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This study characterizes and reports on the fabrication process of AlGaN flame photodetectors with an Al0.1Ga0.9N/GaN superlat-
tice structure. The AlGaN flame photodetectors exhibited a low dark current (∼ 1.17×10−10 A at bias of−5 V) and large rejection
ratio of photocurrent (∼ 2.14×10−5 A at bias of−5 V) to dark current, which is greater than five orders of magnitude. Responsivity
at 350 nm at a bias of −5 V was 0.194 A/W. Quantum efficiency, η, was 0.687 at a reverse bias of 5 V.
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1. INTRODUCTION

Recently, the detector for blue/ultraviolet (UV) wavelengths
has been studied widely. An effective UV detector should op-
erate even in strong visible background light. Correspond-
ingly, detector sensitivity in a UV region should be larger
than that in the visible region. Ultraviolet detectors are prac-
tical at flame sensing, missile plume detection, and space-
to-space communications [1, 2]. Since flame luminescence
in the UV spectrum is weak, high responsivity and low cur-
rent noise are necessary to prevent misdetection. Also a large
spectral selectivity is important to efficiently reject solar light
[2].

The effectiveness of applying III-V nitride detectors for
UV wavelengths has been demonstrated [2–10]. By adjust-
ing the aluminum fraction of AlxGa1−xN-based photodiodes,
the band gap energy varies at 3.4–6.2 eV and shifts the cutoff
wavelength from 365 nm (x = 0) to 200 nm (x = 1) [1].
However, the ratio of the UV light photocurrent to the vis-
ible light photocurrent is roughly 3–4 orders of magnitude
or lower. Yeh et al. reported that AlGaN/GaN strained-layer
superlattice (SLS) structure can increase acceptor ionization
efficiency and hole concentration in the GaN p-i-n photodi-
ode [10]. This study describes the fabrication of and charac-
terizes mesa-type Al0.1Ga0.9N flame photodetectors with an
Al0.1Ga0.9N/GaN superlattice structure that has a low dark
current and a visible-to-UV light rejection ratio of 6 orders
of magnitude.

2. EXPERIMENT

Wafers utilized in this study were grown on c-plane (0001)
sapphire substrate by metal-organic vapor phase deposi-
tion (MOCVD) technology. A 2000-nm-thick Si-doped GaN
layer (n = 1 × 1018 cm−3) was grown on sapphire sub-
strate, followed by a 1000-nm-thick unintentionally doped
Al0.1Ga0.9N absorption layer (n = 9× 1016 cm−3), a 300-nm-
thick unintentionally doped Al0.1Ga0.9N/GaN (12 nm/8 nm)
SLS structure consisting of 15 layers, and a 400-nm-thick
Mg-doped GaN cap layer (p = 3 × 1017 cm−3). Heat treat-
ment was subsequently performed at 650◦C for 10 minutes
in ambient nitrogen to activate the p-type dopant.

The surface of the p-type GaN layer was then par-
tially etched using photolithography and inductively cou-
pled plasma-reactive ion etching (ICP-RIE) technology un-
til the n-type GaN layer was exposed, indicating that the
mesa structure was formed. The SiNx layer was then evap-
orated as an insulation layer. An open was formed by pho-
tolithography to expose the surface of the p-GaN layer. The
Ni/Au (50 Å/80 Å) transparent contact was evaporated onto
the surface of the p-GaN using an electron-beam evapora-
tor, and thermally annealed in ambient pure oxygen at 550◦C
for 10 minutes to form the p-metal. Finally, the Ti/Al/Ti/Au
(15 nm/50 nm/100 nm/1000 nm) contacts were formed si-
multaneously on the exposed n-type GaN layer as n-metal
and a bonding pad, and on the Ni/Au transparent contact as
a bonding pad. Figure 2 shows the optical microscope top-
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Figure 1: Schematic cross-section of AlGaN UV photodiode.
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Figure 2: Optical microscope top view of AlGaN UV photodiode.

view of AlGaN flame photodetectors. The diameter of the il-
luminated area is about 100 μm.

The current-voltage (I-V) characteristics of the AlGaN
photodiode were measured using an HP 4155B semiconduc-
tor parameter analyzer. Responsivities were determined by a
spectrum meter (Hitachi U-3010). All measurements were
made at room temperature.

3. RESULTS AND DISCUSSION

Figure 3 shows plots of the I-V characteristics of photodi-
odes measured in the dark (dark current) and under illu-
mination (photocurrent) at reverse biases from 0 V to 20 V.
The photocurrent was approximately 2.14 × 10−5 A and the
dark current was approximately 1.17×10−10 A at a bias of 5 V.
Therefore, a large photocurrent-to-dark-current contrast ra-
tio exceeded 5 orders of magnitude. The orders of magnitude
were markedly higher than other structures in other studies
due to the addition an unintentionally doped SLS structure
between the p-GaN layer and Al0.1Ga0.9N absorption layer
in this study. The AlGaN/GaN superlattice structure could
change the orientation of threading dislocations, so that it
resulted in a low dark current. Also, the superlattice struc-
ture would cause the incline of the band gap in high elec-
trical field, enhanced the impact of the hole to grow many
electron-hole pairs and increased the photocurrent.

