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A thermal treatment was employed to improve the DC performances of npn graded-base AlGaN/GaN heterojunction bipolar
transistors (HBTs). Such HBTs without the thermal treatment exhibit a higher turn-on voltage of 6.45 V, a lower current gain
of 0.84, and a lower collector current of 3.18 × 10−4 mA at VBE of 4.5 V. The HBTs are examined by thermal treatment with
rapid thermal process (RTP) annealing at various times and various temperatures. Experimental results reveal that the HBTs with
the thermal treatment exhibit a lowest turn-on voltage of 3.90 V, a highest current gain of 9.55, and highest collector current of
112.2 mA at VBE of 4.5 V. The thermal treatment brings forth the most remarkable improvements for the HBTs when the base
parasitical Schottky diodes are modified.

1. Introduction

The npn heterojunction bipolar transistors (HBTs) have
received more and more popularity in both wireless and
wired consumer products due to the inherent superiority of
bipolar devices compared to field-effect devices for linearity,
efficiency, and output power, as well as the need for only
a single positive power supply [1, 2]. Recently, the trend in
portable electronics has been to achieve greater efficiency at
lower bias conditions for longer battery life. Therefore, it has
become one of the most important issues to reduce the HBTs
base-emitter (B-E) turn-on voltage, VBE,ON. Typically, two
main approaches in reducing VBE,ON are (1) adoption of a
narrower band-gap material for the base and (2) elimination
of the effect of the conduction-band discontinuity (ΔEC) at
the B-E junction [3–10].

On the other hand, the GaN-based electronic devices
are suitable candidate for high-temperature and high-power
application due to their wide bandgap, higher critical electric
field strength, and higher electron saturation drift velocity
compared to other semiconductor materials. III-nitride tech-
nology has been advancing rapidly for several years [1, 2].
Concerning the adoption of a narrower band-gap material

for III-nitride technology, GaN/InGaN HBTs [3–5] are first
considered as candidates for the replacement to AlGaN/GaN
ones [6–10]. However, a large spike at the B-E junction also
severely limits the reduction of VBE,ON. On the other hand,
most p-InGaN-based HBTs are double-heterojunction ones.
The blocking effect at base-collector (B-C) heterojunction
results in a high knee voltage. Furthermore, the expected
reduction of VBE,ON is usually insignificant due to increased
ΔEC. In brief, without proper design in abrupt B-E junction
for widely studied HBTs, the reduction of VBE,ON is still
limited.

In this work, we demonstrated grading growth of
AlGaN/GaN at B-E junction of HBTs to eliminate the effect
of ΔEC. Typical measurements of HBTs are the Gummel plot
(the collector and base currents, IC and IB, as a function of
base-emitter voltage). The ideality factor of collector current
(ηC) is near 1 because collector current is the domination
of diffusion current. The base current (IB) consider’s the
diffusion current and generation-recombination current,
and the ideality factor of base current (ηB) takes on the values
in the range of 1.0 to 2.0 [11, 12]. However, in previous
reports, measurement results also give higher VBE,ON in
Gummel plot, moreover; ηC and ηB are greater than 4 [5–10].
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Figure 1: Schematic diagram of the studied npn graded-base
AlGaN/GaN HBT’s.

Unfortunately, that will lead to more power consumption.
Therefore, we reported the npn graded-base AlGaN/GaN
HBT employing thermal treatment to reduce the VBE,ON and
ideality factor down to normal. We utilized the thicker base
layer of 0.18 μm to avoid base Ni/Au electrode to penetrate
into the collector layer during the thermal treatment.

