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To improve the complexity of the chaotic system and achieve the effective transmission of image information, in this paper, a five-
dimensional memristive chaotic system with cubic nonlinear terms is constructed, which has four pairs of symmetric coordinates.
First, the cubic nonlinear memristive chaotic system is analyzed using the Lyapunov exponential map, bifurcation map, and
attractor phase diagram. The experimental results show that under four pairs of symmetric coordinates, the system exists not only
parameter-dependent symmetric rotational coexisting attractor and transient chaotic phenomena but also exists super-multistationary
with alternating chaotic cycles dependent on the initial value of the memristor. Then, it is proposed to add a constant term to the linear
state variable to explore the effect of the offset increment of the linear state variable on the system in four pairs of symmetric
coordinates, while circuit simulation of the five-dimensional chaotic system is carried out using Simulink to verify its existence and
realisability. Finally, the synchronization of the dimensionality reduction system and the confidential transmission of the image are
achieved, using the control voltage of the system to replace the internal state variables of the memristor to achieve the one-dimensional
reduction process, and an adaptive synchronization controller is designed to synchronize the system before and after the dimension-
ality reduction. Based on the above, an image to be transmitted is modulated into a one-dimensional array and then subjected to the
fractional and cyclic operations and combined with the linear encryption and decryption functions and the chaoticmasking technique,
the simple encryption and decryption of the image processes are realized.

1. Introduction

Currently, constructed low-dimensional chaotic systems have
problems such as simple structure and low randomness of
sequences, but increasing the system dimension can solve
these problems; many researchers and scholars have begun
to study complex and can producemore random sequences of
high-dimensional chaotic systems [1]. Throughmathematical
models, simulation experiments, and physical experiments,
the dynamical properties and behavioral laws of high-
dimensional chaotic systems are explored, focusing on the
rich dynamical properties of the systems, such as singular
attractors, multistability phenomena, and periodical solutions
[2, 3], revealing the nonlinear coupling and interaction effects
existing in the systems and realizing the control and synchro-
nization of the high-dimensional chaotic systems by designing

suitable control methods and coupling modes, which is of
great significance for the fields of information processing,
data transmission and confidential communication [4–10].

In recent years, chaotic systems and memristors are still
in their infancy within the engineering field [11], whereas
conventional chaotic systems suffer from the disadvantages
of easy deciphering, simple structure, and poor pseudo-
randomness of chaotic sequences, the application of mem-
ristors to chaotic systems can enhance the complexity of the
chaotic systems and extend their dynamics, then enhance
the synchronization control and realize the storage func-
tions [12, 13]. More literature exists to study chaotic sys-
tems in five or higher dimensions, but there are few studies
on constructing high-dimensional chaotic systems based on
memristor [14]. Xingze and Junxiu [15] constructed a novel
five-dimensional hyperchaotic system with multiple attractors
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coexisting in the system by adding a magnetically controlled
memristor onto a Lorentzian system, confirming the rich
dynamical behaviors of the constructed system. Xiaoxia et al.
[16] introduced a magnetically controlled memristor and an
absolute value function into a four-dimensional chaotic system
to bring the system to a new polarity equilibrium and con-
structed a conditionally symmetric memristor hyperchaotic
system, which systematically generated an infinite number of
pairs of coexisting attractors with opposite polarities and simi-
lar attractor structures. Ramamoorthy et al. [17] proposed a
novel four-dimensional Sprott B recollective chaotic system
with a deviation term that switched between rotationally sym-
metric and nonrotationally symmetric states and has different
dynamical behaviors in the two states. Leutcho et al. [18] con-
structed a new four-dimensional hyperchaotic Lorenz system
with heterogeneous multistability phenomena in the new sys-
tem using a nonlinear feedback controller and verified the
experimental results using a digital signal processing platform.
Lai et al. [19] and Lai and Chen [20] took the memristor as
synapses in a Hopfield neural network, and three memristive
Hopfield neural networks were constructed, which could gener-
ate multidouble-scroll chaotic attractors or grid multidouble-
scroll chaotic attractors and the number of double scrolls in
the attractors could be controlled by the memristor. Then, the
innovative introduction of two memristors was followed by
the construction of an equilibrium-free five-dimensional cha-
otic system with lattice vortex attractors. In 2023, Lai et al.
[21] proposed a framework for constructing super-enhanced
memory hyperchaotic maps with four cubic attractors, which
improved the complexity of the original maps and effectively
solved the discontinuous chaotic range and low Lyapunov
exponent problems of common hyperchaotic systems. Xu et
al. [22] introduced memristor nonlinear terms and state feed-
back controllers into a three-dimensional autonomous qua-
dratic class Lorenz chaotic system and constructed a new
fourth-order chaotic system, which exhibited rich attractor
coexistence. In summary, it is extremely important to construct
chaotic systems with rich dynamics by using a memristor.

Chaos synchronization refers to the phenomenon that
there exists some kinds of coupling mechanism between
two or more chaotic systems so that their states tend to agree
with each other in time and chaos synchronization has impor-
tant applications in the fields of communication, secure trans-
mission, and information processing [23–27]. At present, the
researches on synchronous control of low-dimensional cha-
otic systems are more comprehensive, while the theoretical
researches on synchronous control of high-dimensional chaos
are under development, especially the researches on the reali-
zation of synchronization of chaotic systems of different
dimensions are still scarce. Emiroglu et al. [28] studied the
problem of control of chaos in a ferroresonant circuit using
backstepping nonlinear control to become stable in the equi-
librium point and converge to the desired trajectory or point
and demonstrated the effectiveness of designed control inputs
for chaos control in ferroresonant phenomena. Then, Emir-
oglu et al. [29] proposed a passive synchronization control
method based on the new four-dimensional chaotic system to
achieve the synchronization of the new four-dimensional

