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The boundary element method is widely used in practical engineering problems, especially in the field of acoustics. For flow-
induced noise, the main target of acoustic calculations is to solve the wave equation with the flow field information. However, the
sound field distribution of noncompact structures in half-space is especially complex because of the strong scattering effect, while
the object surface boundary integration often brings a large workload and generates numerical singularities. In this paper, an
improved boundary element method for predicting the aeroacoustic noise of noncompact structures is proposed, which can
consider the characteristic distribution of sound field induced by complex structures in half-space. The smooth permeable
boundary surrounding the object is used as the integration boundary, while the scattering effect of the ground boundary is
investigated by combining the mirror Green’s function method, and the numerical prediction of aeroacoustic noise is carried
out for the dipole source and NACA0012 airfoil in half-space. Numerical results show that the far-field noise obtained by using the
permeable surface is consistent with that obtained by integrating the direct object boundary under the influence of ground
boundary scattering. The mirror image Green’s function method is able to finely capture the ground scattering effect, which
has a significant effect on the sound field as the frequency increases.

1. Introduction

The contact between fluids and noncompact structures inside
the half-space is a significant source of noise pollution. This is
particularly evident during the take-off and landing stages of
aircraft, the operating phase of high-speed trains, and the
power generation process of wind turbines. In these practical
engineering problems, the scattering effect caused by the
ground may be much greater than that caused by the body
surface. Recently, the international community has reached a
consensus on the need to restrict noise levels in various areas
such as transportation, building construction, traffic arteries,
and residential areas. Corresponding legal provisions have
been put forward [1, 2]. The hybrid computational aeroacous-
tic (HCAA) method is a new computational method that has
been widely used in the numerical prediction of flow-induced
noise due to its high computational efficiency and low com-
plexity in practical engineering fields.

The HCAAmethodology solves the flow field and the acous-
tic field separately, and the flow field calculation partly

combines CFD techniques to solve the N-S equation and
collect the flow sound sources, and integration methodology
[3, 4] is used to calculate noise distribution, which has become
the mainstream method for far-field noise calculation. Light-
hill’s acoustic theory [5], FW-H equation [6], vortex theory
[7], and Kirchhoff theory [8] are commonly used in noise
calculations. Among them, the FW-H equation is the most
classic and widely used. Research scholars have carried out
a series of extended research work based on the FW-H
equation. Khalighi et al. [9] proposed an acoustic integral
model of the disturbance variables by separating the acoustic
variables from the fluid physical variables. Mao et al. [10]
studied the far-field noise distribution in combination with
the proposed acoustic two-step calculation method. Their
method can predict the noise in low Mach number flow but
cannot distinguish radiated and scattered noise, especially for
noncompact bodies. In contrast, we proposed a unified inte-
gral calculation method for the radiation and scattering aero-
acoustic noise of noncompact bodies in our previous research
[11, 12]. In both near field and far field, this method is able to
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distinguish between scattered and radiated noise. Meanwhile,
permeable boundaries [12, 13] are used to improve the
calculation of acoustic noise for complex structures.

Based on the above model, the boundary element method
(BEM) [14, 15, 16] is extensively used to calculate the acous-
tic noise induced by noncompact noise in free space. Several
improved methods have been presented, such as fast multi-
pole BEM [17, 18], nearly singular integrals (NSIs) in BEM
[19], BEM for scattering problems [20], etc. However, previous
research has either focused solely on the problem of sound
propagation or has not taken into account the scattering effect
of the actual sound source, particularly in half-spaces. Numer-
ical studies have concentrated on capturing the scattering
effect induced by the ground boundary for flow-induced noise
problems in half-spaces.

When considering the effect of acoustic scattering, most
studies focus solely on the noise generated by the structure
itself. Lee [21] and Lee et al. [22] developed a numerical
method to analyze acoustic scattering in the time domain
and its application to rotorcraft noise. Poggi et al. [23] con-
ducted a theoretical–numerical study on noise scattered by
moving bodies in combination with the boundary integra-
tion method. Testa et al. [13] present two novel permeable-
surface integral formulations to calculate the sound scattered
bymoving bodies. The study byWilliams andHall [24] shows
that when the product of the distance r0 from the center of the
vortex structure inside the half-space to the space boundary
and the wave number k satisfies 2kr0≤ 1, the scattering noise
generated by the noise reflection from the quadrupole to the
space boundary is proportional to (kr0)

−3.
Therefore, calculating the scattering effect at the half-space

boundary is crucial. Previous research has mainly focused on
selecting a Green’s function compatible with the geometry
[25, 26]. For instance, in a half-space model, combining Green’s
functions that satisfy complex boundary conditions can effi-
ciently capture the scattering effects at the spatial boundary.
Calculating numerical integration of aeroacoustic noise can
be challenging due to the involvement of first and second-
order derivatives of Green’s functions. Exact Green’s func-
tions require significant computational effort, and numerical
errors caused by singularities in the solution of Green’s func-
tions and their derivatives [27] can distort noise results for
fine meshes near walls, particularly for complex noncom-
pact structures. Therefore, using the BEM directly to calcu-
late noise may cause numerical singularity problems and
result in increased numerical errors.

To address the aforementioned issues, this paper proposes
an improved BEM to calculate flow-induced noise, taking into
account the ground scattering effect, which is different from

the previous studies. First, an integral model of the acoustic
perturbation variables is established based on the pulsation
decomposition of the physical quantities of the flow field.
Second, a half-space acoustic noise integral calculation model
combined with the permeable surface is developed, which
takes into account the scattering effect of the ground bound-
ary using the mirror Green’s function. Theoretical presenta-
tion of the singular integral of Green’s function based on
boundary element discretization is also included. Third, the noise
propagation of a stationary dipole source is calculated and com-
pared with the analytical solution. The NACA0012 airfoil was
selected as the numerical research object to study acoustic noise
induced by the fluid. The present two-step calculation, based
on second-order fluid calculation, was adopted to carry out the
noise calculation. The conclusions were finally given.

