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Thermal diffusion is a phenomenon where the concentration gradient or diffusive flux is created due to the temperature gradient.
Thermal diffusion is induced because of the higher temperature and uneven distribution of the mixture. Formally, thermal
diffusion is called the Soret effect, and it is a crucial factor in a number of natural occurrences like the separation of isotopes
technique of purification. In this research paper, Maxwell fluid’s flow in the vicinage of a flat plate is discussed by considering the
effect of the thermodiffusion subject to the first-order slip at the boundary with the application of a constant proportional Caputo
(CPC) fractional derivative. The effect of heat generation and radiation is also taken into consideration, as well as the effect of a
magnetic field of constant magnitude. The generalized heat and mass fluxes are considered, and this generalization of heat and
mass fluxes is done by utilizing the CPC fractional derivative. After converting the current model’s governing equations into a
dimensionless form, the temperature, concentration, and velocity fields’ analytical solutions are found. By drawing graphs of the
temperature, concentration, and velocity fields for the parametric modifications, the results are graphically illustrated. It becomes
clear from the results discussion that the outcomes produced by the constant proportional derivative are more decaying than those
obtained with the classical differential operator of order one.

1. Introduction

Thermodiffusion is a physical phenomenon that occurs in
the mixture of different moving particles with an adverse
response to the temperature gradient. In this phenomenon,
the particles of smaller inertia tend to move in the region of
higher temperature, while the particles with the greater inertia
try to move in the area of lower temperature. Formally, this
phenomenon is called the Soret effect and hasmany industrial
and biological applications like isotope separation [1, 2].

Slippage of the flowing fluid over a flat surface is impor-
tant in many complex flows of non-Newtonian fluids. Slip of
the fluid occurs at the boundary when there is relative
motion between fluid and boundary. This mechanical situa-
tion is addressed properly by the Robin-type boundary con-
dition and specifically, it is known as the slip boundary
condition. The slip effect is formulated by many theorists
to address the different geometric situations for the bound-
ary layer flows. Vieru et al. [3] explained the aspect of slip for
second-grade fluid flow. Tahir et al. [4] considered Maxwell
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fluid motion over an oscillation surface. Jameel and Khan [5]
discussed an impulsive flow over the flat plate. Hayat et al.
[6] studied the Stokes flow for the slip condition. Imran et al.
[7] applied the first order slip for the motion of the non-
Newtonian fluid. Sajid et al. [8] explained the slippage motion
of the rate-type fluid. Hayat et al. [9] studied the flow of
Maxwell fluid between the plates under the influence of MHD
and radiation. Ramesh et al. [10] studied the Maxwell fluid over
a stretching sheet and discussed the impact of radiation on the
motion of the fluid. Khan et al. [11] reported the flow of Max-
well fluid by taking into account the influence of radiation. Chen
et al. [12] utilized the fractional derivatives boundary layer flow
ofMaxwell fluid on an unsteady stretching surface and obtained
the results for the velocity. Over a vertical plate, Imran et al. [13]
considered a slippage flow of a radiative fluid.

Opangua et al. [14] explained the effect of slip on the flow
of coupled stressed fluid. Hayat and Asghar [15] and Hayat
et al. [16, 17] considered the impact of heat transfer over the
slippage flow of peristaltic fluid. Shakeel et al. [18] employed
the slip effect to rate-type fluid over an accelerating plate.
Shah et al. [19] applied the fractional calculus to get the gen-
eralized results for the unidirectional velocity for Maxwell
fluid. Shah et al. [20] used the slip conditions at the boundary
for MHD Carreau fluid through a porous regime. Freidooni-
mehr and Jafari [21] also employed slip conditions at the
boundary for MHD nanofluid flow. Schneider [22] consid-
ered themotion of electrorheological suspensions and laid out
the impact of wall slip on the rheological behavior of the
suspension. Raza [23] stagnation point flow of Casson fluid
by considering the impact of slip. Norouzi et al. [24] investi-
gated the flow of Oldroyd-B fluid in the cylindrical domain by
studying the effect of slip at the boundary. Fetecau et al. [25]
discussed the flow of Newtonian fluid by taking into account
the effect of slip at the edge of the flow. Khan et al. [26] applied
the slip attribute to the viscous nanofluid flow and obtained
the velocity field.

