kaa)\ k(1 - 9) )"
0
(33)

BZ"‘i’qZ(ﬂz’M) - qul g, (M2 +ka i) + qu1 g (M2 3 + ka).

(34)

Repeating the same arguments to the above two terms in
Equation (34) as follows:
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BZ.% i (/’tz ’ ﬂ3> - Bz,ql

By continuing this process and using mathematical
induction, the desired outcome is obtained.

q
Bzg-qz (M2, H3) = Pz i oy M2+ Pka. py + gka — pka).

(36)
O

Theorem 3. Let a € (0,1) and k>0, then Mellin transform
hold,

MBS, (oo ps)| = (OB s + s pis +50). (37

Q. > — 1 2
M2 )| = [ @7 [

However, the integral in Equation (39) can be simplified
in terms of k-gamma function by substituting, 8 =
we have the following:

[ (g o n(jario

(40)

T D
Ik(1-9)k

1
a r 5) K245 <]
MBS )] = [ o oa,
0

M(BE2  (rops)| = Tl + sy +50). (42)

4. Extended (a, k) Hypergeometric Function
and Confluent Hypergeometric Function

In this section, we introduce the extended conformable k-
hypergeometric functlon and confluent hypergeometric func-
tion utilizing the Bk ) (Ha,s p3).

Hypergeometric functions are a function of special func-
tions that are extensively used in many branches of mathe-
matics, physics, and engineering. The extended conformable
k-hypergeometric function is a specialized mathematical func-
tion that has its roots in this domain. This function can be
applied to a wider variety of mathematical expressions and
situations because of the extension and conformability features
that it incorporates. These functions are well known for their
ability to depict series expansions and solutions to a wide range

g (W2 + 2ka, ﬂ3)+23kq W2+ ka,ps + ka) + By

5
kq B (,Uz, H3 + 2ka) (35)
\
where R(s)>0, R(u, +)>0, B3 +5)>0
Proof.
M2 Gsom)| = [ @7 (B, ) )
(38)

Using the definition of extended (a, k) beta function as
follows:

k
(1= 9 Ey 0 (kaQdﬂ,& Q. (39)

\
of differential equations. Specifically, the extended conform-
able k-hypergeometric Function provides a parameter k that
gives the function flexibility and enables it to handle a wider
range of mathematical circumstances.

The extended conformable k-hypergeometric function is
defined as follows:

o0 Bid | (uy + pka s = pua) e
FEQ (s iy sy w) = A o
koar.q, (M1 o 3, W) Pgo(/ll)p.k B (s — 102) !
(43)

where a€(0,1), k>0, |w*|<1 [25] and (), B(us),
R (p3)>0.

The extended conformable k-confluent hypergeometric
function is defined as follows:

&9 o) § BZ,’;)] oo (p2 + pa ps = i) e
; Mo, fz, WY) = w
k.qy.q, \F'20 13 p=0 Bﬁ(ﬂ29ﬂ3 _ ﬂz) p'

(44)

where k>0, [w* <1, @€ (0,1), and R (u,), Z(p3)>0.

Remark 2. If we consider k = 1 and @ = 1, then extended (a, k)
hypergeometric function (43) reduces to extended hypergeo-
metric function (5) and extended (a, k) confluent hypergeo-
metric function (44) reduces to an extended confluent
hypergeometric function (6).

Theorem 4. The following integral representatzons for the
extended (a, k)-hypergeometric function Fk o g (H1s 2 3, W)
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and confluent hypergeometric function @kq g (M2 p33 W)
holds:

l uz #3 #2 —Qk
/ I (1 = kw9) T Eg g ) <m) d,9, (45)

FaYQ b b b w
koo, (s oo s, w*) = KaB s o =
0

where k>0, B(uy), R(py), R(u3)>0, |w*|<1,anda € (0,1),

k
o2 ; )oalew g S Y 46
k,ql,qz(ﬂZvﬂS w ) k(XB ﬂ29ﬂ3 / (k.q1.95) k19<1 _19) a ( )
0
Proof. From the definition (43),
|
© Bk (uy + pka, ps = pp) wha
Fa,Q Uy s 3, WY) = Z " 1% - (47)
Cava, (142 3 0) p:()( p Bii(pa. 13 = ) p!
By using the definition (23) in Equation (47),
1 o pu)?
- 0 w?*
;g 9)d1E — —— ) $d,9. 48
k,ql,qz(/’tl’/’tZ) kaB /‘2»/‘3 / * (k.q1.92) (k@(l _ 19)) {pz (ﬂl)pk( p' > } “ ( )