2. Device Structure and Fabrication

The epitaxial layers were grown on c-plane (0001) sap-
phire substrate by metal-organic chemical vapor deposition
(MOCVD). Growth was performed in H2 ambient using
trimethylgallium (TMGa) and trimethylaluminum (TMAl)
as alkyl sources, and ammonia (NH3) as the hydride
source. Silane (SiH4) and bis(cyclopentadienyl)-magnesium
(Cp2Mg) were employed as n-type and p-type dopants,
respectively. Shown in Figure 1, a 1.2 μm GaN buffer was
followed by a 1.8 μm n+-GaN subcollector doped at 5 ×
1018 cm−3, a 0.6 μm n−-GaN doped at 1 × 1016 cm−3, a
0.18 μm graded from p+-Al0.2Ga0.8 N at the emitter-base
junction to GaN at the base-collector junction and doped at
2 × 1018 cm−3, a 0.06 μm n-Al0.2Ga0.8 N emitter doped at 5
× 1017 cm−3, and finally a 0.11 μm n+-GaN cap doped at 5
× 1018 cm−3. For the device fabrication, the etching process
was carried out by high-density plasma (HDP) system
with RF power 200 W in RIE mode, in which photoresist
was used as the etching mask instead of Ni metal. The
chamber pressure was kept at 100 Torr and the employed
gas sources are Ar (20 sccm), CH4 (25 sccm), Cl2 (50 sccm),
and He (15 sccm). With those parameters, the etching rate
is 150 nm/min. A double-mesa process, emitter mesa and
base mesa formations, was employed to fabricate HBT’s. One
patterned photoresist was used as the mask to remove both
the cap and emitter layers during the emitter mesa. The
other larger patterned photoresist was used as the mask to
remove both base and collector layers during the base mesa.
Subsequently, the mesa-completed chip was deposited with

Ti/Al bilayers and annealed in N2ambient at 800◦C for 30 s
as the emitter and collector electrodes. For the fabrication
of base metallization, Ni/Au bilayers were deposited on the
graded base to form the base electrode. The base electrode
spacing to the emitter mesa edge was 50-μm. The emitter area
was 150 × 300 μm2.

3. HBT Performances and Discussion

To further investigate the effects of the thermal treatment
on the output characteristics, the devices were proceeded
with rapid thermal process (RTP) annealing at temperatures
of 600◦C and 700◦C for annealing times of 30 s, 60 s, and
90 s. The TLM measurement was also performed for all
RTP-annealing graded-base AlGaN/GaN HBT’s (A-HBT)
to verify contact resistance during the thermal treatment.
The measured results indicate no variation occurring for
the emitter and the collector contact resistances at such a
low annealing time. Figure 2 shows the common-emitter I-
Vs for both N-HBTs and A-HBTs. The common-emitter
I-Vs for both A-HBTs and N-HBTs are similar and the
collector-emitter offset voltage is about 0.2 V due to the
neglected emitter, and collector contact resistances. The
changes in I-Vs between A-HBTs and N-HBTs are very small
except the collector current with input base current above
15 μA. The enhanced current gain was obtained by RTP-
annealing and details discussed in Figure 5. Besides, Gummel
plot is the most typical measurement that is employed to
characterize the performance of the HBTs [5–10, 13–16].
Figure 3 shows the Gummel plots for A-HBT. The Gummel
plots for noneannealing graded-base AlGaN/GaN HBTs (N-
HBTs) were included for comparison. The N-HBT has its
ηB of 8.66 at low bias reduce to 5.72 at higher bias. It is
similar to previous reports [5–10]. Whereas the entire A-
HBTs exhibit an immovable ηB except that operate at high
current injection. As the annealing temperature and the
annealing time increases, ηB decreases gradually from 6.52
to 1.90. ηB of 1.90 is close to the ideality factor of generation-
recombination current equal to 2 when annealing condition
is at 700◦C for 90 s.

ηC for N-HBT equal to 4.32 is similar to previous reports
[5–10]. ηC for A-HBT are 3.68, 4.51, 4.51, 1.09, 1.09, and
1.09 for annealing condition at 600◦C for 30 s, 600◦C for
60 s, 600◦C for 90 s, 700◦C for 30 s, 700◦C for 60 s, and
700◦C for 90 s, respectively. Clearly, ηC of 1.09 is close to
ideality factor of diffusion current equal to 1 when annealing
condition is at 700◦C for 90 s. This phenomenon can also be
found that the base parasitical Schottky diodes are modified.
Detailed discussions have been demonstrated in next section.
The ratios of ηB to its corresponding ηC are in the range
of 1 to 2 for all A-HBT and N-HBT. It is found that base
current considers the components of diffusion current and
generation-recombination current at forward bias, and ηB is
in the range of 1∼2.