2. Acoustic Integral Equations for Noncompact
Bodies with Permeable Boundaries

At first, the wave equation of Lighthill and Newman [5]
Acoustic Analogy derived from the compressible Navier-
Stokes equation is expressed as follows:

∂2ρ0

∂t2
− c20r2ρ0 ¼ ∂2Tij

∂xi∂xj
; ð1Þ

where Tij ¼ ρuiuj þðp0 − c20ρ
0Þ :δij − eij is Lighthill’s stress ten-

sor, ρ0 ¼ ρ− ρ0; p0 ¼ p− p0 is density perturbation, and pres-
sure perturbation, respectively, p0 and ρ0 represent the pressure
and density of the incoming flow, ui is the ith component of
the velocity vector, eij denotes the fluid viscous stress tensor.

Due to the computational complexity of high-order meth-
ods, a second-order fluid calculation method is used for com-
pressible flow. It is assumed that most perturbations can be
calculated using second-order methods, while the remaining
perturbations act as an acoustic source and propagate to the
far field. The pressure and density perturbations are intro-
duced and split into two parts as follows:

ρ0 ¼ ρh þ ρa
p0 ¼ ph þ pa

; ð2Þ

where the subscript h represents the hydrodynamic compo-
nent produced by fluid pulsation, and the subscript a repre-
sents the acoustic component induced by noise propagation.

In combination with the wave equation of time-domain
tailored Green’s function gSðx;t; y;τÞ :, when choosing a smooth
boundary S to enclose the objects, the integral equation of
density perturbation for an observer at x in a finite volume
Ω is expressed as follows [9, 12]:

C xð Þc20 ρa x; tð Þ þ ρh x; tð Þ½ � ¼
Z 1

−1

Z
Ω−Ω0f gn xf g

ρuiuj þ ph − c20ρhð Þδij
Â Ã ∂2gS

∂yi∂yj
dΩydτ

−

Z 1

−1

Z
∂Ωn xf g

pa þ phð Þni þ ρui un − vnð Þ½ � ∂gS

∂yi
dΓydτ

þ
Z 1

−1

Z
∂Ωn xf g

ρ0vn þ ρ un − vnð Þ½ � ∂gS

∂τ
dΓydτ:

ð3Þ
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Here, the time-domain tailored Green’s function gSðx;
t; y; τÞ: satisfies the following:

∂
∂n

gS x; t; y; τð Þ
����
Sb

¼ 0; ð4Þ

where x denotes the observer position, y denotes the source
position, and Sb represents the ground boundary, Ω0 is the
region of the flow field between the surface SW and the inte-
gral boundary S. CðxÞ : ¼ 1− 1

4π

R
S

∂
∂n ð1=jx−yjÞ :ds is the solid

angle function for observer at x, and CðxÞ : is equal to 1 for
observer in Ω and 1/2 for observer on ∂Ω. The unit normal
vector n¼ðniÞ : points from the flow field toward the integral
boundary, and vn is the velocity of the integral boundary
along the normal direction. The integral boundary ∂Ω com-
prises the far field boundary Γ, the smooth permeable
boundary S and the ground boundary Sb.

The acoustic perturbation variables satisfy the linear rela-
tionship pa ¼ c20ρa, and fluid viscosity is ignored as discussed
by Morfey [28]. Therefore, we can establish a final integral
formula for simply calculating the acoustic pressure by using
Equation (4).

C xð Þ pa x; tð Þ þ c20ρh x; tð Þ½ � ¼
Z 1

−1

Z
Ω−Ω0f gn xf g

ph − c20ρhð Þδij
∂2gS

∂yi∂yj
dΩydτ

þ
Z 1

−1

Z
Ω−Ω0f gn xf g

ρuiuj
∂2gS
∂yi∂yj

dΩydτ

−

Z 1

−1

Z
Sn xf g

ph
∂gS
∂n

dΓydτ −
Z 1

−1

Z
Sn xf g

pa
∂gS
∂n

dΓydτ

þ
Z 1

−1

Z
Sn xf g

ρ un − vnð Þ ∂gS

∂τ
− ui

∂gS

∂yi

� �
dΓydτ

þ
Z 1

−1

Z
Sn xf g

ρ0vn
∂gS

∂τ
dΓydτ:

ð5Þ

When choosing the integral boundary as the surface of
the object, S coincides with SW. Otherwise, S is away from
SW. The key derivation process of Equation (5) can be found
in the Appendix. The noise calculation is performed in two
steps: the acoustic pressure in the near field is first calculated
when the observer is located at the object surface or perme-
able boundary, then the far-field noise distribution is studied.
The left-hand side (L.H.S.) of Equation (5) represents the
pressure fluctuation, and the right-hand side (R.H.S.) includes
all of the source terms.

Using the point source as an example, Figure 1 shows the
distribution characteristics of half-space airfoil noise com-
bined with a permeable boundary. In actual conditions, the
total pressure at observer x can be described by three parts:
the radiated noise from y to x, the scattered noise from y to
zw then to x, a and the scattered noise form y to the half-
space Sb then to x. However, integration calculations for
infinitely long ground boundaries often result in a significant
workload. This problem can be overcome by using mirror
image sources.

Here, the scattered noise caused by the half-space bound-
ary Sb is equal to the total noise produced by the mirror

image source y0, which is symmetrical to the real source y
about Sb. Furthermore, the scattered noise generated by the
airfoil surface can be obtained through the permeable
boundary [12], and this conclusion can also be applied to
mirror image sources. Based on the above analysis, the noise
distribution of a half-space airfoil can be represented by two
parts: the radiated noise originates from both the real source
y and its mirror image source y0, the scattered noise come
from the equivalent source zw and its mirror image source
zw′. Returning to the governing Equation (5), the scattered
Green’s function can be expressed as follows:

gS x; t; y; τð Þ ¼ g x; t; y; τð Þ þ g x; t; y0; τð Þ; ð6Þ

where gðx; t; y; τÞ: and gðx; t; y0; τÞ : represent the Green’s
function in free space for the source positions y and y0,
respectively. They are substituted with g and g0 in the fol-
lowing paper.