0

Using the proposition (22) and after some calculations,
|

Y (1 - 9) &1 (1 - kw*9) T - d,®. (49)
k‘hflz k9(1 - 9) a

0

FEQ (s g, s,
k"hu‘h(ﬂl Ha p3, W ) kaB ,Hz,,uz.

[

By simply using the same procedure, Equation (46) yields =~ Theorem 5. The following derivative formula for extended (a,
the desired outcome. O k)-hypergeometric and extended (a, k)-confluent hypergeo-

metric function holds:

T8 (u)I% (s + ka)
a,Q a\ k\F3)7 \F2 a,Q a
Fk,ql,qz (/’t17/’t2,/’t37 w ) - a(/’ll)l.k FZ(”Z)F(]:(/‘S + k(l) Fk,qquz(ﬂl + k, Hz + ka7 1“3 + ka7 w )’ (50)

.Q
Do g (W pi, W) Proof. From the definition of Fll:.’q?ﬂz (1 2 3, ),
I I'%(u, + ka
k(ﬂs) k(ﬂz )(pa.Q (qu + ka, us + ka, wa)’

= (a a (1 a.Q
T ()T (us + ka) ~ e B

ka, 3 = ) wpe
20 - foana, M2 T Pka, s =
Fk.ql’qz(”lsﬂbﬂbwa) 717;0(/41) p. B (MZ’H3 _”2) p' .

(52)

(51)

where k>0, R(uy), R(py), R(u3)>0, |w*|<1,anda € (0,1).
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Differentiating Equation (52) with respect to w, Then replace p — p+ 1 in Equation (54),
F}Zﬁ,qz(ﬂhﬂz»ﬂa,wa) Fzﬁqz(ﬂl,ﬂz,ﬂywa)
OZC: ) BZﬁ,qz (uy + pkat, 3 = p3) (ap)wp=Ha E () BZ:ng (12 + (p + V)ka, pi3 = i) qu®®
=2 u o ) =2 k o ’
p=1 Lk B (pa. pi3 = 1) P! p=0 s B (pa. pis = 1) P!
(53) (55)
F{ ﬁqz (k1s Hos 3, W7) using the following formula, we obtain the derivative formu-
&S Bﬁfﬁ,qz (2 + pka. p3 = p3) a0 YywlP=Ha fas:
:pzl(”l)}"k By (Has 13 — H2) -1 S
2 () pirk = ()1 (un +K)p s (56)
(54) p=0

I ()T (s + ka)
a,Q a\ k\F3)% \F2 a.Q a
Feg g (s po iz, w®) = ap) T (i) + ka) v o (g + ke, ps + ko, w). (57)

We obtain Equation (51) by using the same derivative
technique.

|

®(uy + ka) 2.Q }
s + ) v 2 et ks w). (58)
\

Theorem 6. The following derivative formula for extended (a,

k)-hypergeometric and extended (a, k)-confluent hypergeo-
metric function holds:

‘DZ:g,qz (k2 p3. w”) = (a)

i (ps)l
Fz(ﬂz

O

I (s T (py + gka)
a,Q a\ k38 2 a.Q a
Pl ook ) = ()0 ) o - gl ot ket gheut) (39

L) T (uy + gka)
@il (o iz, ") = )9 @il (o + gk, ps + gka, w®), 60
k,ql.qz( 22 M3 ) ( ) Z(ﬂZ) Z(/’% gk(l) k,ql,qz( 2 g 3 g ) ( )

\
Proof. From the definition (43),

where k>0, (R(u3), R(u3)>0), |[w*|<1, and a € (0,1).

