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Computational model using continuous source functions along the fibre axis is presented for simulation of temperature/heat flux
in composites reinforced by short fibres with large aspect ratio. The aspect ratio of short fibres reinforcing composite material is
often as large as 103 : 1–106 : 1, or even larger. 1D continuous source functions enable simulating the interaction of each fibre with the
matrix and also with other fibres. The developed method of continuous source functions is a boundary meshless method reducing
the problem considerably comparing to other methods like FEM, BEM, meshless methods, or fast multipole BEM formulation.

1. Introduction

Short fibres are widely used as reinforcing materials in most
advanced composites [1]. In last decades, fibre-reinforced
composites have been widely used in engineering applica-
tions due to the superiority of their electrothermomechanical
(ETM) properties over the single matrix. Because of these
properties very large gradients are localized in all ETM fields
along the fibres and in the matrix. Particularly, composite
materials reinforced by short fibres/tubes (CRSF) are often
defined as materials of future. Understanding the physical
behaviour of these fibre-reinforced composites is essential for
structural design.

Accurate numerical simulation of the fields is important
for correct analysis and design of the material behaviour.
Among the existing numerical methods, finite element
method (FEM) [2, 3], boundary element method (BEM)
[4, 5], and meshless methods [6] can be used for simulating
the CRSF behaviour. However, these classical numerical
methods are suitable for the lowest scale simulation only.
All the methods mentioned above require millions or even
billions of equations after numerical discretization to obtain

a sufficiently accurate solution of this kind of computer
simulations.

Recently, the fast multipole method (FMM) [7] was
developed to increase the efficiency of numerical models.
The fast multipole boundary element method (FMBEM) [8],
which was used for simulation of these problems, reduces the
computational cost for the far field interaction simulations;
however, the classical BEM has to be used for simulating the
near field interactions and the supercomputers are necessary
to solve the problem with good accuracy. The FMBEM is the
only numerical method which enables solving representative
volume element (RVE) of the matrix containing two to
five thousand short fibres (three to eleven million degrees
of freedom (d.o.f.)). The problems have been solved on a
supercomputers, or on clusters of PCs [9–11]. If a matrix
reinforced by carbon nanotubes (CNTs) having 1% volume
of CNTs 1mm long and 20 nm diameter will contain 3.2 ×
107 tubes and the CNTs can have general form (curvature
and orientation) and can be randomly distributed, then the
control volume element (CVE) for homogenisation would
contain several millions of CNTs for correct assessment of
homogenized properties of the composite.
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More recently, method of continuous source functions
(MCSF) developed in [12–14] using 1D continuous source
functions distributed along the fibre axis enable simulating
interactions of a fibre with matrix and with other fibres
very effectively. 1D continuous force or heat sources and
force or heat dipoles distributed along fibre axes simulate
the interaction among each pair of fibres with the matrix in
someCVE for linear elasticity or thermal problems.The inter-
domain continuity between fibre and matrix is satisfied at
collocation points on the fibre boundaries and so the MCSF
is a meshless method, which has some common features with
the method of fundamental solutions (MFS) [15, 16].

In the present formulation the problem is defined as
follows. The infinite homogeneous material of the matrix is
subjected to constant heat flow. A patch of regularly dis-
tributed fibres parallel to each other and to the temperature
gradient and overlapping in their length in this domain is
subjected to simulate the influence the fibres to the heat flow.
Heat conductivity of fibres is much larger than that of the
matrix. The aim of the simulation is to evaluate increase of
conductivity of the matrix by the fibres.

The total solution is split into two parts: the first is homo-
geneous problem without fibres and the second is solving the
interaction of fibres with the matrix. The problem is solved
iteratively. In the first step, it is supposed that the fibres are
superconductors; that is, the temperature of each fibre is
constant. Temperatures in centres of fibres are found from the
energy balance and distribution of temperature along fibres is
solved in each iteration step for finite conductivity of fibres.

In previous research, the MCSF models were compared
with computational models of Trefftz-FEM (T-FEM) and
adaptive cross approximation BEM (ACA BEM) with the
aim to show possibilities of reduction the problem (see
more in [17]). All three methods imply considerable problem
reduction and the largest one is achieved by the MCSF.

A brief outline of the paper is as follows. Detail descrip-
tion of the model is described in Section 2. Computational
results are presented in Section 3 and conclusions about
modelling and behaviour of composite material are given in
Section 4.