The permeable boundary S is typically selected as a sta-
tionary boundary surrounding noncompact bodies, ensuring
that the source term related to vn on the R.H.S. of Equation (5)

y x
z

zw
Sw

Sb

Sw´
zw´

z´

S´

y´

S

H

H

FIGURE 1: The sketch of permeable boundary in half-space.
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is equal to 0. This paper focuses on studying acoustic noise in
the frequency domain, and the frequency form can be obtained
directly by applying the Fourier transform to Equation (5).

Following the above analysis, we substitute Equation (6) into
Equation (4), resulting in the following equivalent expression
in frequency form as follows:

C xð Þ pa x;ωð Þ þ c20ρh x;ωð Þ½ � ¼ PV1 þ PV2 − PSH − PSA þ PSU
þ P0

V1 þ P0
V2 − P0

SH − P0
SA þ P0

SU :
ð7Þ

Here, ω¼ 2πf is the circular frequency, and f is the dis-
crete frequency. The volume integral is represented by the
subscript V , while the boundary integral is represented by

the subscript S. The superscript apostrophe denotes noise
induced by mirror image sources. The volume integrations
are represented by the abbreviations as follows:

PV1 ¼
Z

Ω−Ω0f gn xf g
ph − c20ρhð Þδij

∂2G
∂yi∂yj

dΩy    PV2 ¼
Z

Ω−Ω0f gn xf g
ρuiuj

∂2G
∂yi∂yj

dΩy

P0
V1 ¼

Z
Ω−Ω0f gn xf g

ph − c20ρhð Þδij
∂2G0

∂yi∂yj
dΩy    P0

V2 ¼
Z

Ω−Ω0f gn xf g
ρuiuj

∂2G0

∂yi∂yj
dΩy:

ð8Þ

The boundary integrals are also given below, and the
second subscript represents its source. The symbol H repre-
sents the hydrodynamic pressure, the symbol A represents

the acoustic pressure, and the symbol U is the velocity term
as follows:

PSH ¼
Z

Sn xf g
ph

∂G
∂n

dΓy     PSA ¼
Z

Sn xf g
pa

∂G
∂n

dΓy    PSU ¼
Z

Sn xf g
ρun jωG − ui

∂G
∂yi

� �
dΓy

P0
SH ¼

Z
Sn xf g

ph
∂G0

∂n
dΓy    P0

SA ¼
Z

Sn xf g
pa

∂G0

∂n
dΓy    P0

SU ¼
Z

Sn xf g
ρun jωG − ui

∂G0

∂yi

� �
dΓy;

ð9Þ

where Gðx; y;ωÞ: and Gðx; y0;ωÞ : are the Green’s functions in
the frequency domain corresponding to g and g0, respectively.
According to Equation (7), the half-space noise received by
the observer x includes two parts: one part is the noise
induced by the real sound source in free space, and the other
part is the noise produced by the mirror image sound source.

The following section introduces the algorithm step of
Equation (7). Numerical simulation for noise calculation is
primarily executed using the integral equation and boundary
element method described above. The specific steps of the
present method are shown in Figure 2. In fluid field calcula-
tion, the flow field area and integral boundary are discretized
into M grids and L elements, respectively. Fluid variables
such as density, pressure, and velocity are stored over time
for each grid cell, with each cell considered an acoustic source.

In the first step, equivalent acoustic sources on permeable
boundaries are calculated by solving linear equations corre-
sponding to the stored variables as follows:

APa ¼ b: ð10Þ

Here, A is a matrix with the order L. Pa and b are all
column vectors with L dimensions, Pa ¼fpaðxiÞgT ; b¼
fbigT . The matrix A has the following form:

A¼ 1=2EþH: ð11Þ

Here, E is a unit matrix of order L, and the element of
matrix H is expressed as follows:

Hmn ¼
Z

Sm yð Þ

∂GS ym; yn;ωð Þ
∂n

ds m ≠ n

0 m¼ n

8<
: : ð12Þ

where GSðym; yn;ωÞ : is the frequency form corresponding to
gSðx; t; y; τÞ :, and satisfies GS ¼GþG0. In the second step,
the far-field noise is calculated by determining the noise
generated by the real source y and its mirror image y0.

3. The Near Singular Integral on Discrete
Boundary Elements in Two-Dimension

The fluid field calculation to obtain sound sources must be
performed prior to noise calculations, including pressure,
density, and velocity vectors. To calculate this information,
a fine mesh is typically used near the noncompact body,
which contains a large number of sound sources. However,
if the observer z is situated on the surface of the object or
permeable boundary, the distance r= |z− y| between the
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observer z and the sound source y is extremely small. In the
volume integral calculation, the magnitude of the second-
order derivative for Green’s function is ∼1/|z− y|2, and it
is a nearly hypersingular integral problem.

Although the volume integral can be converted to an area
integral using the generalized Gauss theorem, it remains a
nearly strongly singular integral problem. This type of inte-
gral often results in significant numerical errors when con-
ventional Gaussian numerical integration is used. To ensure
the accuracy of the aircraft noise prediction, the NSI problem
must be solved. The paper draws on the research idea for the
3D NSI problem [29] and proposes a semi-analytic method
for NSI kernel function decomposition in free space. This
involves decomposing the kernel function into non-nearly
singular and nearly singular parts.

