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In this paper, we consider the existence and iterative approximation of solutions for a class of nonlinear fourth-order integro-
differential equations (IDEs) with Navier boundary conditions. We first prove the existence and uniqueness of analytical solutions
for a linear fourth-order IDE, which has rich applications in engineering and physics, and then we establish a maximum principle
for the corresponding operator. Based upon the maximum principle, we develop a monotone iterative technique in the presence of
lower and upper solutions to obtain iterative solutions for the nonlocal nonlinear problem under certain conditions. Some
examples are presented to illustrate the main results.

1. Introduction

The aim of this paper is to develop a monotone iterative
technique for the following nonlinear fourth-order Fredholm
type integro-differential equation (IDE):

y 4ð Þ xð Þ ¼ f x; y xð Þ;
Z

1

0
 k x; tð Þy tð Þdt

� �
; x 2 0; 1ð Þ; ð1Þ

with the Navier boundary conditions as follows:

y 0ð Þ ¼ y 1ð Þ ¼ y00 0ð Þ ¼ y00 1ð Þ ¼ 0; ð2Þ

where f 2Cð½0; 1�×R2;RÞ:; k2Cð½0; 1�× ½0; 1�;RÞ:.
Fourth-order differential equations were originally used

in physics to describe the deformation of beams and plates
(see [1], pp.1–2) and often take the form of linear equations.
If the ends of the beam or the edges of the plate are simply
supported, the equation may be completed by boundary con-
ditions in the form of Equation (2). The first solution of the
linear problem of bending of simply supported plates is due

to Navier in the 1820s ([2], pp.105−109); for this reason, (2)
has since been often referred to as Navier boundary condi-
tion. The nonlinear IDE boundary value problems (1) and
(2), considered in this paper, can be seen as a generalization
of the linear nonlocal fourth-order problem.

y 4ð Þ xð Þ þMy xð Þ − N
Z

1

0
 k x; tð Þy tð Þdt ¼ p xð Þ; x 2 0; 1ð Þ

y 0ð Þ ¼ y 1ð Þ ¼ y00 0ð Þ ¼ y00 1ð Þ ¼ 0;

ð3Þ

where M;N are constants, p2C½0; 1� :. Problem (3) arises
from the models for suspension bridges [3, 4], quantum
theory [5], and transient ultrasonic fields [6]. Since the non-
local term under the integral sign will cause some mathemat-
ical difficulties, the analytical solutions for IDEs are usually
not easy to obtain. For the linear fourth-order boundary
value problems governed by IDEs like (3), only a few studies
have been carried out by using numerical methods; see, e.g.,
[7–13] and the references therein.
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The monotone iterative technique concerning upper and
lower solutions is a powerful tool to solve nonlinear lower-
order differential equations with various kinds of boundary
conditions; see, e.g., [14–22] and the references therein. This
technique has also been applied to the special case of (1) and
(2) that f does not contain the integral term (see, e.g.,
[23–25]), namely simple local fourth-order boundary value
problem as follows:

y 4ð Þ xð Þ ¼ f x; y xð Þð Þ; x 2 0; 1ð Þ;
y 0ð Þ ¼ y 1ð Þ ¼ y00 0ð Þ ¼ y00 1ð Þ ¼ 0:

ð4Þ

It is worth noticing that Cabada et al. [25] have pointed
out that for general second-order differential equations with
periodic, Neumann, or Dirichlet boundary conditions, it is
well-known that the existence of a well-ordered pair of lower
and upper solutions α≤ β is sufficient to ensure the existence
of a solution in the sector enclosed by them. However, this
result is not true for fourth-order differential Equation (4);
see the counterexample in [25, Remark 3.1]. Indeed, the
application of the lower and upper solutions method in
boundary value problems of the fourth order is heavily
dependent on the conclusion of the maximum principle for
the corresponding linear operators. For fourth-order local
problems without integral terms in the equation but with
lower-order derivative terms, related results on the lower and
upper solutions method and monotone iterative technique,
see [26–35] and the references therein.