Khan et al. [27] discussed the impact of the transfer of heat
on the flow of Maxwell fluid. Chu et al. [28] studied nanofluid
flow with four different types of nanoparticles, which are sub-
ject to the nonhomogenous source of heat, and applied the
numerical technique to obtain the approximated solutions.
Alqahtani et al. [29] did a detailed analysis of the impact of
radiation on the flow of nanofluid. Puneeth et al. [30] explained
the effect of convection on nanofluid’s flow over a sheet.
Alharbi et al. [31] illustrated the effect of the bioconvective
hydromagnetic flow of Oldroyd-B nanofluid over a stretching
surface having pores. Khan et al. [32] took under consider-
ation the unsteady flow of hybrid nanofluid on a radiated
porous surface subject to the magnetic field. Qaiser et al.
[33] investigated the effects of active energy and entropy for
nanofluid flow subject to viscous dissipation and cross-diffu-
sion. Some other investigations related to nanofluid flow in
different physical situations have been done [33–39].

The Maxwell fluid model is suitable for momentum, heat,
and mass transfer phenomena as it captures relaxation time
effects. Khan et al. [40] discussed the generalized conclusions
for the flow of Maxwell fluid by taking into consideration the

modified Fick’s and Fourier laws for mass and heat transfer,
respectively. Khan et al. [41] utilized the Cattaneo–Christov
mechanism for the heat transfer of Maxwell fluid through a
closed path. Tang et al. [42] discussed the flow of Maxwell
fluid subject to uniform heat flux and thermal radiation by
applying the fractional derivative. Mansoor et al. [43] also
considered the Maxwell fluid’s flow, and the effect of chemi-
cal reaction over the velocity field is explained.

The fractional derivatives are flexible and nonlocal because
the order of the fractional derivatives can be any real number.
Due to nonlocality and flexibility, the fractional derivatives
are suitable for approximating real data values with more
reliability than classical derivatives for the effect of global
interactions (nonlocality of space) and memory (nonlocality
of time). Nowadays, fractional calculus is applied efficiently to
explain the complex flow phenomenon. There are different
approaches to the fractional derivative used by mathemati-
cians [44–47], and a recent development in the fractional is
the constant proportional Caputo (CPC) derivative proposed
by Baleanu et al. [48].

The thermodiffusion, formally known as the Soret effect,
occurs when a concentration gradient is generated due to a
temperature gradient. This effect is significant for complex
mixtures containing different species of diverse sizes and
polarities, for example, in the petroleum system. The princi-
pal interest of this article is to widen the research work done
in [25] by taking the flow of Maxwell fluid, and the flow
modeling is done with a fractional derivative of the recent
approach, namely the constant Caputo fractional derivative.
The graphical illustration of field variables is done by using
MATHCAD software. In addition to this, the slip at the
boundary is analyzed with other parameters. Such work
addressing the thermodiffusion effect for Maxwell fluid’s
flow with CPC fractional derivative is yet to be reported in
the literature.

2. Mathematical Description

Considered Maxwell fluid flowing over a vertical plate. The
vertical plate is situated in the xz-plane in a way that the
y-axis becomes normal to the place of the plate, as indicated
in Figure 1. At first, the plate with the fluid is not moving;
after the time t> 0, the plate starts moving with the velocity
V0f ðtÞ :, and by considering the slip effect over the plate fluid
also move. Under the assumption, the Maxwell fluid flow
model in mathematical form is as follows [25, 27]:

ρ λ1
∂
∂t

þ 1

� �
∂u
∂t

¼ μ
∂2u
∂y2

þ g ρβTð Þ 1þ λ1
∂
∂t

� �
T − T1½ �

þ g ρβCð Þ 1þ λ1
∂
∂t

� �
C − C1½ � − 1þ λ1

∂
∂t

� �
B2
0σu;

;