chaotic system hyperchaotic system with different initial con-
ditions. Alexander et al. [30] designed a controller based on
linear quadratic regulatory control and applied it to nonau-
tonomous systems with infinite coexisting attractors, and the
effectiveness of the controller was demonstrated through error.
Chi [31] designed a proper synchronous controller using active
synchronous control methods to study the synchronous con-
trol of two different dimensional memristor hyperchaotic sys-
tems and proved the controller using the Routh Criterion
theorem. Liu [32] combined the designed five-dimensional
memristor hyperchaotic system with a chaotic system of the
same number of dimensions to achieve the synchronization of
heterostructured chaotic systems based on active control. Shi
[33] used the nonlinear feedback synchronization and linear
feedback synchronization control method to achieve the syn-
chronization of two 3D (three-dimensional) chaotic systems
and carried out circuit simulation using Multisim software,
and the experimental results were consistent with the numer-
ical analyses, thus verifying the feasibility of the synchroniza-
tion control of the new 3D chaotic circuits. In summary,
synchronous control of chaotic systems is extremely impor-
tant to study [34–37].

Although the introduction of memristor into chaotic sys-
tems has been reported in the literature, few studies guaran-
tee the inclusion of both memristor and the presence of only
cubic nonlinear terms in high-dimensional chaotic systems,
especially since the dynamical phenomena with which the
system are endowed will be reduced while increasing the
dimensionality and complexity of the system. Therefore, in
this paper, a five-dimensional chaotic system is constructed
contains both a memristor and a nonlinear term that occurs
only three times to ensure that it has a rich dynamical behav-
ior as well as that the sequences it produces can be applied in
the field of image encryption. In terms of achieving synchro-
nization, the techniques for achieving synchronization of
low-dimensional chaotic systems are maturing, but there
are few reports in the literature on the synchronization of
high-dimensional chaotic systems with their downscaled sys-
tems themselves, so in this paper, the synchronization control
of downscaled systems is investigated. First, the magnetically
controlled memristor is introduced, which is based on the
Liu pseudo-four-wing three-dimensional chaotic system
proposed by Bocheng et al. [38]. It is improved to a five-
dimensional system with three nonlinear terms by adding
two equations and multiplying all the quadratic nonlinear
terms in the equations by the state variable x in the system,
which has four pairs of symmetric coordinates. The attractor
phase diagrams, time domain waveforms, etc., are simulated
by MATLAB 2018a and the fractional dimension is calcu-
lated by combining with the wolf algorithm to prove that
the constructed system is a chaotic system. Second, it is
verified that the attractors generated by the system in all
four pairs of symmetric coordinates have rotationally sym-
metric properties when the coupling parameter and the
initial value are used as controllable variables in turn, as
well as that the system has a rich dynamical behavior. There
are not only parameter-dependent periodic, chaotic symmet-
ric rotational attractors and transient chaotic phenomena but
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also super-multistationary phenomena with alternating cha-
otic cycles that depend on the initial value of the memristor.
The effect of linear state variable offset increments on the
system is then explored and Simulink circuit simulation is
used to verify the correctness of the system. Finally, the impor-
tant dynamics of the system are retained, the five-dimensional
chaotic system is downgraded, the system is synchronously
controlled before and after the downgrading using the adaptive
synchronous control method, and the encryption and decryp-
tion of the image are realized by combining the chaos masking
technique and the encryption and decryption functions. There
are also super-multistable phenomena with alternating chaotic
cycles that depend on the initial value of the memristor.

2. Construction of a Cubic Nonlinear
Five-Dimensional Memristor System

2.1. System Model. Professor Bocheng et al. [38] proposed a
smooth magnetically controlled memristor model in 2010,
which had the characteristics of a relatively simple mathe-
matical model and was easy to make the system produce
complex, chaotic signals, etc. The model has been widely
used by scholars in chaotic systems to construct new mem-
ristive chaotic systems. The memristor model is expressed as
follows:

i¼W ϕð Þv
W ϕð Þ ¼mþ nϕ2

ϕ̇ ¼ v

8><
>:

; ð1Þ

where WðϕÞ : is the memristor function, m and n are both
positive constants. i and v denote the terminal current and
terminal voltage flowing through the memristor. ϕ denotes
the internal flux of the memristor.

In 2003, Liu [39, 40] proposed a pseudo quadruple chaotic
system, which belonged to the generalized Lorenz system, and
its mathematical expression is shown in Equation (2):

ẋ ¼ ax − byz

ẏ ¼ −cy þ xz

ż ¼ −dz þ xy

8><
>:

; ð2Þ

where x; y, and z are the three state variables of the system
(2). a; b; c, and d are the system parameters.

In order to study the effects of the dynamical behavior of
a five-dimensional chaotic system containing a memristor
with a cubic nonlinear term, based on the system (2), adding
two new equations: the fourth equation and the fifth equation.
Introducing the memristor in Equation (1) into the fourth
equation and choosing the control voltage y as the fifth
equation, all the nonlinear terms in the equations are multi-
plied by x, so that all the nonlinear terms in the first, second
and third equations are transformed into a five-dimensional
system of cubic nonlinear terms, a new five-dimensional
memristor hyperchaotic system is constructed. This chaotic
system contains a memristor, six linear terms, and three cubic

nonlinear terms, which are mathematically modeled as
follows:

ẋ ¼ ax − xyz

ẏ ¼ by þ x2z − cw

ż ¼ x2y − dz

ẇ ¼ kW uð Þy − w

u̇ ¼ ey

8>>>>>><
>>>>>>:

; ð3Þ

where x; y; z;w, and u are the five state variables of system
(3). a; b; c; d; e, and k are the system parameters.