We note that, on the one hand, the analytical solutions
for fourth-order linear IDEs, such as Equation (3), have not
been discussed in the aforementioned numerical solution
works [7–13]. On the other hand, the existence and approxi-
mation of solutions for nonlinear nonlocal fourth-order
Equation (1) with corresponding boundary value conditions
have not been studied. Motivated by the above two factors,
the main object of this paper is to discuss the analytical
solution for the linear nonlocal problem (3) and then develop
a monotone iterative technique in the presence of lower and
upper solutions to solve the nonlinear nonlocal problems (1)
and (2).

The rest paper is arranged as follows: In Section 2, we
first prove a unique result of analytical solution for linear
IDE (3) with inhomogeneous boundary value condition, and
then we establish a maximum principle for the correspond-
ing operator in (3). In Section 3, based upon the maximum
principle, we develop a monotone iterative technique for
nonlinear nonlocal problems (1) and (2) in the presence of
lower and upper solutions under some monotonic condition
on the nonlinearity f . In Section 4, we present two examples
to illustrate the main results. The first one is a concrete
nonlinear nonlocal fourth-order boundary value problems,
and the second one is a general sixth-order boundary value
problems, which can be transformed into fourth-order non-
local problems like (1) and (2). Finally, Section 5 contains
our conclusions.

2. The Linear Inhomogeneous Boundary Value
Problem Governed by IDEs

In this section, we prove a unique result of solutions for
Equation (3) with general inhomogeneous boundary value
conditions and then establish the maximum principle for the
corresponding operators.

As preliminaries, we first consider the following linear
fourth-order inhomogeneous boundary value problem:

y 4ð Þ xð Þ þMy xð Þ ¼ p xð Þ; x 2 0; 1ð Þ;
y 0ð Þ ¼ A; y 1ð Þ ¼ B; y00 0ð Þ ¼ C; y00 1ð Þ ¼ D;

ð5Þ

where M>0 and A;B;C;D are constants, p2C½0; 1�:. By
Cabada [25, Lemma 2.1] or Ma et al. [28, Theorem 2.1], if
M ≤ c0 ≈ 950:8843, then Problem (5) has a unique solution
given by the following:

y xð Þ ¼
Z

1

0
 G x; sð Þp sð Þdsþ Aw xð Þ þ Bw 1 − xð Þ þ Cχ xð Þ

þDχ 1 − xð Þ; x 2 0; 1½ �;
ð6Þ

where

G x; sð Þ ¼
1

2m2

sin mxð Þ sin m 1 − sð Þð Þ
m sinm

−
sinh mxð Þ sinh m 1 − sð Þð Þ

m sinhm

� �
; 0 ≤ x ≤ s ≤ 1;

1
2m2

sin msð Þ sin m 1 − xð Þð Þ
m sinm

−
sinh msð Þ sinh m 1 − xð Þð Þ

m sinhm

� �
; 0 ≤ s ≤ x ≤ 1;

8>>><
>>>:

; ð7Þ

is the Green function for the boundary value problem as
follows:

y 4ð Þ xð Þ þMy xð Þ ¼ 0; x 2 0; 1ð Þ;
y 0ð Þ ¼ y 1ð Þ ¼ y00 0ð Þ ¼ y00 1ð Þ ¼ 0;

ð8Þ

with M¼m4; wðxÞ: is the unique solution of the inhomoge-
neous problem as follows:

y 4ð Þ xð Þ þMy xð Þ ¼ 0;  y 0ð Þ ¼ 1; y00 0ð Þ ¼ y 1ð Þ ¼ y00 1ð Þ ¼ 0;

ð9Þ
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and χðxÞ: is the unique solution of the inhomogeneous prob-
lem as follows:

y 4ð Þ xð Þ þMy xð Þ ¼ 0;  y 0ð Þ ¼ 0; y00 0ð Þ ¼ 1; y 1ð Þ ¼ y00 1ð Þ ¼ 0:

ð10Þ

Moreover, by Cabada [25, Proposition 2.1.], when
0<M¼m4 ≤ c0 ≈ 950:8843, the Green function Gðx; sÞ :

given by (7) is nonnegative on ½0; 1� : × ½0; 1� :.
Denote

h x;A; B;C;Dð Þ ¼ Aw xð Þ þ Bw 1 − xð Þ þ Cχ xð Þ þ Dχ 1 − xð Þ;
ð11Þ

it is easy to see that h is the unique solution of the following:

y 4ð Þ xð Þ þMy xð Þ ¼ 0;  x 2 0; 1ð Þ; ð12Þ

y 0ð Þ ¼ A; y 1ð Þ ¼ B; y00 0ð Þ ¼ C; y00 1ð Þ ¼ D; ð13Þ

and the following conclusion holds:

Lemma 1. Assume that 0<M ≤ c1 ≈ 125:137. Then if A≥ 0;
B≥ 0;C≤ 0;D≤ 0, we have the following:

h x;A; B;C;Dð Þ ¼ Aw xð Þ þ Bw 1 − xð Þ þ Cχ xð Þ þ Dχ 1 − xð Þ ≥ 0;

ð14Þ

if A≤ 0;B≤ 0;C≥ 0;D≥ 0, we have the following:

h x;A; B;C;Dð Þ ¼ Aw xð Þ þ Bw 1 − xð Þ þ Cχ xð Þ þ Dχ 1 − xð Þ ≤ 0:

ð15Þ

Proof. By Cabada [25, Corollary 2.1.], if 0<M ≤
c1 ≈ 125:137, then wðxÞ : ≥ 0; 8x2 ½0; 1� : and χðxÞ: ≤ 0; 8x2
½0; 1� :, and thus (14) and (15) are immediate consequences.□

Now, we give out the first main result of this section.

Theorem 1. Assume that 0<M ≤ c0 ≈ 950:8843, and

∥k∥1 ¼max k x; tð Þ∣ x; tð Þ 2 0; 1½ � × 0; 1½ �f g
<

1

Nj j max
x2 0;1½ �

Z
1

0
G x; sð Þds

; ð16Þ

then for any p2C½0; 1� : and constants A;B;C;D, the following
nonlocal inhomogeneous boundary value problem:

y 4ð Þ xð Þ þMy xð Þ − N
Z

1

0
 k x; tð Þy tð Þdt ¼ p xð Þ; x 2 0; 1ð Þ;

y 0ð Þ ¼ A; y 1ð Þ ¼ B; y00 0ð Þ ¼ C; y00 1ð Þ ¼ D;

ð17Þ

has a unique solution.

Proof. Observe that y is a solution of (17) if and only if y is a
fixed point of the operator K :C½0; 1� : → C½0; 1� : given by the
following: □

Ky½ � xð Þ¼
Z

1

0
G x; sð Þp sð Þdsþ N

Z
1

0

Z
1

0
G x; sð Þk s; tð Þy tð Þdtds

þ h x;A;B;C;Dð Þ;
ð18Þ

where Gðx; sÞ: and h is as in (7) and (11), respectively.
For u; v2C½0; 1� :, we have the following:

∥Ku − Kv∥1 ¼ N
Z

1

0

Z
1

0
 G x; sð Þk s; tð Þ u tð Þ − v tð Þ½ �dtds











1

≤ u − vk k1 Nj j
Z

1

0

Z
1

0
G x; sð Þk s; tð Þdtds

����
����

≤ u − vk k1 Nj j kk k1
Z

1

0
G x; sð Þds

≤ u − vk k1 Nj j kk k1 max
x2 0;1½ �

Z
1

0
 G x; sð Þds;

ð19Þ

then, according to condition (16) and Banach fixed point
theorem, there exists a unique fixed point for the operator
K , which assures the existence and uniqueness of solution
for (17).

Remark 1. When A¼B¼C¼D¼ 0, the inhomogeneous
problem (17) will degenerate into the homogeneous problem
(3). Thus, we obtain a result of the existence and uniqueness
of solutions for (3). As far as we know, this result is new.

In the sequel, we establish the maximum principle for the
operator in (3) and (17).