In the frequency domain, it is widely recognized that

Bessel functions Jð1Þ0 ðkrÞ :, Neumann functions Y ð1Þ
0 ðkrÞ :, and

Green’s functions in free space can be expressed as a series
expansion as follows:

J0 krð Þ ¼ ∑
1

m¼0

−1ð Þm
m!ð Þ24m krð Þ2m; ð13Þ

Y0 krð Þ ¼ −
2
π

∑
1

m¼0

−1ð Þm
m!ð Þ2

k2mr2m

4m
∑
m−1

k¼0

1
kþ 1

þ 2
π
ln k − ln 2þ γ½ �J0 krð Þ þ 2

π
ln rJ0 krð Þ;

ð14Þ

gk z; yð Þ ¼ −
1
4
Y 1ð Þ
0 krð Þ þ i

4
J 1ð Þ
0 krð Þ

¼ 1
2π

∑
1

m¼0

−1ð Þm
m!ð Þ2

k2mr2m

4m
∑
m−1

k¼0

1
kþ 1

−
1
2π

ln k − ln 2þ γ½ �J0 krð Þ

þ i
4
J0 krð Þ − 1

2π
ln rJ0 krð Þ

; ð15Þ

where Euler’s constant γ¼ 0:577215; r¼ jx− yj :; ri ¼ xi − yi,
and

∂r2m

∂yi
¼ −2mr2m−1rir2m−2 m>1

0 m¼ 0

(
: ð16Þ

It demonstrates that there is no NSI problem when it
satisfies m≥ 0, so that the NSI problem is only related to the
fourth term on the right-hand of Equation (15), it can be
written as follows:

∂
∂yi

−
1
2π

ln rJ0 krð Þ
� �

¼ −
k2

8π
ri þ

1
2π

∑
1

m¼2

−1ð Þmk2m
m!ð Þ24m rir2m−2

þ ri
2πr2

þ 1
π

∑
1

m¼1

m −1ð Þmk2m
m!ð Þ24m rir2m−2ln r:

ð17Þ
For 2D problem, there exists nearly weakly singularly

integral term r2m−2ln rðm≥ 1Þ : on the R.H.S. of Equation (17).
Whenm= 1 is satisfied, this term becomes singular and must
be addressed. Otherwise, the singularity of this term is very

NoFrequency
calculation

Signal processing by FFT
for each grid cell along

time, and store frequency
domain signal

To calculate acoustic
sources on integral

boundary by solving Equation (6)
Equivalent form: APa = b

Yes

Acoustic signal
output and

analysis

Fluid field
calculation

Far field noise calculation
with Equation (6) when
observer is away from
permeable boundary

The acoustic
noise induced

by real source y

The acoustic
noise induced by
image source y´

Signal acquisition:
ui, p, and ρ at

ti (i = 1, 2...N) for each
grid cell in Ω 

FIGURE 2: The flowchart of algorithm steps.
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weak, and it can be ignored. Based on the above analysis,
Equation (17) can be expressed in another form as follows:

∂
∂yi

−
1
2π

ln rJ0 krð Þ
� �

¼ −
k2

8π
ri þ

1
2π

∑
1

m¼2

−1ð Þmk2m
m!ð Þ24m rir

2m−2

þ ri
2πr2

−
k2

4π
ri ln r þ

1
π

∑
1

m¼2

m −1ð Þmk2m
m!ð Þ24m rir2m−2ln r:

ð18Þ

By solving the partial derivative for Equation (15) and
substituting Equation (17) into it,

∂
∂yi

gk z; yð Þ ¼ ∂
∂yi

gk z; yð Þ þ 1
4π

k2ri ln r −
ri

2πr2

� �

−
1
4π

k2ri ln r þ
ri

2πr2
:

ð19Þ

The first term on the R.H.S. of Equation (19) is a non-
singular term, the second term is a weakly singular term, and
the third term is a nearly strongly singular term. Then, the
integral of ∂gk=∂yi is written as follows:Z

Sn xf g

∂gk z; yð Þ
∂yi

dΓy ¼
Z

Sn xf g

∂gk z; yð Þ
∂yi

þ 1
4π

k2ri ln r

�

−
ri

2πr2

�
dΓy −

k2

4π

Z
Sn xf g

ri ln rdΓy þ
1
2π

Z
Sn xf g

ri
r2
dΓy:

ð20Þ

The second and third terms can be analytically solved
for linear boundary elements. When the observer is located
on the body surface, permeable boundary, or in the near
field, the volume and surface integral calculation can be
carried out by Equation (20), which greatly improves the
accuracy.

The second and third terms can be solved analytically
using a linear boundary element. When the observer is
located on the body surface, the permeable boundary, or in
the near field, the volume and surface integral calculation can
be performed by Equation (20), which greatly improves the
accuracy. Correspondingly, the tailored Green’s function in
half-space is expressed as follows:

gS x; yð Þ ¼ gk x; yð Þ þ gk x; y0ð Þ: ð21Þ

When k is satisfied with k≥ 10, the free Green’s function
is Gðx; y;ωÞ: ≈ gkðx; yÞ :.

4. Numerical Simulations

The flow/surface interaction noise generated by a noncom-
pact body is chosen to verify the newly presented method.
First, the analytical model of the dipole source is studied to
investigate the influence of different permeable boundaries
and the difference between free-space noise and half-space
noise. Then, flow-induced noise predicting always chosen the
wing airfoil and landing gear to study the acoustic scattering
effect during the take-off and landing of an aircraft. 2D cir-
cular cylinder and NACA0012 airfoil are considered in the
following paper; the scattering effect and the validity of per-
meable boundary are mainly studied and discussed.

4.1. Stationary Dipole Source in Half-Space. The noise distri-
bution of a stationary dipole source located at the coordinate
origin in a half-space can be described with the velocity
potential function [30].

φ x; tð Þ ¼ A
4π

∂
∂x2

exp iω t − R=c0ð Þ½ �
R∗ þ exp iω t − R0=c0ð Þ½ �

R0∗

� �
:

ð22Þ

Here,

R∗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − y1ð Þ2 þ β2 x2 − y2ð Þ½ 2 þ x3 − y3ð Þ2 �

p
R¼ 1

β2
−M x1 − y1ð Þ þ R∗½ �

R0∗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − y01ð Þ2 þ β2 x2 − y02ð Þ½ 2 þ x3 − y03ð Þ2 �

p
R0 ¼ 1

β2
−M x1 − y01ð Þ þ R0∗½ �;

ð23Þ

where β2 ¼ 1−M2, M denotes Mach number. The induced
velocity vector, pressure, and density are obtained from the
potential function using the following relationships:

u x; tð Þ ¼ rφ x; tð Þ; ð24Þ

p0 x; tð Þ ¼ −ρ0
∂
∂t

þ c0M
∂
∂x1

� �
φ x; tð Þ; ð25Þ

ρ0 x; tð Þ ¼ p0 x; tð Þ=c20: ð26Þ

The potential amplitude is A= 1m2/s, the sound speed is
c0 = 340ms−1, and the emission frequency ω is 10π rad/s.