ð1Þ

k
∂2T
∂y2

−
∂qr
∂y

− Q0 T − T1½ � − ρcp
À Á ∂T

∂t
¼ 0; ð2Þ
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Dm
∂2C
∂y2

þ DmkT
Tm

∂2T
∂y2

−
∂C
∂t

¼ 0; ð3Þ

and related conditions

for  t ¼ 0⇒ u¼ 0;T ¼ T1;    C ¼ C1; ð4Þ

u − γ1
∂u
∂y

j y¼0 ¼ V0f tð Þ;    T ¼ Tw;    C ¼ Cw;    y ¼ 0;

ð5Þ

u→ 0;T → T1;    C→ C1;    y→1: ð6Þ

The radiated flux from Equation (2) is approximated by
using the Roseland approach [49, 50] for the minor temper-
ature difference between the temperature of the fluid and the
free stream temperature [51, 52].

k Nr þ 1½ � ∂2

∂y2
− ρcp
À Á ∂

∂t

� �
T y; tð Þ ¼ Q0 T y; tð Þ − T1½ �;

ð7Þ

where Nr ¼ 16σ1T31
3kk1

is the radiation parameter.
Nondimensional relations [25]

  u∗ ¼ u
V0

;    y∗ ¼ yV0

ν
;    t∗ ¼ V2

0

ν
t;    C∗ ¼ C − C1

Cw − C1
;    T∗ ¼ T − T1

Tw − T1
;

  Q∗ ¼ νQ0

ρcp
À Á

V2
0

;    γ∗1 ¼
V0

ν
γ1;    f ∗ t∗ð Þ ¼ f

ν

V2
0
t∗

� �
;    λ¼ V2

0

ν
λ1;

;

ð8Þ

with V0 ¼ ½νgβTðTw − T1Þ�1=3 is specific velocity, and after
using Equations (1)–(7) and Equation (8) dimensionless
model takes the following form:

λ
∂
∂t

þ 1

� �
∂u
∂t

¼ ∂2u
∂y2

þ 1þ λ
∂
∂t

� �
T −Muþ NC½ �;

ð9Þ

∂T
∂t

¼ 1
Preff

∂2T
∂y2

− QT; ð10Þ

ScSr
∂2T
∂y2

¼ Sc
∂C
∂t

−
∂2C
∂y2

; ð11Þ

and corresponding dimensionless initial conditions and bound-
ary conditions

u¼ 0;T ¼ 0;C ¼ 0; t ¼ 0; ð12Þ

f tð Þ ¼ u − γ1
∂u
∂y j y¼0;    T ¼ 1;C ¼ 1; y ¼ 0; ð13Þ

u→ 0;T → 0;C → 0; y→1; ð14Þ

  N ¼ ρβC Cw − C1½ �
ρβT Tw − T1½ � ;    Preff ¼

Pr
Nr þ 1

;    M ¼ νσB2
0

ρV2
0
;   

  Sc¼ ν

Dm
;    Sr¼ DmkT Tw − T1½ �

νTm Cw − C1½ � ;Q¼ νQ0

ρcpV2
0
;

;

ð15Þ

where N is the ratio of the thermal Grashof number to the
mass Grashof number, Preff effective Prandtl number, M is
a nondimensional magnetic parameter, Sc is the Schmidt
number,Q is the nondimensional heat generation parameter,
and Sr is the Soret effect parameter.

3. Classical Solution of the Model

3.1. Temperature. Equation (10) is reduced to an ordinary
differential equation as follows:

PreffqT y; qð Þ þ QT y; qð Þ ¼ ∂2T y; qð Þ
∂y2

: ð16Þ

Equation (16) is solved by conditions given below:

T 1; qð Þ ¼ 0;T 0; qð Þ ¼ q−1; ð17Þ

and solution transformed for temperature is as follows:

T y; qð Þ ¼ 1
q
e −y

ffiffiffiffiffiffi
Preff

p ffiffiffiffiffiffiffi
Qþq

p½ �: ð18Þ

3.2. Concentration. Equation (11), by using the Laplace
transform, is reduced to an ODE as follows:

u–y1
u
y— |y = 0 = V0f(t)