We first derive an explicit expression of analytical solu-
tions for (17). Using Picard’s iterative method, we know
that for any y0 2C½0; 1� :, the sequence given by yn ¼Kyn−1;
n≥ 1, converges to the unique solution given by Theorem 1.
Taking

y0 ¼
Z

1

0
 G x; sð Þp sð Þdsþ h x;A;B;C;Dð Þ; ð20Þ
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we get that

yn xð Þ ¼ y0 xð Þ þ
Z

1

0
 Qn x; sð Þh s;A;B;C;Dð Þds

þ
Z

1

0
 Fn x; sð Þp sð Þds;

ð21Þ

where

Fn x; sð Þ ¼
Z

1

0
 Qn x; tð ÞG t; sð Þdt; ð22Þ

Qn x; sð Þ ¼ ∑
n

i¼1
 R ið Þ x; sð Þ: ð23Þ

Here

R ið Þ x; sð Þ ¼
Z

1

0
 R i−1ð Þ x; tð ÞR t; sð Þdt; i ≥ 2; ð24Þ

and

R 1ð Þ x; sð Þ ¼ R x; sð Þ ¼ N
Z

1

0
 G x; tð Þk t; sð Þdt: ð25Þ

By (16), we have the following:

N
Z

1

0
 G x; sð Þk s; tð Þdt ≤ Nj j ∥ k∥1 max

x2 0;1½ �
 

Z
1

0
 G x; sð Þds¼ d<1;

ð26Þ

then

R ið Þ

 


1 ≤ di; ð27Þ

and the series ∑1
i¼1R

ðiÞðx; sÞ: will converge to a function Q2
Cð½0; 1�× ½0; 1�Þ :. Meanwhile, fFnðx; sÞg: will converge to the
function F 2Cð½0; 1�× ½0; 1�Þ : given by the following:

F x; sð Þ ¼
Z

1

0
 Q x; tð ÞG t; sð Þdt: ð28Þ

Now, by passing to the limit for the Picard’s iterative
yn ¼Kyn−1, we conclude that the unique analytical solution
of (17) is given by the following:

y xð Þ ¼
Z

1

0
 G x; sð Þp sð Þdsþ h x;A;B;C;Dð Þ

þ
Z

1

0
 Q x; sð Þh s;A;B;C;Dð Þdsþ

Z
1

0
 F x; sð Þp sð Þds:

ð29Þ

Now, by Lemma 1, the expression (29), and the positivity
of the Green function G, one can easily get the following
maximum principle for problem (17).

Theorem 2. Assume that 0<M<c1 ≈ 125:137;Nkðx; tÞ : ≥ 0
and ∥k∥1< 1

jNjmaxx2½0;1�
R

1

0
Gðx; sÞds, then

(i) If pðxÞ : ≥ 0; 8x2 ½0; 1� :;A≥ 0;B≥ 0;C≤ 0;D≤ 0, then
the unique solution y of (17) is nonnegative;

(ii) If pðxÞ: ≤ 0; 8x2 ½0; 1� :;A≤ 0;B≤ 0;C≥ 0;D≥ 0, then
the unique solution y of (17) is nonpositive.

Remark 2. When A¼B¼C¼D¼ 0; hðx;A;B;C;DÞ: ≡ 0,
then the linear nonlocal fourth-order problem (3) has a
unique analytical solution as follows:

y xð Þ ¼
Z

1

0
 G x; sð Þp sð Þdsþ

Z
1

0
 F x; sð Þp sð Þds; ð30Þ

according to (29). This explicit expression of analytical solu-
tions can be seen as an improvement on the numerical solu-
tion work of (3) in [7–13].

Remark 3. In [25], the authors gave out the explicit expres-
sion of solutions for problem (17) when N ¼ 0, and then
obtained similar maximum principle for linear local opera-
tor Ly¼ yð4Þ þMy, see [25, Lemma 2.1] and [25, Corollary
2.1] respectively. Thus, our results, (29), on the analytical
solution of nonlocal problem (17) and the maximum
principle Theorem 2 generalize corresponding results in
[25].

Remark 4. The conclusion of Theorem 2 also holds for
homogeneous problem (3). That is, we get a maximum prin-
ciple for the fourth-order differential operator Ly¼ yð4Þ þ
My−N

R
1
0kðx; tÞ :yðtÞ :dt in function space DðLÞ: : ¼fy2C4½0;

1� : yð0Þ¼ yð1Þ¼ y00ð0Þ¼ y00ð1Þ¼ 0g:.