2.2. Validation of the Five-Dimensional Memristor System.
This article analyzes the Lyapunov exponent diagram, bifur-
cation diagram, time-domain waveform diagram, and
attractor phase diagram simulated in MATLAB 2018a to
identify whether the characteristics and behavior of the
system are consistent with the ideal phenomenon. Through
sufficient theoretical analysis and experimental exploration,
continuous parameter verification and adjustment are carried
out, and the initial parameters and conditions of the system
are preliminarily determined. Let a¼ 3; b¼ − 8; c¼ 3; d¼ 5;
e¼ 1; k¼ 40;m¼ 1, and n¼ 0:01. The initial condition is
ð1; − 1; − 10; 1; − 10Þ :. Numerical simulation is carried out
using the fourth-order Runge-Kutta method and the attractor
phase diagrams in the x− y; x− z; x−w; y− z; y−w, and
z −w planes are shown in Figure 1. It can be simply and
intuitively observed that the system behaves irregularly, and
therefore, the system (3) is ergodic.

The corresponding five Lyapunov exponents are LE1 ¼
1:24; LE2 ¼ 0:001373; LE3 ¼ − 0:03694; LE4 ¼ − 4:812 and
LE5 ¼ − 10:39. The dimension of the Lyapunov exponent
computed by Wolf ’s algorithm is shown as follows:

DL ¼ jþ 1

LEjþ1

�� �� ∑
j

i¼1
LEi ¼ 3þ LE1 þ LE2 þ LE3

LE4j j ¼ 3:250:

ð4Þ

The 0–1 test plot of the system (3) in the plane of y− u is
shown in Figure 2(a), and the time domain waveforms of the
system in x− t; y− t; z− t;w− t, and u− t planes are shown
in Figure 2(b). The system is chaotic because the Lyapunov
exponential dimension DL is fractional dimensional, the 0–1
test chart is Brownian motion, and the time domain wave-
form is nonperiodic.

3. Basic Dynamic Properties

3.1. Symmetry. The newly constructed system has four sym-
metrical coordinates ðx; y; z;w; uÞ :; ðx; − y; − z; −w; − uÞ :;
ð− x; y; z;w; uÞ:, and ð− x; − y; − z; −w; − uÞ:.

3.2. Dissipative. The dissipation of system (3) can be expressed
as follows:
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rv ¼ ∂̇x
∂x

þ ∂̇y
∂y

þ ∂̇z
∂z

þ
˙∂w
∂w

þ ∂̇u
∂u

¼ a − yz þ b − d − 1: ð5Þ

When a¼ 3; b¼ − 8, and d¼ 5, then rv¼ − 11− yz,
when yz>0, whatever the values of the other parameters of

the system are, it does not affect the value of the dissipation
degree rv. At this point, the system (3) is dissipative when t
tends to infinity, the system converges over time in an
exponential form dV=dt¼ e−11−yz and ultimately all the tra-
jectories contract in a subset of volume 0 and attach to an
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FIGURE 1: Basic phase diagrams of the system: (a) the x− y plane; (b) the x− z plane; (c) the x−w plane; (d) the y− z plane; (e) the y−w
plane; (f ) the z −w plane.
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FIGURE 2: 0–1 test plot and time domain waveforms with parameters a¼ 3; b¼ − 8; c¼ 3; d¼ 5; e¼ 1; k¼ 40;m¼ 1, and n¼ 0:01: (a) 0–1
test plot; (b) time-domain waveforms.
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attractor. When yz< − 11, the system (3) has conservatism,
and ultimately, its trajectories will no longer be adsorbed on
the attractor.

3.3. Equilibrium Stability. Let ẋ ¼ ẏ ¼ ż ¼ ẇ¼ u̇¼ 0, the
equilibrium point of the system (3) be obtained as −Sð0; 0;
0; 0; ηÞ :. η is an arbitrary real constant, there are infinitely
many equilibrium points of the system and the Jacobi matrix
at the equilibrium point −Sð0; 0; 0; 0; ηÞ: is as follows:

Js ¼

a 0 0 0 0

0 b 0 −c 0

0 0 −d 0 0

0 kW ηð Þ 0 −1 0

0 e 0 0 0

2
6666664

3
7777775
: ð6Þ

The characteristic polynomial at the equilibrium point
−Sð0; 0; 0; 0; ηÞ: is as follows:

P λð Þ ¼ λ λ4 þ p1λ3 þ p2λ2 þ p3λþþp4ð Þ ¼ 0: ð7Þ

The coefficients of the quadratic polynomial are as follows:

p1 ¼ d − b − aþ 1

p2 ¼ a − dð Þ b − 1ð Þ − ad − bþ ckW ηð Þ
p3 ¼ b − ckW ηð Þð Þ a − dð Þ þ ad b − 1ð Þ
p4 ¼ ad b − ckW ηð Þð Þ

8>>>><
>>>>:

: ð8Þ

The computation of Equation (7) yields that the character-
istic polynomial has one zero and four nonzero characteristic
roots. For the nonzero characteristic roots, the Routh–Hurwitz
stability conditions for the quadratic polynomial are as

follows:

Δ1 ¼ p1>0; p4>0

Δ2 ¼ p1p2 − p3>0

Δ3 ¼ p1 p2p3 − p1p4ð Þ − p23>0

8><
>:

: ð9Þ

When all three conditions of Equation (9) are satisfied
simultaneously, the equilibrium point is stable, and the system
produces point attractors; when any of the conditions in
Equation (9) is not satisfied, the equilibrium point is unstable,
and the system behaves as a periodic or chaotic state. The
calculation shows that p4>0 in Equation (9) is always unsatis-
fied, so the system always behaves in a chaotic or periodic state.
The line equilibrium point on the u-axis at the time of the
system, according to the Jacobi matrix polynomials, the eigen-
values λ1 ¼ 0; λ2 ¼ − 5; λ3 ¼ 3; λ4 ¼ð24a2=5þ 431Þ1=4 − 4:5,
and λ5 ¼ð−24a2=5 − 431Þ1=4 − 4:5 whose eigenroots are not
all positive or negative, so that there are countless unstable
saddle points on the line equilibrium point, which implies that
the attractor is hidden [41].