T = TW
C = CW

B0

Velocity profile

Temperature profile

x u

T∞

C∞

g

y

z

Concentration profile

FIGURE 1: Flow geometry.
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ScqC y; qð Þ ¼ ∂2C y; qð Þ
∂y2

þ Sr
∂2T y; qð Þ

∂y2
: ð19Þ

Equation (19) is solved by the conditions as follows:

C 1; qð Þ ¼ 0;C 0; qð Þ ¼ q−1: ð20Þ

The solutions are given below:

C y; qð Þ ¼ 1
q
exp −y

ffiffiffiffiffiffiffi
Scq

p� �

þ ScSrPreff Qþ qð Þ
Preff − Scð Þqþ QPreff½ �q exp −y

ffiffiffiffiffiffiffi
Scq

ph i

−
ScSrPreff Qþ qð Þexp −y

ffiffiffiffiffi
Pr

p
eff Qþ qð ÞÂ Ã

q q Preff − Scð Þ þ PreffQ½ �

: ð21Þ

3.3. Velocity Field. Equation (9), by using the Laplace trans-
form, is reduced to the following:

1þ λ
k1 αð Þ
q

þ k0 αð Þ
� �

qα
� �

qu y; qð Þ ¼ ∂2u y; qð Þ
∂y2

þ 1þ λ
k1 αð Þ
q

þ k0 αð Þ
� �

qα
� �

× T q; yð Þ −Mu q; yð Þ þ NC q; yð ÞÂ Ã
:

ð22Þ

Equation (22) is solved by the following transformed
condition:

u 1; qð Þ ¼ 0; u 0; qð Þ − γ
∂u y; qð Þ

∂y

����
y¼0

¼ f qð Þ; ð23Þ

and its solution is as follows:

  u y; qð Þ ¼ F qð Þe−y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλq½ � Mþq½ �

p

1þ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λq½ � M þ q½ �p þ 1þ λq½ � 1þ γ1

ffiffiffiffiffi
Pr

p
eff Qþ qð ÞÂ Ã

Preff Qþ qð Þ − M þ qð Þ 1þ λqð Þ½ �q

× 1 −
NScSrPreff Qþ qð Þ
Preff − Sc½ �qþ QPreff

� �
e−y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλq½ � Mþq½ �

p

1þ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λq½ � M þ q½ �p −

e−y
ffiffiffiffiffi
Pr

p
eff Qþqð Þ

1þ γ1
ffiffiffiffiffi
Pr

p
eff Qþ q½ �

" #

þ N λqþ 1ð Þ 1þ γ1
ffiffiffiffiffiffiffi
Scq

p½ �
Scq − qþMð Þ λqþ 1½ �½ �q 1þ ScPreff Sr Qþ q½ �

q Preff − Scð Þ þ QPreff

� �

×
e−y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqþ½ � Mþq½ �

p

1þ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqþ 1½ � M þ q½ �p −

e−y
ffiffiffiffiffi
Scq

p

1þ γ1
ffiffiffiffiffiffiffi
Scq

p
" #

:

ð24Þ

4. Generalization with CPC

In this section, the flow model is generalized by introducing
the generalized constitutive relations for momentum, heat,
and mass fluxes. The generalization is made by newly devel-
oped fractional derivative, known as CPC fractional deriva-
tive denoted by CPCDα

t and defined as follows [48]:

CPCDα
t f tð Þ ¼ 1

Γ 1 − αð Þ
Z

t

0
k1 αð Þf sð Þ þ k0 αð Þf 0 τð Þ½ � t − sð Þ−αds ;

ð25Þ

and its Laplace transform is defined as follows [48]:

£ CPCDα
t f tð Þf g ¼ k1 αð Þ

q
þ k0 αð Þ

� �
qαf qð Þ − k0 αð Þqα−1f 0ð Þ:

ð26Þ

The momentum equation

λ
∂
∂t

þ 1

� �
∂u
∂t

¼ ∂τα y; tð Þ
∂y

þ λ
∂
∂t

þ 1

� �
T −Muþ NC½ �;

ð27Þ

where ταðy; tÞ : is the shared stress is given by the following
generalized constitutive relation