3. Main Results

We will use the following definition of lower and upper
solutions:

Definition 1. The function α2C4½0; 1� : is said to be a lower
solution for the BVP (1) and (2) if

α 4ð Þ xð Þ ≤ f x; α xð Þ;
Z

1

0
 k x; tð Þα tð Þdt

� �
; x 2 0; 1ð Þ;

ð31Þ

and

α 0ð Þ ≤ 0; α 1ð Þ ≤ 0; α00 0ð Þ ≥ 0; α00 1ð Þ ≥ 0: ð32Þ
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An upper solution β2C4½0; 1� : is defined analogously by
reversing the inequalities in (31) and (32).

Theorem 3. Assume f 2Cð½0; 1�×R2;RÞ:; k≥ 0 and there
exists a lower solution α and an upper solution β for problems
(1) and (2) which satisfy the following:

α xð Þ ≤ β xð Þ for x 2 0; 1½ �: ð33Þ

If there exist two constants M;N>0 satisfying M<c1 ≈
125:137 and∥k∥1< 1

jNjmaxx2½0;1�
R

1

0
Gðx; sÞds such that

f x; u1; v1ð Þ − f x; u2; v2ð Þ ≥ −M u1 − u2ð Þ þ N v1 − v2ð Þ;
ð34Þ

for

α xð Þ ≤ u2 ≤ u1 ≤ β xð Þ and
Z

1

0
k x; tð Þα tð Þdt ≤ v2

≤v1 ≤
Z

1

0
k x; tð Þβ tð Þdt; x 2 0; 1½ �:

ð35Þ

Then the iterative sequences fαng: and fβng: produced by
the iterative procedure as follows:

Lyn xð Þ ¼ f x; yn−1 xð Þ;
Z

1

0
 k x; tð Þyn−1 tð Þdt

� �
þMyn−1 xð Þ − N

Z
1

0
 k x; tð Þyn−1 tð Þdt;

yn 0ð Þ ¼ yn 1ð Þ ¼ y00n 0ð Þ ¼ y00n 1ð Þ ¼ 0; n¼ 1; 2;…;
ð36Þ

with the initial functions y0 ¼ α and y0 ¼ β, respectively, sat-
isfy the following:

αn−1 ≤ αn ≤ βn ≤ βn−1; ð37Þ

and converge uniformly to the extremal solutions of BVP (1)
and (2), in ½α; β� :.

Proof. Define the mapping E :C½0; 1� : → C½0; 1� : by the follow-
ing: □

E σð Þ xð Þ ¼ f x; σ xð Þ;
Z

1

0
k x; tð Þσ tð Þdt

� �
þMσ xð Þ

−N
Z

1

0
k x; tð Þσ tð Þdt:

ð38Þ

Denote Φ¼T ∘ E, where T ¼ L−1 :C½0; 1� : → DðLÞ :. By
Remark 1, it is easy to see that T :C½0; 1� : → C½0; 1� : is com-
pact, then Φ :C½0; 1�: → C½0; 1�: is completely continuous.
Obviously, the solutions of (1) and (2) in C½0; 1� : is equivalent
to the fixed-points of the mapping Φ.

First, we show that

α ≤ u ≤ β⇒ α ≤ Φ uð Þ ≤ β: ð39Þ

Let g¼Φu− α, by the definition of the lower solutions
and (34), we have the following:

g 4ð Þ þMg − N
Z

0
 k x; tð Þg tð Þdt

¼ Φuð Þ 4ð Þ þM Φuð Þ − N
Z

1

0
 k x; tð Þ Φuð Þ tð Þdt

� �
− α 4ð Þ þMα − N

Z
1

0
 k x; tð Þα tð Þdt

� �

¼ E uð Þ xð Þ − α 4ð Þ þMα − N
Z

1

0
 k x; tð Þα tð Þdt

� �

¼ f x; u;
Z

1

0
 k x; tð Þu tð Þdt

� �
þMu − N

Z
1

0
 k x; tð Þu tð Þdt

� �
− α 4ð Þ þMα − N

Z
1

0
 k x; tð Þα tð Þdt

� �

≥M u − αð Þ − N
Z

1

0
 k x; tð Þ u − αð Þ tð Þdt þ f x; u;