4. Dynamic Analysis of the System in
Symmetric Coordinates

Since the system has four symmetric coordinates: ðx; y; z;w;
uÞ:; ðx; − y; − z; −w; − uÞ:; ð− x; y; z;w; uÞ:, and ð− x; − y;
− z; −w; − uÞ :. In this paper, select the corresponding four
initial values of the coordinates which are ð1; − 1; − 10; 1; −
10Þ:; ð1; 1; 10; − 1; 10Þ:; ð− 1; − 1; − 10; 1; − 10Þ:, and ð− 1;
1; 10; − 1; 10Þ:. The attractor phase diagrams are obtained,
as shown in Figure 3, in which the initial value of the blue
track line is ð1; − 1; − 10; 1; − 10Þ :, the initial value of the red
track line is ð1; 1; 10; − 1; 10Þ:, the initial value of the black
track line is ð− 1; − 1; − 10; 1; − 10Þ : and the initial value of
the green track line is ð− 1; 1; 10; − 1; 10Þ:. When four

–10 –7 –4 –1 2 5 8 11
x

–8

–5

–2

1

4

7

10

y
x–y

(1; –1; –10; 1; –10)
(1; 1; 10; –1; 10)

(–1; –1; –10; 1; –10)
(–1; 1; 10; –1; 10)

ðaÞ

(1; 1; 10; –1; 10) (–1; 1; 10; –1; 10)

x–y–u

(1; –1; –10; 1; –10) (–1; –1; –10; 1; –10)

–10
10

5

–5

y
0 10

0u

5

x
–5 0

–5

5

–10 –10

10

ðbÞ
FIGURE 3: Phase space diagrams: (a) the 2D (two-dimensional) planar attractor phase diagram; (b) the 3D planar attractor phase diagram.
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symmetrically different initial values are taken, the attractors
take on the state of a symmetrically rotated attractor, and
each attractor undergoes a rotational translation transforma-
tion to obtain the remaining three attractors. To explore the
crossing of the four rail lines, the three-dimensional attractor
phase diagram of the x− y− u plane is plotted, as shown in
Figure 3(b). It can be observed that the four rail lines are
independent of each other and do not cross each other, and
thus, the system can generate identical symmetric rotating
coexisting attractors at different initial values. Therefore, all
the studies in this paper are based on these four pairs of sym-
metric coordinates to investigate the rich dynamical behaviors
of the systemdepending on the coupling parameters and initial
values of the system.

4.1. Parameter-Dependent Symmetric Rotational Attractors and
Transient Chaotic Phenomena. Let the system parameter c be a
variable control parameter and the fixed parameters a¼ 3; b¼
− 8; c¼ 3; d¼ 5; e¼ 1; k¼ 40;m¼ 1, and n¼ 0:01. The Lya-
punov exponential diagram of the system state variable w
varying in the parameter c2 ½0; 50�: is shown in Figure 4(a)
and the bifurcation diagram is shown in Figure 4(b). As can
be seen from Figure 4, the Lyapunov exponential diagram is
consistent with the bifurcation diagram, and the system has
one positive and two positive Lyapunov exponential values
alternating in the interval, so the system has rich dynamics,
alternating between cyclic and chaotic states and the parame-
ter c has a greater range of adjustability and unpredictability
and the resulting sequences will be more stochastic.

When parameter c¼ 0:18, the corresponding first Lya-
punov exponential spectrum is tangent to the zero line
and the corresponding five Lyapunov exponents are 0:02367;
− 0:03143; − 0:05826; − 0:6184, and − 12:78, one of which is
approaching zero and the remaining four exponents are less
than zero and it can be judged that the system is running in a
periodic orbit at this time and the system is in a periodic

three-attractor coexistence state under all four symmetric
coordinate systems, as shown in Figure 5(a); when parameter
c¼ 0:7538, the system has a positive Lyapunov exponent
value close to 0 and the system is in a periodic four-attractor
coexistence state under the four symmetric coordinates, as
shown in Figure 5(b); when the parameter c¼ 1:05, the sys-
tem has a positive Lyapunov exponent value and the system is
in a periodic five-attractor coexistence state under the four
symmetric coordinates, as shown in Figure 5(c); when the
parameter c¼ 2:6, the system has two positive Lyapunov
exponent values and the system is in a chaotic coexistence
state under the four symmetric coordinates, as shown in
Figure 5(d). Where the blue color indicates the initial value
of ð1; − 1; − 10; 1; − 10Þ :, the red color indicates the initial
value of ð1; 1; 10; − 1; 10Þ:, the black color indicates the initial
value of ð− 1; − 1; − 10; 1; − 10Þ : and the green color indi-
cates the initial value of ð− 1; 1; 10; − 1; 10Þ :. From Figure 5, it
can be seen that the system exists the same symmetric rota-
tionally coexisting attractor phenomenon under different
values of the parameter c.

To observe the periodic, chaotic alternating state of the
chaotic system more clearly, a larger time interval is chosen,
and the state of the system is analyzed by combining the
time-domain waveforms with four pairs of symmetric coor-
dinates corresponding to x− t. When c¼ 15:8, the system is
in a periodic state, and the attractor phase diagram and time-
domain waveforms are shown in Figure 6(a); when c¼ 25,
the system is in a chaotic state, and the attractor phase dia-
gram and time-domain waveforms are shown in Figure 6(b);
when c¼ 36:47, the system is in a periodic state and the
attractor phase diagram and time domain waveform are
shown in Figure 6(c); when c¼ 42, the system is in a chaotic
state and the attractor phase diagram and time domain wave-
form are shown in Figure 6(d). So, the system has a rich
dynamical behavior.
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FIGURE 4: Bifurcation diagram and Lyapunov exponent spectrum of chaotic system with c2 ½0; 50� :: (a) the Lyapunov exponential spectra; (b)
the bifurcation diagram.
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By observing the time-domain waveform graph of
Figure 6(a) at time c¼ 15:8, it can be seen that the system
is in a chaotic state at t 2 ½0; 15� : and a cyclic state at t 2 ½15;
50�:. This phenomenon is referred to as transient chaos [32],
which is due to the presence of non-attractive saddle points,
resulting in the system appearing chaotic for a finite period
and then transforming into nonchaos after some time
change. The attractor phase diagram about the x− y plane
in the t 2 ½0; 15� : time interval is shown in Figure 7(a) and the
attractor phase diagram about the x− y plane in the t 2 ½15;
50�: time interval is shown in Figure 7(b).