τα y; tð Þ¼CPCDα
t
∂u y; tð Þ

∂y
: ð28Þ

The equation for the temperature profile in generalized
form is as follows:

Preff
∂T y; tð Þ

∂t
¼ −

∂qβ y; tð Þ
∂y

− PreffQT y; tð Þ; ð29Þ
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and qβðy; tÞ: is given in the equation below:

qβ y; tð Þ ¼ −
CPCDβ

t
∂T y; tð Þ

∂y
: ð30Þ

The diffusion balance in terms of generalized mass flux is
as follows:

Sc
∂C y; tð Þ

∂t
¼ −

∂qγ y; tð Þ
∂y

þ ScSr
∂2T y; tð Þ

∂y2
; ð31Þ

where the generalized mass flux is as follows:

qγ y; tð Þ ¼ −
CPCDγ

t
∂C y; tð Þ

∂y
: ð32Þ

Using the generalized constitutive relations for stress,
heat flux, and mass flux from Equations (28), (30), and (32)
into Equations (27), (29), and (31), respectively

λ
∂
∂t

þ 1

� �
∂u
∂t

¼
∂ CPCDα

t
∂u y;tð Þ
∂y

h i
∂y

þ λ
∂
∂t

þ 1

� �
T y; tð Þ½

−Mu y; tð Þ þ NC y; tð Þ�;
ð33Þ

∂T y; tð Þ
∂t

¼ −
1
Preff

∂ −
CPCDβ

t
∂T y;tð Þ

∂y

h i
∂y

− QT y; tð Þ; ð34Þ

and

Sc
∂C
∂t

¼ −

∂ −
CPCDγ

t
∂C y;tð Þ

∂y

h i
∂y

þ ScSr
∂2T
∂y2

: ð35Þ

5. Generalized Solution to the Problem

5.1. Generalized Temperature Field. Equation (34) is trans-
formed as below:

qT y; qð Þ ¼ 1
Preff

k1 βð Þ
q

þ k0 βð Þ
� �

qβ
∂2T y; qð Þ

∂y2
− QT y; qð Þ;   y>0:

ð36Þ

Equation (36) is solved under the conditions in Equation (17)
is as follows:

T y; qð Þ ¼ 1
q
exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preffq1−β qþ Qð Þ
k1 βð Þ þ k0 βð Þq½ �

s" #
: ð37Þ

In Equation (37), the expressions under the root are
complicated, and it is not an easy task to invert the Laplace
transform. Therefore, the inversion of the Laplace is obtained
by executing Stehfest’s algorithm [53] and Tzou’s [54], and
the outcomes of the algorithms are presented in Figure 2(a).

0
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y
3 4
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, t
)
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1
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Tzou algorithm

ðaÞ

0
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y
3 4
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0.6
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n 
C(

y, 
t)

0.8

1

Stehfest algorithm
Tzou algorithm

ðbÞ
FIGURE 2: Inverse of temperature (a) and concentration (b) fields.
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5.2. Generalized Concentration Field. From Equation (35)

ScqC y; qð Þ ¼ k1 γð Þ
q

þ k0 γð Þ
� �

qγ
∂2C y; qð Þ

∂y2
þ ScSr

∂2T y; qð Þ
∂y2

;   y>0:

ð38Þ

Equation (38) is solved under the transformed boundary
conditions in Equation (20) as follows:

  C y; qð Þ ¼ 1
q
exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Scq2−γ

k1 γð Þ þ k0 γð Þq½ �

s" #

þ ScSrPreff Qþ qð Þq1−γ
Preff − Scð Þqþ QPreff½ � k1 γð Þ þ k0 γð Þq½ �q exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Scq2−γ

k1 γð Þ þ k0 γð Þq½ �

s" #

−
ScSrPreff Qþ qð Þq1−γ

Preff − Scð Þqþ QPreff½ � k1 γð Þ þ k0 γð Þq½ �q exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preffq1−γ qþ Qð Þ
k1 γð Þ þ k0 γð Þq½ �

s" #
:

: ð39Þ

Equation (39) is inverted by algorithms and shown in
Figure 2(b) [53, 54].