On the other hand, the applied VBE creating the condi-
tion of the IC equals to 100 A/cm2 and is defined as the turn-
on voltage (VBE,ON) and shown in Figure 4(a). The VBE,ON

values of N-HBT are 6.45 V while they are 6.12, 5.97, 5.5,
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Figure 2: Measured collector current as a function of collector-
emitter voltage for both N- and A-HBTs.
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Figure 3: Gummel plots for all fabricated npn graded-base
AlGaN/GaN HBT’s.

4.85, 4.42, and 3.90 V for A-HBT annealed at 600◦C for 30 s,
600◦C for 60 s, 600◦C for 90 s, 700◦C for 30 s, 700◦C for 60 s,
and 700◦C for 90 s, respectively. Accordingly, we believe that
a higher VBE,ON is resulted from a finite reverse-voltage drop
occurring for the base parasitical Schottky diode. Figure 4(b)
shows the collector current as a function of annealing time.
The enhanced collector current was obtained by elevating
the annealing temperature to 700◦C. As the annealing time
is increasing and applied VBE is 4.5 V, the collector current
increases from 3.18 × 10−4 mA to 112.2 mA at 700◦C.

Figure 5 shows the current gain as a function of VBE. We
observe that the current gain gradually increases with VBE

and displays a high plateau at 700◦C for 90 s. The enhanced
current gain was obtained by elevating the annealing temper-
ature from 600◦C to 700◦C. The current gain is enhanced at
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Figure 4: (a) Turn-on voltage. (b) collector current as a function
of annealing time for all fabricated npn graded-base AlGaN/GaN
HBT’s. A N-HBT’s is also included for comparisons.

the same applied VBE of 4.5 V after the thermal treatment. As
the annealing time is increasing, the current gain increases
from 9.10 to 9.55 at 700◦C.

4. MSM Diodes Measurement

In order to further verify the behaviors in the studied A-
HBTs by thermal treatment, when HBTs fabrication, metal-
semiconductor-metal (MSM) diodes have been fabricated by
evaporated Ni/Au bilayers on the graded-base layer. Figure 6
shown the measured current-voltage (I-V) curves for the
noneannealing MSM diodes and the RTP-annealing ones
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with the same chip and the same device dimension. Figures
6(a) and 6(b) are measured at 600◦C and 700◦C, respectively,
for 30 s, 60 s, and 90 s. I-V curves for noneannealing MSM
diodes are also included for comparisons. As increase the
annealing temperature and the annealing time, the measured
I-V curves for MSM diode are gradually into the Ohmic
contacts. Furthermore, the curve at the annealing conditions
of 700◦C for 90 s exhibits the better characteristics of an
Ohmic contacts, and the value is 27Ω. All results and
comparisons discussed indicate that the thermal treatment
can really eliminates the base parasitical Schottky diodes.
Accordingly, the base metallization in previous reports [5–
10] certainly has the base parasitical Schottky diode.

5. Conclusion

In conclusions, we report on the characterization and com-
parison between AlGaN/GaN graded-base N-HBTs and A-
HBTs and then demonstrate what improvements annealing
can yield in this work. Such N-HBTs exhibits a higher turn-
on voltage of 4.55, a lower current gain of 0.84, and lower
collector current of 3.18 × 10−4 mA at VBE of 4.5 V. To study
the effects of thermal treatment on device performances,
experimental results also reveal that the A-HBTs exhibit a
lowest turn-on voltage of 3.09, a highest current gain of 9.55,
and highest collector current of 112.2 mA at VBE of 4.5 V.
For the device fabrication, HBTs and MSM diodes performed
on graded base layer were simultaneously fabricated on the
same chip. Actually, the characteristics of MSM diodes can
well describe those of HBTs at the base. Therefore, the
base metallization certainly has the base parasitical Schottky
diode. The base parasitical Schottky diodes cause the higher
VBE,ON and the greater ideality factor. The thermal treatment
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Figure 6: Measured currents of MSM diode as a function of applied
voltage for noneannealing and RTP-annealing.

brings forth the most remarkable improvements for the
HBTs when the base parasitical Schottky diodes are modified.
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