The observation position x is located on a circle in the
x–y plane with geometrical distance L from the dipole source.
The ground boundary is below the dipole source with the
distance H, the imaginary dipole source was located at
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ðy1; y2 − 2H; y3Þ : corresponding to a dipole source placed at
ðy1; y2; y3Þ :. The permeable boundary is chosen as a spherical
surface surrounding the dipole source with a different radius,
R. In this example,H is equal to 10l. The radius of the perme-
able boundary S1 and S2 correspond to R1= 3l and R2= 6l,
respectively, and the root mean square (RMS) pressure at the
observer is used here.

Figure 3 displays the pressure directivity for different perme-
able boundaries; the numerical results in the near and far fields
all agree very well with the analytical solution. Here, l is set to
unity. Meanwhile, the noise distribution in free space differs
greatly from that in half-space; as shown in Figure 4, the differ-
ence between half-space and free space is caused by the ground
boundary; it convincingly demonstrates that the scattering effect
induced by the ground boundary changes the noise distribution
significantly. Based on the above numerical results, it can be
concluded that the ground scattering effect is equivalent to an
amplifier of acoustic signals, which is the same conclusion as in
Crighton’s study [31].

4.2. 2D Circular Cylinder in Half-Space. Vortex shedding
from the cylinder at Ma= 0.15 and Re= 100 with cylinder
diameter D= 1m is chosen to investigate the correctness of
the present method, and the fluid calculation is executed with
ANSYS Fluent 19.0. As shown in Figure 5, the calculation
region for the flow field is restricted to the area of (−15D,
35D)× (−15D, 15D), and the flow field area is divided by a
block-structured grid with rectangular grid cells. The first
layer of the grid near the cylindrical wall has a thickness of
about 1× 10−3D to ensure that the dimensionless distance of
the grid near the wall is of the order of y+≈ 1. There are
totally 44,080 grid cells distributed in the flow field area and
240 grid cells on the surface of the cylinder, and the second-
order difference method is used to solve the Navier–Stokes
equations for the time derivatives and spatial derivatives.

Table 1 shows the 2D results of the URANS model com-
pared with other numerical simulations. It can be seen that
the aerodynamic forces of the present calculation are in
agreement with other studies, where Cl′ and Cd are the
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FIGURE 3: Noise distribution of the dipole source with different integral boundaries in half-space: (a) L= 20l; (b) L= 100l.
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fluctuation of the lift coefficient and the RMS of the drag
coefficient, respectively. A comparison of the mean stream-
wise velocity at three stations in the wake of the cylinder
between the present computation and that of Khalighi
et al. [9] is shown in Figure 6, which displays that the two
computations agree well.

The flow field of the circular cylinder is a periodic flow
containing 117 time steps in one cycle, with a time step Δt¼
9:80× 10−4s and vortex shedding frequency f0= 8.7Hz. For a
periodic problem, the number of samples in multiples of the
whole period is often chosen for frequency domain sound field
calculations combined with auto-programing code. A total of
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FIGURE 5: Mesh details for the flow simulation around a circular cylinder: (a) total mesh; (b) local mesh.

TABLE 1: Numerical comparison of C0
l , Cd with different computational method.

The reference C0
l Cd

Tritton [32] Æ0.325 1.259Æ 0.007
Liu et al. [33] Æ0.339 1.350Æ 0.012
Ding et al. [34] Æ0.28 1.325Æ 0.008
The present Æ0.308 1.355Æ 0.008
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FIGURE 6: The mean velocity for three stationary points in the wake of the cylinder: (a) x/D= 1; (b) x/D= 2; (c) x/D= 5.
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1,404 flow field samples within 12 cycles are continuously stored,
and each sample contains information of flow density, pressure,
and velocity for discretized grid cells. The ground boundary is
located below the x- axis with a distance H=10D. In order to

investigate the accuracy of the method presented in this paper,
four integral boundaries are selected, as shown in Figure 7. At
first, 180 observation points are uniformly distributed on the
circumference of a semicircle centered at the coordinate origin,
with a radius of R=100D. Figure 8 illustrates the pressure direc-
tivity for the vortex shedding frequency and its three harmonic
frequencies with varying integral boundaries. The computational
results for different integral boundaries are in agreement. It is
well known that the noise in free space distributes as a dipole
along the vertical direction at f= f0 and along the horizontal
direction at f= 2f0. The noise distributions in half-space exhibit
a petal-like pattern, as shown in Figure 8, and the number of
petals increases gradually with frequency. The maximum noise
basically occurs at 30°–50° from the horizontal at different fre-
quencies due to the scattering effect of the half-space.

4.3. NACA0012 Airfoil in Half-Space. Acoustic noise during
take-off and landing or low-altitude flight often causes a
series of environmental noise pollution problems because
of the ground scattering effect. From the civil engineering
point of view, wind turbine blades also pose a considerable
hazard in terms of noise. As one of the most common mod-
els, the NACA0012 airfoil is often chosen as the basic model
to perform noise studies.
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In this section, a 2D NACA0012 airfoil in half-space is
chosen to study the noise distribution characteristics. The
incoming velocity isU0= 68.3m/s, and the Reynolds number
is Re= 2.32× 106, corresponding to the chord length l=
0.495m. The attack angle of incoming flow is 2.5°, and the
environmental temperature is 15°C. As shown in Figure 9,
the leading edge of the airfoil is located at (0,0) in the x–y

plane coordinate system. A structured meshing approach is
used to divide the flow field into rectangular grids. The fluid
calculation is executed with ANSYS Fluent19.0, and the
computational domain shown in Figure 9(a) is discretized
with a total of 84,992 rectangular grid cells, with 336 grid cells
uniformly distributed on the airfoil surface. Numerical simu-
lation is executed with discrete eddy simulation turbulent

0.009792

0.46 0.48 0.5 0.52
Time (s)

0.54 0.56

0.009795

0.009798
0.009801

0.009804

0.27395

0.27400
0.27405CL

CD

0.27410

0.27415
0.27420

ðaÞ

100 500
Frequency (Hz)

1,000 5,000

CL
CD

C L
, C

D

10–19

10–17

10–15

10–13

10–11

10–9

ðbÞ
FIGURE 11: Variations of the lift coefficient (CL) and drag coefficient (CD): (a) the time history of CL and CD; (b) power spectral density
variations of CL and CD with frequency.
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FIGURE 12: The distribution of four chosen integral boundaries: (a) total; (b) local.