F(x Q 00 B(lyQ (ﬂl pkll /,t - M ) wpa
k /’t ) ﬂ s U3, W z K,q1,9 s M3
.’ql.qz( 2 35 ¢ ) = (” ) * 91,92 2

—_— (61)
p=0 Bfi (2 3 = H2) p!




« »

Differentiating “g” time with respect to w,
|
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o x BZQI (2 + pka, s = 1) pa(pa - 1) (pa = 2)..... (pa - (g - 1)a)wP-9
Fiaiqs 1otz ) = P Gu)ps =5 ¢ (2 3 = h2) P! '
=g s .
(62)
B2 (s + pka, ps — ) ad(p)lwpP-9)e
a,Q PN k1.9, :
Fk,ql,QZ(ﬂl’”z’”"”w ) _ng(/'tl)P, Bk(ﬂz,ﬂ:; —ﬂz) p‘@_g)|

Then replace p — p +g¢ in Equation (62) after some cal-
culations,

FEd 3 (o pz w)
:§(/'¢1) kqul Qz(ﬂ2+gka+pka Hs ~ /«lz) (ag)w(p)(l
g0 Pto B (uzs 3 = th2) p!

s

(63)

|

(a)9 (1)

IE ()Tt + gk) o

using the following formula, we obtain the derivative formu-
las:

FliéQl,qz(MlsMbMS,w )

Achieve the result, Equation (60), by using the same
parallel line of explanation in the above term,

@Zﬁ,qz (M2 3, W")
‘o a
= (a)? r;;(ﬂs)rll;(ﬂz + gka) (DZ,Q
() (us + gka) = 50

(66)
O

Theorem 7. The following transformation and summation
formulas hold:

F (o o s W)
—kw?
_ _ a,Q _ .
_(1 kw ) qul % (ﬂ]yﬂ:; ﬂz»ﬂ?,’l_kwa)’
(67)
|

F;Z’,g,qz(ﬂh,“z’ll&w ) =

kaB (M2 b3 = /

Replacing 9 by 1 — 9 and substituting,

KT s+ gha) 0

(uy + gka, psz + gka, w®).

Pgo(m) gipk = (1) g1y + gk) (64)
(i + gk, py + gka, ps + gka, w*). (65)

|
Fl(:}ng(ﬂlvﬂz»m; w®) (68)

(kw ) kq qz(ﬂlvﬂ3 Hos U35 1- kw”),

Fl?ﬁqz(/"lv/’l%/’t_’y;wa)

(69)
= (14 kwFFEL L (1, s = pg, iz —kw®),

— . p3; —kw®),
(70)

a.Q . — pkw® pr.Q
qjk,ql Q2 (ﬂZ’ H35 w(l) =e ¢k,ql 0 (/’t.’)

where k>0, R(uy), R(py), R(uz)>0, |w*| <1, anda € (0,1).

Proof. Using the result of Theorem (4),

Yo (1 - kw*9) - dos.  (71)
k% %) kl()(l _ ) a

(1 - kw* ﬁ(l +kwaé))£l, (72)

(1 - kwe(1 - 8))F = e



Advances in Mathematical Physics

1

i [0

0

(1 - kw®)
kaB (k2, p3

) =

F;:}g,qz (k1s pos pi3s W*

(1= kw”)
kaB (Moo 3 —

142 1 ;«3 ﬂ2 —1

i o

0

In view of Equation (45), we get the desired result in
Equation (67). Replacing 1 -1 and % +kw in Equation (67)
yield Equations (68) and (69), respectively. Similarly, as
Equation (67), we can establish Equation (70). O

Theorem 8. The extended conformable k-hypergeometric func-
tion has the following summation formula:

By g, (M2 + Pk ps — )

B (uz. pt3 = p2) 75)

F;:g_qz (ﬂ17ﬂ27ﬂ3; 1) =

Proof. Putting w=1 in Equation (43) and using the defini-
tion (23), we obtain the desired result. O

Theorem 9. Let a € (0, 1) and k> 0,then, the following gener-
ating function holds true:

00 ar

Y () s FR 2 (uy + rh . s
91,92

r=0

= (1 — ku®)"

r!

w”)
wa

a,
kaq 2 1 - ku®

)

(76)

(/41»/43 — M2, M35

where |w*|<1 and |u*|<1.