4.2. Super Multistability Phenomena Dependent on the Initial
Value of Memristor Resistance. Chaotic systems have strong
initial value sensitivity; small differences in initial conditions

will cause significant differences in the evolution of the sys-
tem [42, 43], which ultimately leads to the separation of the
trajectory of the system, even if the initial conditions of
the two systems are very close to each other, the results of
their evolution may also be extremely different. Choose two
initial values as ð1; − 1; − 10; 1; − 10Þ: and ð1; − 1; − 10; 1;
− 10:001Þ :, respectively, and both of them are different by
0.001 in the initial value of u0. The time domain waveform
graphs and attractor phase diagrams for the two initial values
are simulated as shown in Figures 8(a) and 8(b), in which the
blue waveform initial value is ð1; − 1; − 10; 1; − 10Þ : and the
red waveform initial value is ð1; − 1; − 10; 1; − 10:001Þ:. It
shows large differences in the time domain waveform diagrams
when the initial value is changed by 0:001, the time domain
waveforms change approximately regularly, the trajectory of the
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initial value of ð1; − 1; − 10; 1; − 10Þ : is always follows the
change of ð1; − 1; − 10; 1; − 10:001Þ : and the trajectory of
attraction subphase diagrams shows two symmetrical states and
the system has a stronger sensitivity to the initial value.

Thanks to the initial value sensitivity of u0, the fixed
system parameters, the initial value of memristor u0 is chosen
as a variable parameter, the other initial values are x0¼ 1;
y0¼ − 1; z0¼ − 10;w0¼ 1 and the fixed parameters a¼
3; b¼ − 8; c¼ 3; d¼ 5; e¼ 1; k¼ 40;m¼ 1, and n¼ 0:01.
The Lyapunov exponent of the state variable z for the mem-
ristor initial value condition u02 ½0; 30� : is plotted as shown

in Figure 9(a) and the bifurcation diagrams are shown in
Figure 9(b). From Figure 9, it can be seen that the system
has a rich dynamical behavior, transforming in two states:
chaotic and periodic.

The super multistability property is a complex nonlinear
phenomenon in chaotic systems, which refers to the fact that
an infinite number of coexisting attractors with different states
of motion can be generated by changing the initial state of the
system with fixed system parameters [31]. The multistability
phenomenon of the system at different initial values of the
memristor is analyzed by fixing the system parameters and
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FIGURE 6: Various attractor phase diagrams varying and time-domain waveforms with c: (a) attractor phase diagram with parameter c¼ 15:8;
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combining the phase diagrams of the attractors in four pairs
of symmetric coordinates. When u0¼ 5, the attractor phase
diagram under four symmetric coordinates is shown in
Figure 10(a); the attractor of the system is in a chaotic state;
when u0¼ 21:5, the attractor phase diagram under four sym-
metric coordinates is shown in Figure 10(b); the attractor of
the system is in a cyclic state; when u0¼ 25, the attractor
phase diagram under four symmetric coordinates is shown
in Figure 10(c), the attractor of the system is in a chaotic state;
and when u0¼ 30, the attractor of the system is in a chaotic
state. The attractor phase diagram under four symmetric
coordinates is shown in Figure 10(d), the attractor of the
system is in a periodic state. Where blue indicates that the

initial value is ð1; − 1; − 10; 1; − u0Þ :, red indicates that
the initial value is ð1; 1; 10; − 1; u0Þ :, black indicates that the
initial value is ð− 1; − 1; − 10; 1; − u0Þ: and green indicates
that the initial value is ð− 1; 1; 10; − 1; u0Þ:. Therefore, the
system has multiple coexisting attractors with repeated alter-
nation of chaotic cycles, and the different state attractors
undergo interconversion, which proves that the new system
has the phenomenon of super-multistability with repeated
alternation of chaotic cycles.

4.3. Control of Linear State Variable Offset Increments. In a
deterministic nonlinear system, a state variable is predicted
to occur only once in that system; the addition of a constant
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term to the state variable will produce a controllable offset
that will change the chaotic system from unipolar to bipolar
[43]. When a constant is introduced into the variable, the
differential equation does not change its form, and the offset
increment control allows chaotic signals to be interchanged
between bipolar and unipolar without changing the funda-
mental dynamics of the system, simply by changing an addi-
tional control constant [44]. From system (3), it can be seen
that the system does not have a state variable that occurs only
once on the right-hand side. So, in this paper, it is proposed
to add a constant term to the linear state variable to produce
a controllable offset to change the chaotic system from uni-
polar to bipolar. Choosing to add a constant term to the
linear variable y in the second equation, using the state vari-
able y Æ l instead of y, where l is the offset increment con-
troller, the new equation is as follows:

ẋ ¼ ax − yzx

ẏ ¼ b y þ lð Þ þ x2z − cw

ż ¼ x2y − dz

ẇ ¼ kW uð Þy − w

u̇ ¼ ey

8>>>>>><
>>>>>>:

: ð10Þ

Changing the size of l in a certain range, the chaotic
attractor can be realized to move on the x−w axis. When
l¼ 10; l¼ 0, and l¼ − 10 are selected, the initial condition is
ð1; − 1; − 10; 1; − 10Þ : and the phase trajectory diagram of
the x−w plane is simulated, as shown in Figure 11(a); the
initial condition is ð1; 1; 10; − 1; 10Þ : and the phase trajectory
diagram of the x−w plane is simulated, as shown in
Figure 11(b); the initial condition is ð− 1; − 1; − 10; 1; −

10Þ: and the phase trajectory diagram of the x−w plane is
simulated, as shown in Figure 11(c); the initial condition is
ð− 1; 1; 10; − 1; 10Þ :, the phase trajectory of the x−w plane is
shown in Figure 11(d). Where blue color indicates the
attractor at l¼ 0, black color indicates the attractor at l¼
10 and red color indicates the attractor at l¼ − 10. From
Figure 11, it can be seen that for the add operation, the
attractor phase trajectory diagrams are all located below
l¼ 0 and for the subtract operation, the attractor phase tra-
jectory diagrams are all located above l¼ 0. Therefore, the
attractor can realize the single-bipolar transition on the
w-axis when the linear state variable offset is changed.