TABLE 2: The meshes on and outside the different integral boundaries.

Integral boundary
The grids distributed on the integral

boundary
The grids contained in Ω–Ω0 outside the

integral boundary

Wall 336 84,992
S1 456 73,112
S2 496 68,352
S3 576 57,632
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model in combination with second-order difference methods,
and the time step is chosen as Δt¼ 1× 10−4s with a single
time step iteration limited to 20 iterations.

The pressure coefficient around the airfoil is studied first
because it determines the lift and drag coefficients. As dis-
played in Figure 10, the result of the mean pressure coeffi-
cient is in good agreement with experimental results and
numerical results from an LES turbulent model obtained
by Gloerfelt and Garrec [35]. Figure 11(a) shows that the
lift coefficient (CL) and drag coefficient (CD) have the same
period along with time, which is in agreement with [13]. The
variation of power spectral density (PSD) in Figure 11
demonstrates that the magnitude of CL and CD reaches the
peak value at f= 515.9Hz, corresponding to kl= 4.72 and St
= 3.76. The variation of the lift coefficient with time and
frequency is the same as that of the drag coefficient, and
the variation of the lift coefficient is much greater than that
of the drag coefficient. This means that the sound pressure in
the far field must be dominated by the lift, and the maximum
noise should propagate along the vertical direction.

For a plate profile, Howe [26] has proposed an analytical
model to study the acoustic noise. The author also studied

the noise distribution in half-space combined with imaginary
sources. This paper mainly investigates the permeable bound-
ary in half-space to find a simple and efficient improved
algorithm.

The following acoustic calculations are executed with
Intel Fortran 2015 to prepare the program code according
to Equations (7) and (21). There are 4,096 samples collected
along the time from t= 0.4544 s to t= 0.864 s with one time
step, and then these samples are averaged into four groups as
input to solve Equation (5). Here, a group contains 1,024
samples with information on fluid density, pressure, and
velocity. Acoustic results are obtained with a two-step calcu-
lation for scattered sources on the integral boundary SW and
far-field noise, and four sets of data are averaged as the final
acoustic results. The ground boundary is located below the
x-axis with a distance of H= 20l.

First, the directivity of the sound pressure is investigated
with different permeable boundaries. To reduce interpolation
calculations, the permeable boundary coincides with the flow
field grid line. Here, three permeable boundaries selected as
S1, S2, and S3 are selected to carry out the noise calculations in
Figure 12. The permeable boundary S1 is closest to the airfoil
surface, with the other two at some distance from the airfoil.
Among them, the permeable boundary S3 is especially the
farthest. In our previous research on free space noise [12],
we found that the choice of the permeable boundary has
someminor influence on calculated results. As shown inTable 2,
the number of the grid cells on and outside the different
integral boundaries is compared. According to the permeable
boundary study in [12], it can be tentatively extrapolated that
there may be numerical errors in the acoustic calculations,
especially with the integral boundary S3 due to its distance
far away from the airfoil.

From a hydrodynamic point of view, Figure 11 displays
that the lift coefficient CL is greater than the drag coefficient
CD with two orders of magnitude and reaches its maximum
value at f= 515.9Hz, indicating that the maximum sound
pressure must be along the vertical direction at f= 515.9Hz
due to the determining effect of the lift coefficient CL. Accord-
ing to Howe’s analytical model, the frequency corresponding
to the product of wave number and chord length kl= 1, 5, 10,
20 is always chosen as the basic frequency. In this case, the
frequency f= 535.1Hz corresponding to the relationship kl=
5 is the closest to f= 515.9Hz. Figure 13 shows the spatial
distribution of observation points located on a circular arc
above the ground with radius R¼ 50m, assuming that 360
observation points are uniformly distributed to investigate the
far-field propagation characteristics of acoustic waves. The
angle α is obtained by calculating with the trigonometric
functions, α¼ arccos ðH=RÞ :. The observation point located
within the range (α, 360°–α) is displayed in Figure 13.

Figure 14 gives the SPL comparison between two fre-
quencies for observer points within (90° and 270°). Here, α
is equal to 90°, corresponding to the observation point in the
positive direction of the y-axis. It can be found that the peak
value at f= 515.9Hz is larger than that at f= 535.1Hz, cor-
responding to the results of the hydrodynamic computing,
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FIGURE 13: The spatial location distribution of observation points.
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and the directions of maximum SPL are basically the same
within (160°, 200°) along the clockwise direction. The direction
of maximum sound pressure is determined by the lift force CL.

The distribution of the sound field at several special fre-
quencies corresponding to kl= 1, 5, 10, 20 is shown here.
Figure 15 displays the SPL directivities at different wavenum-
bers for observation points located on a circular arc with R¼
50m, and the observation points are located within (78.6°,
281.4°) for α= 78.6°. It shows that the SPL amplitude
obtained by four integral boundaries is in good agreement
at different wave numbers, except for the integral boundary
S3, which is slightly larger or smaller in some directions.
Combined with the mesh information given in Table 1, it
can be seen that the fluid domain outside the integral bound-
ary contains only 57,632 grid cells, and the contribution of
the other 27,360 grid cells to the acoustic field is calculated
equivalently by the permeable boundary.

Meanwhile, the SPL directivities at different wavenum-
bers for observation points located on a circular arc with R¼
25m is also shown in Figure 16, and the observation points
are located within (66.7°, 293.3°) for α= 66.7°. From the
perspective of flow-generated noise, the forced cutting of the

vortex pulsation region by the integral boundary causes the
excessive loss of the source signal. This also explains why
there exist numerical differences in the sound field simulated
with the permeable boundary S3. The good point is that the
selection of the integral boundary has no effect on the SPL at
the observation point near the ground, which illustrates that
the present method is capable of predicting the noise in the
near-ground direction and taking into account the scattering
effect, which is different from the previous studies. The above
study gives us an insight that the region with strong flow field
pulsations cannot be completely discarded when selecting
the permeable boundary.

