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2 Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 6242,
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A series of ceramics samples belonging to the CeO2-Bi2O3 phase system have been prepared via a coprecipitation route. The
crystallized phases were obtained by heating the solid precursors at 600◦C for 6 hours, then quenching the samples. X-ray
diffraction analyses show that for x < 0.20 a solid solution Ce1−xBixO2−x/2 with fluorine structure is formed. For x ranging between
0.25 and 0.7, a tetragonal β′ phase coexisting with the FCC solid solution is observed. For x ranging between 0.8 and 0.9, a new
tetragonal β phase appears. The β′ phase is postulated to be a superstructure of the β phase. Finally, close to x = 1, the classical
monoclinic αBi2O3 structure is observed. Raman spectroscopy confirms the existence of the phase changes as x varies between 0
and 1.
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1. Introduction

In the past, several systems based on cerium dioxide CeO2

(ceria) were extensively investigated for their electrochemi-
cal, conduction, or catalytic properties [1–15]. Nanostruc-
tured powders of pure and doped ceria can be obtained in
various ways [16, 17]. In the present work we deal with
the bismuth cerium oxide system CeO2-Bi2O3. This system
might be of a high interest for catalytic applications and inte-
gration in gas sensors. At present, the cerium bismuth oxide
phase diagram (CeO2-Bi2O3) is not well known. For low Bi
fractions, it was clearly established that a solid solution was
formed. The substituted phase Ce4+

1−x Bi3+ x O2−x/2 (V)x/2
with x < 0.20 (where oxygen vacancies are noted V) is
cubic and its cell parameter increases with x because of size
of Bi3+ ionic radius: r(Bi3+) = 0.117 nm and r(Ce4+) =
0.097 nm [18, 19]. However, above the composition x =
0.20, the nature of phases is not well known. In the
present work, we describe a new series of observed phases
prepared via a coprecipitation route and after heating at
600◦C.

2. Experimental

Fourteenth polycrystalline samples were prepared by mixing
bismuth and cerium nitrates solutions (Bi(NO3)3, 5H2O +
Ce(NO3)3, 6H2O) and adding NH4OH [20, 21] to obtain
precipitation of NH4NO3 and bismuth cerium hydroxides.
Bismuth compositions ranged from 0% Bi to 100% Bi.
The solid obtained by coprecipitation was then heated
under air at 600◦C for 6 hours. Experiments carried out
at intermediate heating times showed that the observed
crystallized phases appear as being stable above heating times
of 2 hours.

3. Results

The polycrystalline samples were analyzed by X-ray dif-
fraction, using a D5000 Siemens-Bruker diffractometer,
equipped with a copper X-ray source (wavelength λ =
1.54 10−10 m; tension V = 45 kV, intensity I = 35 mA),
and with a monochromator eliminating Kβ radiation. The
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Figure 1: XRD patterns (λCuKα1 = 1.54·10−10 m) of pure samples (1−x) CeO2, x/2 Bi2O3heated at 600◦C. (a) XRD patterns for 0 < x < 0.20;
(b): XRD patterns for 0.25 < x < 0.70 biphasic system; (c) x = 0.8 and 0.9; (d) x = 1 α- Bi2O3.

analyses were carried out using the classical θ-2θ configu-
ration, with 2θ angle steps of 0.02◦ and counting times of
19 s per step. Raman spectroscopy was used to characterize
the observed various phases. A micro-Raman system Horiba.
Jobin-Yvon Labram HR 800 equipped with argon laser
source (Raman wavelength λ = 514.5 nm) was used to
observe the various vibrational spectra. All spectra were
acquired with a recording time of 30 seconds.

3.1. Structural Studies. X-ray diffraction shows that a strong
evolution occurs in the phase system as bismuth atom
fraction increases. Figures 1(a), 1(b), 1(c), and 1(d) show
the X-ray diffraction patterns for samples noted (1−x)CeO2,

x/2Bi2O3 with x varying between 0 and 1. The cell parameters
of substituted samples Ce1−xBixO2−x/2(V)x/2 noted as a(x)
were refined. From x = 0 to x = 0.25, the cell parameters
linearly vary with x: a(x = 0) = 0.5409 ± 0.0001 nm; a(x =
0.05) = 0.5413 ± 0.0001; a(x = 0.10) = 0.5417 ± 0.0004;
a(x = 0.15) = 0.5419 ± 0.0003; a(x = 0.20) = 0.5421 ±
0.0002.