5.3. Generalized Velocity Field. Equation (33) is reduced to an
ODE by using Laplace transform as follows:

1þ λqð Þqu ¼ k1 αð Þ
q

þ k0 αð Þ
� �

qα
∂2u
∂y2

þ λqþ 1½ � T −Mu þ NC
Â Ã

;

ð40Þ

∂2u y; qð Þ
∂y2

−
1þ λqð Þ q2−α þMð Þ
k1 αð Þ þ k0 αð Þq½ � u y; qð Þ

¼ −
1þ λqð Þq1−α

k1 αð Þ þ k0 αð Þq½ � T y; tð Þ þ NC y; qð Þ y; qð ÞÂ Ã
:

ð41Þ

Equation (41) is solved subject to the condition in
Equation (23) as follows:

  u y; qð Þ ¼
F qð Þexp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqþ1½ � q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

qh i
1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλqð Þ q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q þ
1þ λqð Þ 1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preff q1−β qþQð Þ
k1 βð Þþk0 βð Þq½ �

q� �
qþ Qð ÞPreff − M þ q2−βð Þ 1þ λqð Þ½ �q

× 1 −
NScSrPreff Qþ qð Þq−β

Preff − Scð Þqþ QPreff½ � k1 βð Þ þ k0 βð Þq½ �
� �

×
exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλqð Þ q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q� �
1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλqð Þ q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q −

exp −y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preff q1−β qþQð Þ
k1 βð Þþk0 βð Þq½ �

q� �

1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Preff q1−β qþQð Þ
k1 βð Þþk0 βð Þq½ �

q
2
664

3
775

þ
N λqþ 1½ � 1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Scq2−α

k1 αð Þþk0 αð Þq½ �
qh i

q Scq − qþMð Þ λqþð Þ½ � 1þ ScPreff Sr Qþ qð Þq−γ
q Preff − Sc½ � þ QPreff½ � k1 γð Þ þ k0 γð Þq½ �

� �

×
exp −y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλqð Þ q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q� �
1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λqþ1½ � q2−αþMð Þ
k1 αð Þþk0 αð Þq½ �

q −

exp −y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Scq2−γ

k1 γð Þþk0 γð Þq½ �
q� �

1þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Scq2−γ

k1 γð Þþk0 γð Þq½ �
q

2
64

3
75:

: ð42Þ

Equation (42) in its present form cannot invert in the
domain, so its inverse is obtained numerically by the suitable
algorithm known as Stehfest’s algorithm [53] and Tzou’s
[54], and the outcomes of this process are presented in and
presented in Figures 3(a) and 3(b) for no-slip condition and
slip conditions.

6. Results and Discussion

The motion of Maxwell fluid on a flat surface is discussed by
considering the effect of the thermodiffusion subject to the
first-order slip at the boundary. The effect of heat generation
and radiation is also considered with the effect of the
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magnetic field of constant magnitude. The generalized heat
and mass fluxes are considered, and generalization is made by
considering the new hybrid fractional derivative. The graphi-
cal illustrations for different parametric values are done using
the same graphics of velocity against y.

The primary goal of this research is to study the objectivity
of the fractional parameter over the velocity field. For this
purpose, Figures 4(a) and 4(b) are plotted, and the impact
of a fractional parameter over the flow is explained for slip
and no slip. The outlines of profiles present an elevating trend
for enhancing values of fractional parameters, and this peak in
the velocity profiles is seen because of the power law kernel of
fractional derivative. In the case of the CPC fractional deriva-
tive, the kernel of the operator obeys the power law. More-
over, the subjectivity of velocity for the variation of the other
parameter is also explained graphically. The parameter is
referred to the relative effect of bouncy forces. Figures 5 and 6

show the effect on the velocity of Maxwell fluid for both
positive and negative values. The positive value of N means
there is a supporting bouncy for the fluid flow, and the nega-
tive value means there is an opposing bouncy to the fluid flow.
The results of positive values over fluid velocity is addressed in
Figure 7. As Q>0 refers to the heat absorption and more
energy in the flow domain due to this fluid motion increases
for the growing values ofQ as shown in Figure 7. The negative
value of Q refers to the heat generation in the flow domain,
and some energy is lost due to this fluid velocity decreases,
which is revealed in Figure 8.