2. Method of Continuous Source
Functions for Simulation of Fibres

Thebasic assumptions are homogeneous and isotropicmatrix
materials and fibres and the dimensions of the matrix are
infinite. To simulate heat conduction behaviour of CRSF by
theMCSFwith finite conductivity fibres (several orders larger
than matrix), the temperature and heat flow in all fibres
should be obtained. Heat flow can be computed by the source
functions of unknown intensity, which can be solved from the
interdomain continuity (on the fibre-matrix interface).

For the simplicity of modelling all fields are split into
two parts, the homogeneous stage corresponding to the
homogeneous problem of the matrix without fibres and the
local part containing the influence of interactions of fibres
with the matrix.

In the present model, the source functions (heat sources
and heat dipoles) are 1D continuously distributed along the

fibre axis (Figure 1) to simulate the interactions of fibres with
the matrix and with other fibres in some CVE. Heat source is
a scalar quantity. Heat dipole is a heat source and heat sink
acting at the same point by approaching each other in some
coordinate direction. Mathematically, it is a derivative of the
heat source in corresponding direction (i.e., the heat dipole is
a vector).

Temperature field induced by a unit heat source acting in
arbitrary point of infinite domain is the fundamental solution
for heat problems and it is given by

𝑇 =

1
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, (1)
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where 𝑘 is heat conductivity of the matrix. Usually the heat
conductivity of fibre is several orders higher than that of the
matrix.

Similarly the heat flow by the dipole (2) is obtained from
the second derivative of (1):

𝑇
,𝑖𝑗
=

1

4𝜋𝑟
3
(

3𝑥
𝑖
𝑥
𝑗

𝑟
2
− 𝛿
𝑖𝑗
) , (4)

where 𝛿
𝑖𝑗
is Kronecker delta.

Heat flow through a surface with the normal 𝑛 is defined
as

𝑞
𝑛
= 𝑞
𝑖
𝑛
𝑖
. (5)

Collocation points (Figure 1) are located on the interface
between fibre and matrix. Then the intensities of the source
functions can be computed by satisfying the interdomain
boundary (continuity) conditions in collocation points on
the fibre-matrix interface boundaries. In the present method,
four collocation points are used on each cross section of
fibre for satisfying the boundary (continuity) conditions in
perpendicular direction of fibre-matrix interface boundary.
It should be stressed that the ends of a fibre should be in the
form of half spheres or cylinders. It is important to satisfy
the boundary conditions (b.c.) in these parts as well. Without
considering these b.c., the source functions located along the
fibre axis may lead to incorrect results in evaluation of the
heat conduction behaviour.

In order to find the unknown intensities of the source
functions, we have to solve 1D quasi-singular integral equa-
tion in the form:

∫

𝑟

𝐾 (𝑠, 𝑡) 𝑓 (𝑡) 𝑑Γ = 𝑔 (𝑠) , (6)
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Figure 1: Distribution of source functions and collocation points.

where 𝐾(𝑠, 𝑡) is kernel function, which is corresponding
source function in our case, 𝑓(𝑡) is the unknown intensity of
the source function, 𝑔(𝑠) is the function prescribing the b.c.,
and Γ is the 1D integration curve along fibres’ axes.

The well-known numerical solution of integral equations
is by the BEM and by its more effective form, FMBEM [4, 7–
11]. However, no one formulation was used for composites
reinforced by fibres with large aspect ratio and authors of
this paper do not know any publications to problems like
those shown below. Also the MFS [15, 16] was used to
solve problems expressed by the boundary integral equations
(BIE). In all these formulations, however, very large number
of equations is necessary to obtain the solution with good
accuracy.

The source functions are presented by 1D quadratic
nonuniform rational B-splines (NURBS) shape functions
defined by discrete points along the fibre axis.Numerical inte-
gration along 1D elements and corresponding nonuniform
rational B-splines (NURBS) shape functions [18, 19] are the
integrands in (6). They are quasi-singular and complicated
for analytical evaluation. After numerical experiments on
behaviour of source functions in composite material and on
their influence to physical fields, the following conclusions
are drawn for generation of collocation points and numerical
integration: Very fine points defining NURBS for source
functions are to be chosen in the end parts of the fibres
because of large gradients in all fields in fibres and matrix.
As there are very large differences in denominator (distance
between source and collocation points) the whole integration
path is split into integration elements. In our models the
smallest element (closest to the collocation point) has to be
equal to the fibre diameter and the others are about as large
as the distance of its closest point from the collocation point.
In this way same number of Gauss integration points can be
used for all elements with about equal numerical error from
all integration elements in the model. The five-point Gauss
quadrature is enough to give good accuracy in this case.