5. Circuit Simulation

Simulink has the advantages of high visualization, multido-
main simulation, fast modeling and iteration, high accuracy,
etc. Therefore, in this paper, the Simulink platform is chosen
to build circuits for the new five-dimensional chaotic system.
The circuit built is shown in Figure 12, the phase diagrams of
the attractor obtained by simulation are shown in Figure 13,
and the time domain waveform diagrams in the planes are
shown in Figure 14. Both the attractor phase diagrams and
the time domain waveform diagrams are consistent with
the trajectories simulated by MATLAB 2018a numerical
analysis, which verifies the correctness of the five-dimensional
chaotic system.

6. Reduced Dimensional Synchronization and
Image Encryption

6.1. System Downgrading Process. To realize the synchronous
control of a chaotic system before and after dimensional
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FIGURE 9: Bifurcation diagram and Lyapunov exponent spectrum of chaotic system with u02 ½0; 30�:: (a) the Lyapunov exponential spectra; (b)
the bifurcation diagram.
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reduction, it is necessary to carry out the dimensional reduc-
tion process on the newly constructed system (3), the control
voltage in the system equations with the internal state vari-
ables of the memristor is replaced, all the parameter u in
the equations will be defined as parameter y and the four-
dimensional chaotic system after dimensional reduction will
be obtained as follows:

ẋ ¼ ax − xyz

ẏ ¼ by þ x2z − cw

ż ¼ x2y − dz

ẇ ¼ kW yð Þy − w

8>>>><
>>>>:

: ð11Þ

Let a¼ 3; b¼ − 8; c¼ 4; d¼ 5; e¼ 1; k¼ 40;m¼ 1, and
n¼ 0:01 and the initial condition be ð1; − 1; − 10; 1Þ :. The

attractor phase diagrams of the planes of x− y; x− z; x−w;
y− z; y−w, and z −w are obtained by simulation as in
Figure 15(a), the time domain waveform diagrams in the
x− t; y− t; z− t, and w− t planes are shown in Figure 15(b)
and the 0–1 test diagram is shown in Figure 16. From the
simulated attractor phase diagrams, it can be seen that
the attractor phase diagrams after dimensionality reduction
are consistent with the five-dimensional chaotic system, the
time-domain waveform diagrams are still irregularly varying,
and the 0–1 test diagrams show Brownian motion, so the
system after dimensionality reduction is still chaotic.

6.2. Synchronized Control.Many scholars have already applied
adaptive synchronization to low-dimensional chaotic systems,
while there are still few applications in high-dimensional cha-
otic systems, especially using heterogeneous chaotic systems
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to achieve synchronization. In this paper, the adaptive syn-
chronization control method is adopted to achieve the syn-
chronization of chaotic systems before and after dimensional
reduction, and the specific operation steps are as follows:

Let the dimensionalized four-dimensional chaotic system
(11) be used as the driving system and the five-dimensional
chaotic system (3) as the response system, and for the sake of
the study, the driving system is rewritten as follows:

ẋ1 ¼ a1x1 − x1y1z1

ẏ1 ¼ b1y1 þ x12z1 − 4w1

ż1 ¼ x12y1 − c1z1

ẇ1 ¼ 40 1þ 0:01y21ð Þy1 − w1

8>>>><
>>>>:

: ð12Þ

The response system is rewritten as follows:

ẋ2 ¼ a2x2 − x2y2z2 þ v1

ẏ2 ¼ b2y2 þ x22z2 − 3w2 þ v2

ż2 ¼ x22y2 − c2z2 þ v3

ẇ2 ¼ 40 1þ 0:01u22ð Þy2 − w2 þ v4

u̇2 ¼ y2 þ v5

8>>>>>><
>>>>>>:

; ð13Þ

where v1; v2; v3; v4, and v5 are the synchronization control-
lers and parameters a1; a2; b1; b2; c1, and c2 are unknown, to
achieve synchronization between the drive and response sys-
tems in different initial states, the error between the two
systems needs to be defined as follows:
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e1 ¼ x2 − x1

e2 ¼ y2 − y1

e3 ¼ z2 − z1

e4 ¼ w2 − w1

e5 ¼ u2 − u1

a¼ a2 − a1

b¼ b2 − b1

c¼ c2 − c1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

: ð14Þ

In performing the error calculation, the four-dimensional
chaotic system lacks the fifth-dimensional equation, so e5 ¼
u2 − u1 ¼ u2 − 0¼ y2, the error system equation can be
obtained from the driving system (12), the response system
(13), and the error variable (14) as follows:
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ė1 ¼ a2x2 − y2x2z2 − a1x1 þ y1x1z1 þ v1

ė2 ¼ b2y2 þ x22z2 − 3w2 − b1y1 − x21z1 þ 4w1 þ v2

ė3 ¼ x22y2 − c2z2 − x21y1 þ c1z1 þ v3

ė4 ¼ 40y2 þ 0:4u22y2 − w2 − 40y1 − 0:4y31 þ w1 þ v4

ė5 ¼ y2 þ v5

8>>>>>><
>>>>>>:

:

ð15Þ

Take the control rate as follows:

v1 ¼ −y1x1z1 þ y2x2z2 − a2 þ 1ð Þe1
v2 ¼ x21z1 − x22z2 − b2e2 þ 3e4 − w1 − e2

v3 ¼ x21y1 − x22y2 þ c2e3 − e3

v4 ¼ 40y1 þ 0:4y31 − 40y2 − 0:4u22y2
v5 ¼ −y2 − e5

8>>>>>><
>>>>>>:

: ð16Þ

Set the Lyapunov function to the following:

V ¼ 1
2

e21 þ e22 þ e23 þ e24 þ e25 þ a2 þ b2 þ c2ð Þ: ð17Þ The derivative of the function V̇ is as follows:

V̇ ¼ 1
2

2e1ė1 þ 2e2ė2 þ 2e3ė3 þ 2e4ė4 þ 2e5ė5 þ 2aȧ þ 2bḃ þ 2cċ
À Á

¼ e1ė1 þ e2ė2 þ e3ė3 þ e4ė4 þ e5ė5 þ aȧ þ bḃ þ cċ
À Á

¼ e1 x1a − e1ð Þ þ e2 y1b − e2ð Þ þ e3 −z1c − e3ð Þ þ e4 −e4ð Þ þ e5 −e5ð Þ þ aȧ þ bḃ þ cċ
À Á

: ð18Þ

The adaptive rate is taken to be as follows:

ȧ ¼ −e1x1

ḃ ¼ −e2y1

ċ ¼ e3z1

8><
>:

: ð19Þ

Then,

V̇ ¼ 1
2

2e1ė1 þ 2e2ė2 þ 2e3ė3 þ 2e4ė4 þ 2e5ė5 þ 2aȧ þ 2bḃ þ 2cċ
À Á

¼ − e21 − e22 − e23 − e24 − e25

:

ð20Þ

The Lyapunov function is greater than zero, and its deriv-
ative function is less than zero, so the error system is an energy
decay function. As t tends to infinity,e1; e2; e3; e4, and e5 tends
to zero, the system error tends to zero, and the drive system
(11) is synchronized with the response system (3).

To verify the correctness of the synchronous controller,
the synchronous controller is simulated and the initial
value of the four-dimensional chaotic system is selected as
ð1; − 1; − 10; 1Þ :, the initial value of the five-dimensional
chaotic system is ð1; − 1; − 10; 1; − 10Þ: and the unknown

parameters are a¼ 3; b¼ − 8, and c¼ 5. The error results
obtained from the simulation are plotted in Figure 17, and
the synchronization process of the driving system and dia-
grams of the synchronization process between the drive sys-
tem and the response system for each sequence are shown in
Figure 18. It can be seen that the driving system and the
responding system are synchronized at time t¼ 80, which
validates the feasibility and correctness of the synchronous
the feasibility and correctness of the synchronization con-
troller are verified. It can be seen that the driving system and
the response system are all synchronized at t¼ 80, where x1
and x2 are synchronized at t¼ 8; y1 and y2 are synchronized
at t¼ 80; z1 and z2 are synchronized at t¼ 16;w1 and w2 are
synchronized at t¼ 0 and u1 and u2 are synchronized at t¼
6, which verifies the feasibility and correctness of this syn-
chronized controller. Currently, there are fewer studies on
the synchronous control of chaotic systems of different
dimensions, especially the synchronous control of chaotic
systems before and after dimensionality reduction, so con-
sidering that the time for the y1 and y2 error curve to con-
verge to zero is too long, it is guessed that it may be the time
delay caused by the three-dimensional nonlinear system with
two positive values of the Lyapunov exponent, which itself
has a higher complexity and the synchronization that is
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achieved by the system that will be reduced to dimensionality
with itself.

6.3. Chaos Mask Image Encryption. The main idea of the
chaotic masking technique is to superimpose the useful
information signal on the signal generated by the driving
system to form a modulated signal, which is transmitted
using the channel, and the modulated mixed signal is demo-
dulated using the signal generated by the response system to
recover the useful information signal [32], and the commu-
nication scheme is shown in Figure 19, which is based on the
fact that the driving and response systems have been realized
with synchronous control. To better mask the useful infor-
mation signals needed to generate more complex chaotic
modulation signals, the carrier signal at the sending end
and the demodulated signal at the receiving end are obtained
by extracting the four corresponding state variables from the
driving system and the response system, respectively and
performing a simple summation. The useful information
transmitted in the past are function signals; this paper pro-
poses the use of chaotic masking technology for confidential
transmission of image information, combined with theoreti-
cal analysis and experimental simulation to verify the pro-
posed confidentiality scheme.

Carrying out experiments with high-pixel pictures will
take up more resources, and the running time will be greatly
lengthened, so this paper selects low-pixel pictures for

transmission and sets the information signal sðtÞ: to be trans-
mitted as a picture with pixels of 14,400 grayscale, as shown
in Figure 20. Since pictures are stored as two-dimensional
arrays in the computer, they need to be modulated into one-
dimensional arrays for information transfer, as shown in
Figure 21.

The encryption function pðtÞ : and decryption function
dðtÞ : of the chaotic masking technique used in this paper are
as follows:

p tð Þ ¼m 1ð Þ þm 2ð Þ þm 3ð Þ þm 4ð Þ þ s tð Þ; ð21Þ

d tð Þ ¼ p tð Þ − n 1ð Þ − n 2ð Þ − n 3ð Þ − n 4ð Þ; ð22Þ

where mðiÞ : ði¼ 1; 2; 3; 4Þ: are the sequence generated by
the signal of drive system x1; y1; z1, and w1; pðtÞ : are the
encrypted aliased signal of mðiÞ : ði¼ 1; 2; 3; 4Þ: pair sðtÞ:; nðiÞ
:ði¼ 1; 2; 3; 4Þ: are the chaotic synchronized sequence gener-
ated in response to the signal of system x2; y2; z2, andw2. The
decrypted signals of pðtÞ : pair are dðtÞ : and nðiÞ : ði¼ 1; 2; 3; 4Þ:.