In Figure 9, the influence of Sc is discussed, and a
decreasing trend is seen against the elevating value of Sc
because for the elevating value of Sc, momentum diffusivity
is dominant; therefore, the velocity field decreases for the
increasing values of Sc. The Soret effect Sr over the velocity
field is seen in Figure 10, and from the outline of Figure 10, it
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is revealed that elevating Sr accelerates the fluid flow. In
Figure 11, the subjectivity of effective Preff is illustrated,
and from Figure 11, it is evident that the flow velocity falls
for ascending values Preff . A larger value of Preff refers to the
more momentum diffusivity in the flow domain, which slows
down the velocity of the fluid. Figure 12 is sketched to
observe the potentness of magnetic parameter M. The pat-
tern of Figure 12 reveals the decreasing trend for the elevat-
ing value of M: The effects of a magnetic field in the flow
creates some resistive force that opposes the fluid flow that is
why fluid velocity decreases for the increasing values of a
magnetic parameter.

As it is stated, our prime motive was to make advance-
ments in the research work done by Fetecau et al. [25] for a
bigger class of fluid, namely Maxwell fluid. Moreover, it also
includes an additional aspect of fractional instead of ordinary
derivative. Therefore, the obtained result for velocity is also
compared with the result of velocity obtained in [25] graphi-
cally. For this purpose, the velocity profiles are sketched in
Figure 13 by letting the Maxwell parameter λ¼ 0 and frac-
tional parameter α¼ 1 for both slip and nonslip. The over-
lapping graphic profiles show the validation of our obtained
result for velocity.

7. Conclusions

Thermodiffusion is a physical phenomenon that occurs
because of the higher temperature and slanting distribution
of the mixture. Thermodiffusion results in the isotope sepa-
ration. In the present study, analytical results for mass and
heat transfer flow of Maxwell fluid over a flat plate are con-
sidered by taking the effect of the first order slip at the
boundary with the fractional derivative, which is known as
the CPC fractional derivative. The impacts of radiation and
generation of heat are also taken into consideration, along
with the effect of a magnetic field of constant magnitude. The
pearlized results for velocity, concentration, and temperature
are obtained. The graphical illustrations are done using the
same graphics of velocity for both cases, slip and no-slip
effects. Moreover, this research work may extend to more
complex fluids like Oldroyd-B fluid. The conclusions given
below are drawn for the present research study.

(1) The fluid flows with an increasing velocity for the
variation of α; β; γ, and Sr.

(2) Velocity for Sc, and slip parameter γ1 is a decreasing
function.

(3) For positive N velocity exhibits an enhancing posture
the decerned trend for a negative value of N .

(4) For positive Q fluid speeds up, and the negative fluid
flow slows down.

(5) The application of the CPC fractional derivative is a
far better choice to obtain the generalized solution of
the velocity field.

(6) The advantage of the fractional model is nonlocality
and flexibility, which is why one can fit the data
according to desired results by the variation of the
order of fractional derivatives.

Nomenclature

u: Velocity component along x-axis
t: Time
ρ: Density of the fluid
μ: Viscosity of the fluid
g: Gravity
βT ; βC : Coefficients of volumetric expansion
B0: Magnitude of the magnetic field
λ1: Maxwell fluid parameter
σ1: Stefan–Boltzmann
k: Thermal conductivity
M: Magnetic parameter,
Sc: Schmidt number,
Sr: Soret effect parameter
Q: Nondimensional heat generation parameter
CPCDα

t : Constant proportional Caputo fractional deriva-
tive (CPC)

qr : Radiation flux
Q0: Heat generation
cP: Specific heat at constant pressure
Dm: Molecular diffusivity,
Cw: Concentration near the wall.
γ1: Slip parameter
C: Concentration
q: Laplace transform variable
Tw: Wall temperature
T1: Ambient temperature
Nr : Radiation parameter
α; β; γ: Fractional parameter
N : Ratio of mass Grashof number to thermal Grashof

number
Pr; Preff : Prandtl number and effective Prandtl number
σ: Current density.
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