All convenient distribution of nodal points along inte-
gration curve (fibre axes), order of integration (number of
Gauss integration points), and collocation points (along fibre-
matrix interface) are decisive for numerical stability and
accuracy of themodel. All these problems were in detail stud-
ied and discussed in our previous publications [12–14, 20–
22] and presented in several conferences on computational
mechanics.

The boundary conditions along fibres are unknown as we
know the b.c. in infinity only. So, they are specified as follows.
Temperature in themiddle of each fibre is equal to zero; fibres
are specified as superconductors; that is, the temperature is
constant along fibres and opposite gradient to that in homo-
geneous material is prescribed along fibres. Heat sources
along fibres’ axes serve to satisfy the b.c., but they will give
some temperature gradient in cross section direction (CSD)
of fibres. Heat dipoles in CSD will serve to give constant
temperature, thereby prescribing temperature differences in
opposite points of corresponding CSD equal to zero. The
temperatures in middle of fibres are obtained by satisfying
heat balance along each fibre. It is realized by additional right-
hand sides (r.h.s.) in the system of resulting equations that
temperature in corresponding fibre is prescribed to one and
zero to the other fibres. In this way we have 𝑁 + 1 r.h.s. for
𝑁 fibres in a patch. Resulting system of equations is solved in
the least squares (LS) sense as we have more equations than
unknown source function intensities (we have one equation
in each collocation point for temperature and half of it for
temperature differences in opposite points). The intensities
of heat functions and dipoles are defined by the intensities
of shape functions in NURBS for all fibres and for all r.h.s.

The energy balance is received by integrating the heat
source function along each fibre, which gets system of
𝑁 equations bringing us the temperatures in the fibres’
midpoints.

3. Results

Three examples showing distribution of temperature and heat
flow in fibres are presented. The first example is a patch of 14
fibres and the other two are patches with 38 fibres arranged
symmetrically and alternately in 3 layers (3 × 3 × 3, resp., 5 ×
5 × 3) as shown in Figure 2. The heat conductivity of fibres
is 103 times larger than that of the matrix in the first two
examples and 105 times larger in the third example (38 fibres,
so as in example 2).The aspect ratio of fibres is 50 : 1 (radius of
fibres is equal to 1 and length 100). All units are dimensionless
as the problem is linear. The gap between fibres in the fibre
direction, 𝑍, is 40, and the distance between fibre layers in𝑋
and 𝑌 direction is 10.

The next three examples (number 4 to 6, Figure 3) give
results for matrix reinforced by fibres with aspect ratio equal
to 500 : 1 (radius of fibres is again equal to 1) and there are 3 ×
3 × 3, 3 × 3 × 5, and 5 × 5 × 3 layers of fibres aligned as given in
Figure 2 so that we have (13, 23, and 37 fibres in corresponding
patch of fibres). Distance between layers is 100 in 𝑋 and 𝑌
directions and the gap between fibres in𝑍 direction is 40.The
heat conductivity of fibres is 5 × 104 times larger than that of
thematrix.The configuration is different from that in the first
three examples.

Heat flow is in the fibre direction and the gradient of
temperature is equal to 1 so that the temperature in the centre
of fibres is −70, 0, and 70, respectively, in the lower, middle,
and upper 𝑧-layers of fibres in the first three examples and
−1040,−520, 0, 520, and 1040 in the last three examples, which
correspond to the 𝑍 coordinate in Tables 1–4.
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Figure 2: Patch of fibres in 3 layers, for example, 1 to 3.
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Figure 3: Patch of fibres in 3 layers, for example, 4 to 6.

Figure 4 gives the heat flow in fibres and Figure 5 temper-
ature change to the temperature in the centre of fibre along
the fibres.

The larger examples 2 and 3 gave by the numerical
solution a system of 13224 × 3762 linear equations which were
solved in least square sense once and only r.h.s. was changed
during the iteration process. Recall that there were𝑁+1 r.h.s.
for the problem with𝑁 fibres. The largest problem, example
2, was solved using homemade program in MATLAB in
notebook within 2600 seconds.

There were six iteration steps used in the first two
examples and only two in the last example (very large
difference in conductivities of the matrix and fibres). Full
lines correspond to the last iteration step. Figures 4(b) and
5(b) (second example) show the graphs for the fist (largest
values), the second (lowest values), and the last iteration
steps.

Table 1 contains temperature increase of the centres of
fibres obtained in the last iteration step in the lowest layer
of fibres from the temperature of homogeneous material

Table 1: Temperature increase of the centres of fibres.

𝑋, 𝑌 Example 1 Example 2 Example 3
0, 0 17.93 28.70 46.52
10, 10 14.79 26.89 43.70
0, 20 — 24.72 40.06
20, 20 — 21.33 34.40

Table 2: Maximal values of heat flow in fibres.