Proof.

0 ar

Zo(ﬂl)r,k{Fljﬁ,qz (i + 1k, . 33 wa)}
=

= % (Ml)r.k{ >
r=0 =0

Z (.ul + rk)p,k
P

7!

B(;fg,qz (H2 + pka, p3 = pz) whe
B (pys i3 = p2) p!

uar
o

(77)

BZ,fl o (W2 + pka. 3

Bk(ﬂzaﬂs — i)

ar

— Ha) wh

],

Z (11 + k), & I

(78)

[fw

Using the proposition (22) and after some calculation,

ik | Bed  (ua + pa pis = i) whe
= (1 = ku® ek S (u k.41.92 bl
( ) L—o( U Bii(uas p3 = i2) P!
(79)

9
ﬂ " kw* = -
”_2_1 3712
)e e 9 E —=—)d,9. (73
' ' ( +1_kw0t ) (k.q1.92) (k@(l— ))a ( )
- 5) —Q" ) (74)
1 - ku® kara) \ ko(1-9) )"
\
x 2.0 uor
2 (1) riFicy g, (W1 =+ 7K, i 33 W) —-
r=0 r.
w(l
— (1 - ku ) k Fk‘ng </’l17/’l3 _l’l27,u3;1_kua>.
(80)
O

5. Application in Fractional Calculus

In this section, we examine the new extension of the Riemann—
Liouville k-fractional derivative (RLKFD) for the extended con-
formable k-hypergeometric function. From the close relation-
ship of the family of extended conformable k-hypergeometric
functions with many special functions, we can easily construct
various known and new fractional equations.

Fractional calculus and its applications [26] have been
extensively studied by numerous scholars across a wide range
of fields for many years, and interest in this subject has grown
significantly. Fractional differential and integral equations are
multidisciplinary and find application in a wide range of
domains, including signal analysis, biomathematics, elasticity,
electric motors, circuit systems, continuum mechanics, heat
transport, quantum physics, and fluid mechanics.

Riemann-Liouville fractional derivative of order y is given

as follows [27]:

where % (u)>0. In particular, for case p—1 <R(u) <p,

9
(9 — t)#~LAdt,
0

1

ST

(81)

where p = 1,2,...., is written by the following:
dr
DRH[94] = — DR#=P[94]. (82)
9P
dr 1 9
= = 9 — ) HHP-1AGE S 83
il [0 oo

Riemann-Liouville Fractional integral [28] of order y is
given as follows:

where % (u)>0. Recently, Rahman et al. [29] and Azam et al.
[30] introduced RLKFD of order u is defined as follows:

9
(9 — t)*~Ledt,
0

1

=T

(84)
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ope(ol) = gt [t )

0

Definition 8. Assume a € (0, 1) and k € # T, then new exten-
sion of conformable Riemann—Liouville k-fractional deriva-
tive as follows:

R, A
Dk :1 92:Q [19 ]
1 9 w_y _le()Za B
= a «'E - o
e ] 0 B (kt(&a )
(86)
where %(q,), %(g,)>0 and Z(u)>0
Theorem 10. The following result holds:
DR#ke 98] = o ———— B2 (A+ka,—pu) (87)
aq4-Q kal (—p) k4 & ~H)

where k>0, a € (0,1), Z(q,), R(q2)>0, and R(u)>0
Proof. Using definition (8).

D [9%]
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Then substitute t = x9* in Equation (88), and after some
calculation, we get the following:

k% 0.Q

(

D (9]
" A . _OF
kaFk)( ) / (x)5e(1 = )™ B g, g, (WQ—x))d"‘

Using the definition (23), this is the desired result.

Al

D [9%] =

o Bl . (A+ka -p).  (90)

v
kal (—p) ko

O

Theorem 11. Consider k>0, a € (0,1), then the following
result holds:

(B. A, s 9°).