Figure 4 presents a plot of responsivity as a function
of wavelength for an AlGaN flame photodetector. High re-
sponsivity is evident at wavelengths of 360–320 nm at re-
verse biases of 3 V and 5 V. The responsivity at 350 nm at a
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Figure 3: Dark and illuminated (λ = 350 nm) I-V characteristics of
AlGaN flame photodetectors at reverse biased from 0 V to 20 V.
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Figure 4: Responsivity as function of wavelength for an AlGaN
flame photodetector at bias of 5 V.

bias of 5 V was 0.194 A/W. The response tails off at a wave-
length of 380 nm. Responsivity at 380 nm at a bias of 5 V was
0.00254 A/W.

Responsivity R could be described as [11]

R = Iph

Pinc
= η

qλ

hc
= ηλ(μm)

1.24
(A/W), (1)

where Iph is the photocurrent, Pinc is the incident power, and
η, q, c,h, and λ are quantum efficiency, electron charge, ve-
locity of light, Planck constant, and light wavelength, respec-
tively. Using (1), quantum efficiency, η, was 0.687 at a reverse
bias of 5 V. On the other hand, the dashed line in Figure 4
is flame spectrum near the UV range of 200–420 nm. The
portion of relative high intensity was at 030–400 nm, which
matches the high responsivity region of the AlGaN photode-
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tector. Therefore, the AlGaN photodetector can be used for
flame detection under strong visible background light.

4. CONCLUSIONS

In summary, AlGaN p-i-n photodiodes grown by MOCVD
technology are characterized. The dark current and pho-
tocurrent of AlGaN p-i-n photodetectors were 1.17×10−10 A
and 2.14 × 10−5 A at a bias of −5 V, and the photocurrent
rejection ratio was 6 orders of magnitude. Responsivity and
quantum efficiency, η, at 350 nm at a bias of −5 V were
0.194 A/W and 0.687, respectively. The portion of relatively
high intensity in the flame spectrum was at 300–400 nm,
which matches the high-responsivity region of the AlGaN
photodetector. Therefore, the AlGaN photodetector can be
used for flame detection under a strong visible background
light.

ACKNOWLEDGMENTS

The authors would like to thank the National Science Council
of China for financially supporting this research under Con-
tract no. NSC 93-2215-E-027-007.

REFERENCES

[1] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet de-
tectors,” Journal of Applied Physics, vol. 79, no. 10, pp. 7433–
7473, 1996.

[2] C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano,
and I. Akasaki, “Low-intensity ultraviolet photodetectors
based on AlGaN,” Japanese Journal of Applied Physics, vol. 38,
no. 5, pp. 487–489, 1999.

[3] H. Jiang, T. Egawa, and H. Ishikawa, “AlGaN solar-blind
Schottky photodiodes fabricated on 4H-SiC,” IEEE Photonics
Technology Letters, vol. 18, no. 12, pp. 1353–1355, 2006.

[4] L.-C. Chen, M.-S. Fu, and I.-L. Huang, “Metal-semicon-
ductor-metal AlN mid-ultraviolet photodetectors grown by
magnetron reactive sputtering deposition,” Japanese Journal of
Applied Physics, vol. 43, no. 6 A, pp. 3353–3355, 2004.

[5] Y.-K. Su, S.-J. Chang, Y.-Z. Chiou, et al., “Nitride-based multi-
quantum well p-n junction photodiodes,” Solid-State Electron-
ics, vol. 47, no. 5, pp. 879–883, 2003.

[6] M. L. Lee and J. K. Sheu, “GaN-based ultraviolet p-i-n photo-
diodes with buried p-layer structure grown by MOVPE,” Jour-
nal of the Electrochemical Society, vol. 154, no. 3, pp. H182–
H184, 2007.

[7] T. Tut, N. Biyikli, I. Kimukin, et al., “High bandwidth-
efficiency solar-blind AlGaN Schottky photodiodes with low
dark current,” Solid-State Electronics, vol. 49, no. 1, pp. 117–
122, 2005.

[8] C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano,
and I. Akasaki, “Solar-blind UV photodetectors based on
GaN/AlGaN p-i-n photodiodes,” Japanese Journal of Applied
Physics, Part 2, vol. 39, no. 5 A, pp. L387–L389, 2000.

[9] J. C. Carrano, D. J.H. Lambert, C. J. Eiting, et al., “GaN
avalanche photodiodes,” Applied Physics Letters, vol. 76, no. 7,
pp. 924–926, 2000.

[10] L. S. Yeh, M. L. Lee, J. K. Sheu, et al., “Visible-blind GaN p-i-n
photodiodes with an Al0.12Ga0.88N/GaN superlattice struc-
ture,” Solid-State Electronics, vol. 47, no. 5, pp. 873–878, 2003.

[11] P. Bhattacharya, Semiconductor Optoelectronic Devices, Pren-
tice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 1997.



Submit your manuscripts at
http://www.hindawi.com

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Corrosion
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Polymer Science
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Ceramics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Composites
Journal of

Nanoparticles
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Nanoscience
Journal of

Textiles
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Journal of

Nanotechnology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Crystallography
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Coatings
Journal of

Advances in 

Materials Science and Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Smart Materials 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Metallurgy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Materials
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

N
a
no

m
a
te
ri
a
ls

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal ofNanomaterials