During the synchronization test, it is obtained that the
error between the driving system and the response system
tends to 0 at t¼ 80 and the length of the one-dimensional
array of useful information signals is 14,400. To avoid signal
interference and the influence of synchronization controllers,
the one-dimensional array 0–14,400 will be looped to 28,800,
i.e., two repeated 0–14,400 arrays will be obtained, and the
undisturbed signal can be extracted in the decryption process
for the information signal reduction, i.e., the 14,400–28,800
segment array. In the experimental process, the sequences
generated by the chaotic system are all four decimal places,
and the useful information arrays are all integers. InMATLAB
2018a, integers can only be used in combination with the same
class of integers or scalar double precision values, so it is nec-
essary to carry out decimal operations on the useful informa-
tion signal sðtÞ :. The formula is as follows:

∑

x1 y1 z1 w1

Response system

∑

∑
s(t)

Reproach

Control
system 

–n(t)p(t) +p(t)

d(t)

Transmitter Receiver

Drive system

x2 y2 z2 w2

FIGURE 19: Schematic diagram of the communications security
scheme.

FIGURE 20: Original image to be encrypted.
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FIGURE 21: One-dimensional array map of the original image.
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s1 tð Þ ¼ s tð Þ
10;000

: ð23Þ

The error signal between the useful information signal s1ðtÞ :

and the decrypted information signal dðtÞ : is obtained as follows:

e tð Þ ¼ s1 tð Þ − d tð Þ: ð24Þ

To carry out the reduction of the original image, it is neces-
sary to extract a section of one-dimensional array d1ðtÞ : and
perform integer operations with the formula as follows:
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FIGURE 22: Encryption and decryption result diagrams: (a) the useful information signal s1ðtÞ:; (b) the encrypted signal pðtÞ:; (c) the decrypted
signal dðtÞ :; (d) the error diagram between useful information signal s1ðtÞ: and decrypted signal dðtÞ :; (e) the 14,400–28,800 segment d1ðtÞ :;
(f ) the encrypted image; (g) the decrypted image.
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d2 tð Þ ¼ d1 tð Þ ⋅ 10;000: ð25Þ

Based on the above encryption function, decryption
function, and synchronization-related parameters, the pro-
posed communication confidentiality scheme is simulated
after fractional transformation and cyclic array operation
and the obtained useful information signal s1ðtÞ : is shown
in Figure 22(a); the encrypted signal pðtÞ : obtained by using
the encryption function in combination with the signal gen-
erated by the driving system is shown in Figure 22(b); the
decrypted signal dðtÞ : is obtained by using the decryption
function in combination with the signal generated by the
responding system and the decrypted signal dðtÞ : is shown
in Figure 22(c); the error diagram between the useful infor-
mation signal s1ðtÞ : and the decrypted signal dðtÞ : is shown in
Figure 22(d); in order to restore the original image, the array
d1ðtÞ : of 14,400–28,800 segments in the decrypted information
signal dðtÞ: is extracted and the extracted array is subjected to
integer operation by using Equation (25) and the obtained
array d2ðtÞ : is shown in Figure 22(e). The 14,400–28,800 in the
one-dimensional array pðtÞ : is extracted and converted into a
picture, the decrypted image is shown in Figure 22(f). The
one-dimensional array is converted into a picture, which is the
decrypted image, as shown in Figure 22(g). From Figure 22, it
can be seen that the useful information signal s1ðtÞ : is difficult
to see the original signs under the mask of the encryption
function and the signal mðiÞ: ði¼ 1; 2; 3; 4Þ : produced by the
driving system and the original useful signal can be well
restored under the decryption function and the signal nðiÞ
: ði¼ 1; 2; 3; 4Þ : produced by the response system and the
restored useful signal is closer to the original useful signal
sðtÞ: and the restored image is closer to the original image at
t¼ 80, which means that in the process of communication
using the designed chaotic synchronous system before and
after dimensionality reduction and based on the designed
scheme can well restore the useful signal of the image and can
be applied to the field of image confidentiality.

7. Conclusions

First, a five-dimensional memristive chaotic system with cubic
nonlinear terms is constructed on a three-dimensional chaotic
system. Compared with the original system, the new system
has a more complex dynamical behavior, in which the system
can generate identical symmetric rotational coexisting attrac-
tors in four pairs of symmetric coordinates, and the trajectories
of the four coexisting attractors are independent of each other
without intersecting each other, and there are also parameter-
dependent periodic limit loops and transient chaotic phenom-
ena, as well as initial-value-dependent super-multisteady-state
phenomena. In studying the incremental control of the linear
state variable offset of the system, it is shown experimentally
that the chaotic system can be transformed between single and
double poles in four pairs of symmetric coordinates. Second,
the circuit construction of the cubic nonlinear memristive
chaotic system using Simulink proves the correctness of the
system. Finally, the important dynamics of the system are
preserved, and the five-dimensional system is downgraded to

a four-dimensional chaotic system, and the system is synchro-
nized before and after the downgrading by using an adaptive
synchronous control method. Using the designed linear encryp-
tion and decryption function and chaotic masking technique,
combined with experimental simulation, it is to proved that
the encrypted and decrypted images are basically the same
and the encryption and decryption of images are completed. It
is demonstrated that the proposed three-time nonlinear cha-
otic system combined with the chaos masking technique can
be better applied in the field of communication. In this paper,
there are still many imperfections in the research of encryp-
tion and decryption algorithms. Based on the proposed new
system and the realization of the reduced-dimensional syn-
chronous control, the application of chaotic masking technol-
ogy to the image has been preliminarily verified, which proves
that the proposed system can be applied in the field of commu-
nication, and lays a certain foundation for future encryption and
decryption algorithms, and the subsequent encryption and
decryption algorithms can be explored based on the chaotic
system and be realized in hardware.
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