Z
1

0
 k x; tð Þu tð Þdt

� �
− f x; α;

Z
1

0
 k x; tð Þα tð Þdt

� �
≥ 0:

ð40Þ
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On the other hand, since Φ :C½0; 1�: → DðLÞ :, then

g 0ð Þ ¼ Φuð Þ 0ð Þ − α 0ð Þ ¼ −α 0ð Þ ≥ 0;  

g 1ð Þ ¼ Φuð Þ 1ð Þ − α 1ð Þ ¼ −α 1ð Þ ≥ 0;
ð41Þ

and

g00 0ð Þ ¼ Φuð Þ00 0ð Þ − α00 0ð Þ ¼ −α00 0ð Þ ≤ 0;  

g00 1ð Þ ¼ Φuð Þ00 1ð Þ − α00 1ð Þ ¼ −α00 1ð Þ ≤ 0:
ð42Þ

By maximum principle in Theorem 2. (i), (40) and (42)
imply that g≥ 0 and then α≤ΦðuÞ :.

By a similar way, using the definition of the upper solu-
tions, the maximum principle in Theorem 2, (ii) and (34), we
can get that ΦðuÞ : ≤ β, then (39) is proved.

Based upon Schauder fixed-point theorem, Φ has a fixed
point in ½α; β� :, which is a solution of (1) and (2).

Second, we show the following claim:

β ≥ u1 ≥ u2 ≥ α⇒ Φu1 ≥Φu2: ð43Þ

In fact, let ϕ¼Φu1 −Φu2, by (34) again, we have the
following:

ϕ 4ð Þ þMϕ − N
Z

1

0
 k x; tð Þϕ tð Þdt

¼ Φu1ð Þ 4ð Þ þMΦu1 − N
Z

1

0
 k x; tð Þ Φu1ð Þ tð Þdt

� �
− Φu2ð Þ 4ð Þ þMΦu2 − N

Z
1

0
 k x; tð Þ Φu2ð Þ tð Þdt

� �

¼ E u1ð Þ xð Þ − E u2ð Þ xð Þ ¼ f x; u1;
Z

1

0
 k x; tð Þu1 tð Þdt

� �
þMu1 − N

Z
1

0
 k x; tð Þu1 tð Þdt

� �

− f x; u2;
Z

1

0
 k x; tð Þu2 tð Þdt

� �
þMu2 − N

Z
1

0
 k x; tð Þu2 tð Þdt

� �
≥ 0:

ð44Þ

On the other hand,

ϕ 0ð Þ ¼ ϕ 1ð Þ ¼ ϕ00 0ð Þ ¼ ϕ00 1ð Þ ¼ 0: ð45Þ

Then, by Remark 2, we conclude that ϕ≥ 0 and then the
claim, (43), is proved.

By the definition of the mapping Φ, the iterative proce-
dure, Equation (36), is equivalent to the iterative equation as
follows:

yn ¼ Φyn−1; n¼ 1; 2;… ð46Þ

Define the iterative sequences fαng : and fβng: satisfy the
following:

αn ¼ Φαn−1    βn ¼ Φβn−1;     n¼ 1; 2;…; ð47Þ

with α0 ¼ α and β0 ¼ β. Then, combining (39) with (43), it is
easy to see that fαng: and fβng: have the monotonicity (37).
By the compactness of Φ and the monotonicity (37), it fol-
lows that fαng: and fβng: are convergent in C½0; 1� :, that is,
there exist y and y 2C½0; 1�: such that

lim
n→1 αn xð Þ ¼ y xð Þ;       lim

n→1  βn xð Þ ¼ y xð Þ: ð48Þ

On the other hand, it is easy to see that the operator Φ is
continuous, then letting n→1 in (47), we have the
following:

y ¼ Φ y
� �

;     y ¼ Φ yð Þ; ð49Þ

thus, y and y are the solutions of (1) and (2).
Finally, we show that y and y are the extremal solutions

of Equations (1) and (2) on ½α; β� :.
Let y2 ½α; β� : be an arbitrary solution of problems (1) and

(2), then combining (39) with (43) we have the following:

Φnα ≤ Φny ≤ Φnβ; ð50Þ

that is
αn ≤ y≤ βn.
Letting n→1, we have the following:

y ≤ y ≤ y: ð51Þ

Hence, y and y are minimum and maximum solutions of
(1) and (2) in ½α; β� :, respectively.