Above the composition x = 0.20, a multiphase system
is evidenced and the ceria-based phase presents a constant
cell parameter a = 0.5421 nm: the two new additional
phases are identified as being tetragonal and closely related
to bismuth oxide structural varieties: their cell parameters
were refined. In the composition range from 0.3 to 0.7, a
tetragonal β′ phase is observed with refined cell parameters:
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Figure 2: Raman spectra (λ = 514.5 nm) of bismuth cerium oxide
phases, (1 − x) CeO2, x/2. Bi2O3; (a) solid solution for x = 0 to
0.25; (b) multiphase system for x = 0.30 to 1. Raman shift island
are in cm−1, x values from 0 to 1. The bands at 520 and 590 cm−1

are linked to structural defects.

a = 1.5542 ± 0.0003 nm; c = 0.5645 ± 0.0001 nm. It
is a superstructure of the tetragonal β phase observed
for compositions 0.7 < x < 0.9, with refined cell
parameters: a = 0.7742±0.0001 nm; c = 0.5633±0.0001 nm.
These substituted phases were never observed, and testing
structural models are in progress to better describe these
phases.

3.2. Vibrational Studies. raman spectroscopy data are
reported on Figures 2(a) and 2(b): in Figure 2(a), the
solid solution (0 < x < 0.25) is characterized by a
main vibrational band at 460–465 cm−1 with complementary

small bands at 520–590 cm−1 associated with the pres-
ence of Bi3+ and oxygen vacancies in the cubic lattice.
In Figure 2(b) the Raman spectra of other samples are
represented for x compositions ranging between 0.3 and
1. The vibration bands are increasingly more complex as
Bi composition increases. The cubic phase of CeO2 is
well characterized by the 465 cm−1 Raman band. In the
composition range from x = 0.05 to 0.20 the bands located
at 462–516–595 cm−1 might be associated with the solid
solution Ce1−xBixO2−x/2 (V)x/2. The additional bands are
underlined and should be linked to presence of Bi3+ ions
and vacancies (clusters Bi3+-V-Bi3+). In the range x = 0.30
to 0.70, the Raman bands 460, 520, 590, 94, 126, 316,
530 (in cm−1) might be related to the biphasic system:
cubic solid solution + tetragonal superstructure β’. In the
range x = 0.80 to 0.90, a new biphasic system associated
with the bands 95, 120, 315, 450, 538 (tetragonal phase)
and 70, 85, 140, 152, 184, 212, 285, 418, 630 (monoclinic
lattice) is observed: these vibration bands could characterize
the system “Tetragonal β + Monoclinic α.” Finally for
the Bi2O3 sample, the standard α monoclinic structure is
observed.

4. Conclusions

New correlations between XRD data and Raman spec-
troscopy have been established for the system CeO2-Bi2O3.
From samples prepared at 600◦C, a partial phase diagram
is proposed with the probable existence of at least 4
domains. The X-ray diffraction and Raman spectroscopy
analyses clearly show that phase changes occur at 600◦C,
with at least (i) a solid solution domain (cubic phase), (ii)
a biphasic domain (tetragonal phase β′ rich in bismuth
coexisting with the cubic phase), (iii) a biphasic system
with coexistence of two β and β′ tetragonal phases, the
β phase being highly rich in bismuth), and finally (iv)
a biphasic domain in which monoclinic and tetragonal β
phases coexist. The solid solution can be represented from
the basic CeO2 face-centered cubic lattice. The tetragonal
phase β(x > 0.8) can be represented by a cell built on
the ceria fcc structure, with lattice vectors (a

√
2 , a

√
2 , a):

this structure was previously observed in the literature as a
tetragonal variety of pure or non stoichiometric Bi2O3 phase
[22, 23]. The Bi rich phase (0.25 < x < 0.70) having the
superstructure noted β′ can be represented by a cell built
on lattice vectors (2a

√
2, 2a

√
2, a). The observed pure Bi2O3

phase is monoclinic. The effective compositions of the β and
β′ new cerium bismuth phases are not clearly known and
new studies using transmission electron microscopy analyses
are in progress.
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Luckie, et al., “Structural evolution of Bi2O3 prepared by
thermal oxidation of bismuth nano-particules,” Superficies y
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