(91)

(1 ~ k&) ] (19(1)1_

pRA-rargi- = pQ
[ Ti(u—A) bt

k.q1.9,.S

k.q1.q2.S
1 9 9 g Qk 2a B J
= — )k — |tk dt. . e . . .

kal (=) / 0( ) k.qy.q; (kt( 97 _ t)) k Proof. Using the definition of RL k-fractional derivative (8),
(88)
|

RA—pa [ gA— 1 &i—l _Qk192a
Do (9671 (1 - k9)T] = kal (i = A) e (9 — /%1 (1 - kt)eEy g, . k(0" = 1) dt. (92)

Then, put t=39%u in Equation (92) and changing the
limit from t=0 — u=0 to t =9 — u=1, after some rear-
ranging of the terms,

1 1 A
= 19a1,[ ka™
T

u=A

o= | 00

_Qk&Za
—_ | 9% 93
k8% u(9% — &w)g i, (%3)
-8 -
1(1 - k@“u)kaEk'ql‘qz (m) du. (94)



Advances in Mathematical Physics

Now, using the integral representation of extended (a, k)
hypergeometric function in Theorem (4), this is the desired result.

DA 9 (1 - k9w = (0!

11

where k>0,a € (0,1), Z(q,), R(q2)>0, and R(u)>0

Proof.

ks 7rk(ﬂ_A)qulq(BAﬂ,,9a)
(95D) M[ ~Opihba {9t }} / (61 { ~Opikae L9t} do.
(97)
Theorem 12. The following result holds:
Ruka foay] _ 7 Qa Using definition (8).
M|: GD"’gl 9, Q{&ka}} - F(Q) kark(_ )Bk‘h qz(A + ka, —ﬂ)a
(96)
|
_o Rk 00 1 p 9 ) Qk 2a N o
M|: Da‘h 2. Q{s }] kaFk )/0 e /0(19 - t)k“ Ek‘h 9> (m) tk“dtdgv ( )
-0 Rk “ _ 1 0 _05-1 y a _ -1 _Qk&Ztl A 99
M|: Da Q1.2+ Q{&k }] kark(_”) /0 e 0 d0/0(19 t)k Eququz <7kt(19a ~ t) K dt ( )
\
}Jsing Equation (2) and Theoren (10), this is the desired M[ ng;&—; (;{191%_1 1 ké))i_f}}
result.
gy (B s (101)
. = O =y i (B 587
0 pR#ka _ v
M[e af;l 9 Q{Tgkﬂ}} =I(0) ——+ kal (- ) kqlq (A + ka. —p).
(100)  Proof.
Dm0 - k)
Theorem 13. Consider k>0, a € (0,1), then the following :/ 05—1{ HDf;: - (9)1(1 - k&);—f,’}}d@_
result holds: 0
(102)

Now, using Equation (2) and Theorem (11), this is the
desired result.

k.g1.9,.Q
(9)t
Ii(p - A)

M[e0D e (961 (1 - k&)i—f}}
(104)

u=A

1 -0 / - A
—_— o~ tha1(99 — )1
kafk(/t A) / 0 ( )

Using the definition of RL k-fractional derivative (8),

Qk 2a

(1= kt)Ey, o (kt(@“)) dtd?. (103)

\
6. Conclusion

In this paper, we introduced a new extended conformable k-
beta function in terms of the generalized Mittag—Leffler func-
tion, investigated its properties and its integral representations,
also presented the extended conformable k-hypergeometric
and extended conformable k-confluent hypergeometric func-
tions. If consider a = 1, then all the results established in this
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paper will be true to the results related to the extended k-
hypergeometric function. Some properties of these functions,
such as integral representations, differentiation formulas, Mel-
lin transformations, transformation and summation formulas,
are also studied. The extended conformable k-hypergeometric
function and conformable k-beta functions give the best
solution for differential equations and integral order used
in mathematics. Furthermore, established the new extended
conformable Riemann-Liouville k-fractional derivative and
derived some results containing extended conformable
k-hypergeometric functions and extended conformable
k-confluent hypergeometric functions. The extended con-
formable k-Riemann—Liouville definition of fractional deri-
vatives plays an important role in the development of the
theory of fractional calculus. It has numerous uses in the
field of pure mathematics as well.
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