Remark 5. In [25, Theorem 3.1 (I), Remark 3.1.3], the
authors explored the method of lower and upper solutions
for local problem (4) in order to prove the existence of solu-
tions. This result can be seen as a particular case of our
Theorem 3 when f ðx; yðxÞ; R 1

0kðx; tÞyðtÞdtÞ: ¼ f ðx; yðxÞÞ :, and
thus Theorem 3 can be seen as an improvement on [25,
Theorem 3.1 (I)].
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4. Examples

We present two examples to illustrate the application of
Theorem 3.

Example 1. Consider the nonlinear nonlocal fourth-order
boundary value problem as follows:

y 4ð Þ xð Þ ¼ sin πxð Þ 1þ 1
2
cos2⁡ πxð Þ þ y2 xð Þ

� �Z
1

0
 y tð Þdt þ

ffiffiffi
2

p

2
π5 − 3
π

� �� �
; x 2 0; 1ð Þ;

y 0ð Þ ¼ y 1ð Þ ¼ y00 0ð Þ ¼ y00 1ð Þ ¼ 0:

ð52Þ

It is easy to verify that problem (52) has an exact solution

y¼
ffiffi
2

p
2 sin ðπxÞ :.
Denote kðx; tÞ : ¼ sin ðπxÞ :; ðx; tÞ : 2 ½0; 1� : × ½0; 1� : and f ðx;

yðxÞ; R 1
0 kðx; tÞyðtÞdtÞ : ¼ ð1þ 1

2 cos
2
⁡ðπxÞþ y2ðxÞÞ :

R
1
0  sin ðπxÞ:

yðtÞ :dtþ sin ðπxÞ :

ffiffi
2

p
2 ðπ5−3π Þ :; then k≥ 0; ∥k∥1 ¼ 1 and the

function as follows:

f x; u; vð Þ ¼ 1þ 1
2
cos2⁡ πxð Þ þ u2

� �
v þ sin πxð Þ

ffiffiffi
2

p

2
π5 − 3
π

� �
;

ð53Þ

is continuous on ½0; 1� : ×R2. Moreover, problem (52) is
equivalent to the following:

y 4ð Þ xð Þ ¼ f x; y xð Þ;
Z

1

0
 k x; tð Þy tð Þdt

� �
; x 2 0; 1ð Þ;

y 0ð Þ ¼ y 1ð Þ ¼ y00 0ð Þ ¼ y00 1ð Þ ¼ 0:

ð54Þ

It is easy to see that α¼ 0 and β¼ sin ðπxÞ : are lower and
upper solutions of (54), respectively, which satisfy (33).

Taking M¼ 2
π, by (7) and simple computation, we have

the following:

max
x2 0;1½ �

Z
1

0
G x; sð Þds¼

cosh
ffiffi
2
π

4

q
2
π

; ð55Þ

then, for any 0<N<
2
π

cosh
ffiffi
2
π

4
p ≈ 0:446, it is not difficult to ver-

ify that (34) and other conditions in Theorem 3 are satisfied.
Observing that the linear problem corresponding to the

example (52) is as follows:

y 4ð Þ xð Þ þ 2
π
y xð Þ − N

Z
1

0
  sin πxð Þy tð Þdt ¼ p xð Þ; x 2 0; 1ð Þ;

y 0ð Þ ¼ 0; y 1ð Þ ¼ 0; y00 0ð Þ ¼ 0; y00 1ð Þ ¼ 0;