In addition, the obvious difference from free space is that
the overall distribution of the SPL shows a petal-like distri-
bution at low frequency, as given in Figure 15(a), and the
number of wave lobes increases sharply with increasing
wavenumber in Figures 15(a), 15(b), 15(c), and 15(d). The
same variation tendency is also shown in Figure 16 com-
pared with Figure 15. Without considering the effect of the
integral boundary, it can be seen from Figures 15 and 16 that
the closer the observation points are to the ground, the
greater the pressure amplitude. From the perspective of

020 300
SPL (dB)

30

60

90

120

150

180

Airfoil
S1

S2
S3

ðaÞ

SPL (dB)

00 30 40 50 60

30

60

90

120

150

180

Airfoil
S1

S2
S3

ðbÞ

SPL (dB)

0
–20 10 20 30 40

30

60

90

120

150

180

Airfoil
S1

S2
S3

ðcÞ

SPL (dB)
–20 20 30 40 50 60 0

30

60

90

120

150

180

Airfoil
S1

S2
S3

ðdÞ
FIGURE 15: SPL directivities of four integral boundaries at different wavenumbers for observation points located on a circular arc with R¼
50m and α= 78.6°: (a) kl= 0.98; (b) kl= 4.98; (c) kl= 9.99; (d) kl= 20.16.
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energy transmission, the acoustic signal received by the obser-
vation points near the ground does not undergo excessive
energy attenuation due to long-range propagation, and the
sound pressure amplitude is correspondingly greater than
that of the remote observation points. In summary, the com-
plexity of the half-space sound field is mainly caused by the
ground scattering effect, which is consistent with the results
obtained in Section 4.1.

To comprehensively examine the numerical errors caused
by the permeable boundary, we use the maximum SPL corre-
sponding to kl= 4.98 in Figures 15 and 16 as a reference.
Table 3 presents the SPL obtained by different permeable
boundaries and compares them with the results obtained by
the airfoil surface. The relative errors are the errors between
the calculation results of the permeable boundary and that
of the airfoil surface. Numerical results indicate that the SPL
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FIGURE 16: SPL directivities of four integral boundaries at different wavenumbers for observation points located on a circular arc with R¼
25m and α= 66.7°: (a) kl= 0.98; (b) kl= 4.98; (c) kl= 9.99; (d) kl= 20.16.

TABLE 3: The maximum SPL obtained by different permeable boundaries corresponding to kl= 4.98.

The integral
boundary

R= 50m, α= 78.6°
maximum SPL (dB)

Relative
error (%)

R= 25m, α= 66.7°
maximum SPL (dB)

Relative
error (%)

Wall 54.9 0 57.9 0
S1 56.5 2.7 59.7 3.1
S2 56.0 2 59.1 2
S3 52.3 4.7 55.1 4.8
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and relative errors obtained from various permeable bound-
aries are acceptable when compared to those obtained from
the airfoil surface. Examining the spatial position distribution
diagram in Figure 12, it is evident that there is no consistent
trend of increasing or decreasing SPL and relative error with
spatial changes in the integration boundary. The integration
boundary S2 corresponds to the smallest relative error, while
the integration boundary S3 corresponds to the largest relative
error. The physical phenomenon has two causes. First, repre-
sentative pulsation sources are lost as the integration boundary
moves further from the airfoil surface. Second, the permeable
surface cuts the turbulent vortex structure, which also causes
numerical errors.

The scattering effect significantly changes the noise prop-
agation mechanism, and what kind of noise spatial distribu-
tion is also the focus of the research work to determine the
noise propagation characteristics from near to far. Next, the
noise distribution is investigated by placing 8,538 observers
located in the upper half of the space contained in (−80l, 80l)
× (13l, 80l). Combinedwith SPLdirectivities shown in Figure 17,
the airfoil surface and the permeable boundary S2 are selected to
investigate the noise spatial distribution. Pressure contours dis-
played in Figure 17 show that the results obtained with the
airfoil surface agree well with those obtained with the integral
boundary S3. The maximum value of pressure amplitude occurs
at kl= 4.98 according to Figure 17(b), and its distributed direc-
tion and the angle of the incoming flow direction is about
70°–110°. However, at other selected frequencies as shown in
Figure 13, it is basically the closer the observation points are to
the ground, the greater the pressure value.

Figures 15, 16, and 17 demonstrate that the permeable
boundary S2 can be utilized to capture the noise distribution,
including ground-induced scattering effects, instead of the
airfoil surface. Figure 18 displays the spatial distribution of
acoustic noise in detail when the permeable boundary S2 is
selected as the integral boundary. The frequencies for kl= 1,
5, 10, and 20 are still being studied. Figure 18 shows that the
variation and distribution of acoustic noise are consistent
with that in Figure 17. The number of petals in the upper
half-space gradually increases as the frequency increases.
With the exception of the frequency corresponding to
Figure 18(b), the other three images all indicate that the noise
near the ground is significantly greater. This trend is consistent
with the findings presented in Figures 15 and 16. The unique
distribution displayed in Figure 18(b) is due to the fact that the
noise caused by flow field pulsations in the vertical direction is
greater than that induced by the scattering effect. Aerodynamic
noise in half-space is closely related to flow field pulsations and
scattering effects, in contrast to aerodynamic noise in free space.
The far and near field noise produced by the NACA0012 air-
foil, along with the ground scattering effect, can be calculated
using permeable boundaries instead of the object surface.

5. Conclusions

In this paper, an improved boundary element method for
aerodynamic noise is proposed, which takes into account the
half-space scattering effect in combination with the perme-
able boundary. The acoustic noise of the dipole point source
with an exact solution in half-space is studied, and the
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FIGURE 18: The spatial distribution of aerodynamic noise with the permeable boundary S2: (a) kl= 0.98; (b) kl= 4.98; (c) kl= 9.99; (d) kl=
20.16.
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aerodynamic noise generated by the 2D circular cylinder and
NACA0012 airfoil is examined in detail. Based on the numerical
studies conducted above, the following conclusions are drawn:

This boundary element method improves upon previous
methods by avoiding numerical singularities and using per-
meable boundaries instead of object surface integrals to cal-
culate acoustic noise in half-space. Noise distributions in
half-space differ greatly with that in free space; this is because
the scattering effect, which is induced by the ground boundary,
changes the noise distribution significantly. Numerical studies
indicate that the ground scattering effect amplifies acoustic
signals. By calculating the noise of the mirrored source to
capture the scattering effect effectively reduces the computa-
tional complexity. Different permeable boundaries have little
impact on the amplitude of the half-space aerodynamic noise.

The noise produced by the NACA0012 airfoil, both near
and far field, including the ground scattering effect, can be
calculated using various permeable boundaries instead of the
object surface. However, the permeable boundary located
further away from the airfoil may cause excessive loss of
the source signal due to the forced cutting of the vortex
pulsation region. The distribution of half-space aerodynamic
noise is affected by both the spatial–temporal distribution of
sound sources and boundary scattering effects. At the main
frequency f= 515.9Hz (kl= 1), the flow field pulsation is
determined by the lift coefficient CL and is distributed verti-
cally. As a result, the noise distribution reaches its maximum
along the incoming flow 160°–200°. At other selected fre-
quencies corresponding to kl= 1, 10, and 20, the scattering
effect from the ground is more pronounced and has a signif-
icant impact on the sound field distribution, particularly for
observer points near the ground.

The acoustic integral model proposed in this paper is
applied for both the 2D and the 3D problem. For the 3D
sound propagation problem, the surface sources of the flow
field on the 3D permeable surface enclosing the object and
the volumetric sources of the 3D flow field are required. Mean-
while, the acoustic boundary element integrals are also pro-
cessed by the 3D free-space Green’s function according to the
treatment of Green’s functions in 2D free space. The difficulty
of the problem lies in the 3D acoustic calculations involving
the source calculations of the actual fluid flow, and acoustic
propagation calculations of the workload are larger; about this
research work on this aspect is in progress.

Appendix

The scattered Green’s function satisfied the following wave
equation:

1
c20

∂2gS
∂τ2

−r2gS ¼ δ x − yð Þδ t − τð Þ
∂gS
∂n

����
Sh

¼ 0
: ðA:1Þ

Combined with Equation (1) and Equation (A.1), the
product of Equation (1) with gSðx; t; y; τÞ: minus the product
of Equation (A.1) with ρ0ðx; tÞ : can be organized as follows:

1
c20

gS
∂2ρ0

∂τ2
− ρ0

∂2gS

∂τ2

� �
− gSr2ρ0 − ρ0r2gSð Þ ¼ 1

c20

∂2Tij

∂xi∂xj
− ρ0δ x − yð Þδ t − τð Þ:

ðA:2Þ

Based on the derivative law,

gS
∂2Tij

∂yi∂yj
− Tij

∂2gS
∂yi∂yj

¼ ∂
∂yi

gS

∂Tij

∂yj

 !
−

∂
∂yj

Tij
∂gS
∂yi

� �
:

ðA:3Þ

For any function ϕ;  φ;  f defined in the spatial region Ω,
it is satisfied thatZ

Ω
ϕr2φ − φr2ϕð Þdy ¼

Z
∂Ω

ϕ
∂φ
∂yi

− φ
∂ϕ
∂yi

� �
nids;

ðA:4Þ

d
dτ

Z
Ω
fdy ¼

Z
Ω

∂f
∂τ

dy þ
Z

∂Ω
vnfds; ðA:5Þ

where ∂Ω represents the boundary of the spatial region Ω.

Applying the integral operator for the space region Ω to
both sides of Equation (A.2) and performing a series of col-
lations [12] yields the following equation:

C xð Þc20ρ0 x; tð Þ ¼
Z 1

−1

Z
Ω−Ω0f gn xf g

ρuiuj þ ph − c20ρhð Þδij
Â Ã ∂2gS

∂yi∂yj
dΩydτ

−

Z 1

−1

Z
∂Ωn xf g

p0ni þ ρui un − vnð Þ½ � ∂gS
∂yi

dΓydτ

þ
Z 1

−1

Z
∂Ωn xf g

ρ0vn þ ρ un − vnð Þ½ � ∂gS
∂τ

dΓydτ:

ðA:6Þ
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The sound field is enclosed by the boundary ∂Ω, which is
consist of two parts: the inner boundary S in the near field
and the outer boundary Γ in the far field. The derivation
process selects the smooth boundary around the noncom-
pact bodies as the integral boundary S.

Nomenclature

Symbol

A: The amplitude of oscillationx
eij: Fluid viscous stress tensor
g: Green’s function in time domain
Ω: The fluid field
S: The integral boundary
Ω0: The fluid field between the rigid surface and the

integral surface
Sb: The ground boundary
C(x): Solid angle function
n: Unit normal vector
vn: The moving velocity of integral boundary (m/s)
x, y: Observer position, sound source position
t, τ: The time of receiving wave, the time of sending

wave (s)
G: Green’s function in the frequency domain
Gs, gs: Scattered Green’s function in half-space
gk: The series expansion of Green’s function
Γ: The outer boundary in the far field
R.H.S.: Right-hand side
Δt: Time step (s)
Δt∗: Nondimensional time step
U0: Velocity of incoming flow (m/s)
Cp: Pressure coefficient
CL, CD: Lift coefficient, drag coefficient
df: Frequency resolution
H: The distance from the ground boundary to the ori-

gin of the coordinates
SPL: Sound pressure level (dB)
R: The radius of the circle for observation points
k: The wave number
l: The chord length
ω: Circular frequency (radian/s)
λ: Wavelength

Subscripts

i, j: The ith or jth component
h: Quantity related to fluid flow
0: The quantity related to the incoming flow
a: Quantity related to noise propagation.

Data Availability

Numerical data are included in the submitted paper.
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