ð56Þ

then, according to Theorem 1 and simple derivation, the
analytical solution of (56) is as follows:

y xð Þ¼
Z

1

0
G x; sð Þp sð Þds

þ
N
Z

1

0
G x; sð Þsin πsð Þds

1 − N
Z

1

0

Z
1

0
G x; sð Þsin πsð ÞdsdxZ

1

0

Z
1

0
G x; sð Þp sð Þdsdx:

ð57Þ

Now, we are ready to use the monotone iterative tech-
nique in Theorem 3. Taking N ¼ 0:4, substitute the lower
solution α0 ¼ 0 and the upper solution β0 ¼ sin ðπxÞ: of prob-
lem (52) into right side of the iterative procedure (36), respec-
tively, by using (57) we can calculate that

α1 ¼ 0:7066  sin πxð Þ; β1 ¼ 0:7258  sin πxð Þ; ð58Þ

consequently, the results of the second iteration are as fol-
lows:

α2 ¼ 0:7070 sin πxð Þ; β2 ¼ 0:7206 sin πxð Þ: ð59Þ

Compared to the exact solution y¼
ffiffi
2

p
2 sin ðπxÞ: of (52),

the results show that the error is very small even after
only one iteration, see Figure 1 below drawn with
MATLAB:

Example 2. Consider the nonlinear sixth-order boundary
value problem as follows:

u 6ð Þ xð Þ ¼ f x; u00 xð Þ; u xð Þð Þ; x 2 0; 1ð Þ;
u 0ð Þ ¼ u 1ð Þ ¼ u00 0ð Þ ¼ u00 1ð Þ ¼ u0000 0ð Þ ¼ u0000 1ð Þ ¼ 0;

ð60Þ

where f 2Cð½0; 1�×R2;RÞ :. Let u00ðxÞ : ¼ yðxÞ :; then, (60) is
equivalent to the following:
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y 4ð Þ xð Þ ¼ f x; y xð Þ;
Z

1

0
k x; tð Þy tð Þdt

� �
; x 2 0; 1ð Þ;

y 0ð Þ ¼ y 1ð Þ ¼ y00 0ð Þ ¼ y00 1ð Þ ¼ 0:

ð61Þ

in which

k x; tð Þ ¼ x 1 − tð Þ; 0 ≤ x ≤ t ≤ 1

t 1 − xð Þ; 0 ≤ t ≤ x ≤ 1

(
; ð62Þ

is the Green function for the following:

u00 xð Þ ¼ 0; x 2 0; 1ð Þ; ð63Þ

u 0ð Þ ¼ u 1ð Þ ¼ 0: ð64Þ

Obviously, k2C ð½0; 1�× ½0; 1�;RÞ : and k≥ 0; ∥k∥1 ¼ 1
4,

then we can obtain the solutions y¼ u00 for problem (61)
by the monotone iterative technique in Theorem 3 under
certain conditions, and consequently, the nonlinear sixth
order problem have solution u¼ R

1
0kðx; tÞ:yðtÞ :dt:

5. Conclusion

In this paper, we first derived an explicit expression of analytical
solutions for the linear fourth-order IDE (3), which can be seen
as an improvement on the numerical solution work [7–13], and
then we proved the uniqueness of the analytical solutions and
established a maximum principle for the corresponding integro-
differential operator which can be regarded as a generalization of

the maximum principles established in [23–33] without integral
terms. Based upon the analytical solutions of the linear problem
and the new maximum principle, we constructed two succes-
sively monotone iterative sequences which are monotonically
convergent from above and from below, respectively, to the
extremal solutions of the nonlinear nonlocal problems (1) and
(2). The monotone iteration technique newly developed in this
paper can not only prove the existence of the solutions to pro-
blems (1) and (2) but also provides an algorithm for the approx-
imation of the solutions.We shownumerically through Example
1 that the convergence of the iterative scheme requires only a few
iterations; that is, the proposed method is very efficient to solve
the nonlinear nonlocal problems (1) and (2). In addition, Exam-
ple 2 shows that themonotone iteration technique we developed
for Equations (1) and (2) can also be used to solve high-order
local nonlinear problems.
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FIGURE 1: The first and second iterations.
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