𝑋, 𝑌, 𝑍 Example 1 Example 2 Example 3
0, 0, 70 450.2 315.0 459.3
10, 10, 70 455.7 337.5 516.5
0, 20, 70 — 360.2 577.5
20, 20, 70 — 380.1 636.1
0, 10, 0 563.8 390.2 610.4
10, 20, 0 — 431.1 724.9

Table 3: Temperature increase of the centres of fibres.

𝑋, 𝑌, 𝑍 Example 4 Example 5 Example 6
0, 100, 520 103.1 46.76 186.0
100, 100, 1040 — 113.3 —
0, 0, 1040 — 136.5 —
100, 200, 520 — — 158.3

Table 4: Maximal values of heat flow in fibres.

𝑋, 𝑌, 𝑍 Example 4 Example 5 Example 6
0, 0, 0 25 400 28 930 20 752
100, 100, 0 24 943 27 889 21 407
0, 100, 520 25 241 28 484 20 374
100, 100, 1040 — 25 200 —
0, 0, 1040 — 24 741 —
100, 200, 520 — — 22 056
200, 200, 0 — — 22 083
0, 200, 0 — — 21 750

(−70).The problems are symmetric in𝑋 and 𝑌 direction and
antisymmetric in 𝑍 direction.

Maximal values of heat flow in fibres are given in Table 2.
Tables 3 and 4 contain temperature increase andmaximal

heat flow in the centres of fibres obtained in the last iteration
step in the middle layer of fibres from the temperature of
homogeneous material (0).

4. Discussion and Conclusions

Recall that the infinite matrix of homogeneous material with
the patch of its reinforced part with fibres is simulated in
the present models. The b.c. are those defined in infinity
by temperature gradient in fibre direction. Such b.c. are
simple and do not require additional collocation points on
the control volume boundaries of the patch. So, the problem
is similar to problem with a homogeneous material with
another material with different conductivity in the patch. We
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Figure 4: Heat flow (example 1 to 6).
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Figure 5: Temperature change (example 1 to 6).
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can observe different heat flow and temperature distribution
in different fibres and influence of the change of conductivity
of fibres on the conductivity of the matrix from the figures
and tables, especially the following.

(1) The convergence of iteration process to find the
temperature in the centre of fibres and temperature
distribution along fibres is fast and two iteration steps
are enough to obtain the results. It is because the
temperature of each fibre is near constant in such case.
Of course, the conductivity in fibres’ direction of the
composite is largest in such case.

(2) There is strong interaction not only of the fibres
with matrix, but also of the fibres with closest fibres.
One can observe this effect from the distribution of
temperature along the fibres.

(3) Numerical experiments have shown that, if the aspect
ratio is very large or the difference between con-
ductivity of matrix and fibres is smaller, there is a
“saturation” of the heat flow and the heat flow in the
middle part of fibres is constant which correspond to
the case of infinite fibres reinforcing the matrix.

One can find by observing the heat flow in figures and
maximal values of the heat flow in fibres that the heat flow in
fibres is much higher than that in the homogeneous material
(recall that it is equal to 1) and conclude how the fibres
contribute to the increase of the conductivity of the composite
material in the fibre axis direction.

Note that the heat in fibre divided by the heat conductivity
of the fibre gives the heat flow in the matrix along the fibre
boundary. The heat flow in the first two and also in the
last three examples is much large in the first iteration step
(corresponding to superconductive material of the fibre) and
decreases in the iteration process when the finite conductivity
is taken into account by changing the interdomain b.c. The
b.c. in the next iteration step are changed very little in the
third example; that is, the fibre behaviour is similar to the
case of superconductive fibre. Although the heat conductivity
in the last three examples is only a half of that case, but the
aspect ratio of fibres is ten times larger, the finite conductivity
influences the b.c. much more that in the third example.

Note also, especially by comparing the last three exam-
ples, that the boundary conditions, caused by the finite
number of fibres in infinite matrix, influence both the heat
flow and temperatures in fibres quite considerably.This effect
is to be expected also in other finite regions by composite
materials.

The present model can be used also for homogenization
but only for regularly distributed fibres, because the heat and
temperature are not homogeneous in the patch. For general
case, it is necessary to define the b.c. along the control volume
and the collocation points have to be located so that they will
satisfy the b.c. in good accuracy because of large gradients in
corresponding fields there.

Recall that the fibres are parallel and straight in the
present model and quite general problems with irregularly
distributed, curved fibres require using CVE containing large

number of fibres to define correctly the homogenized mate-
rial properties. We have also to realize that the dimension
of fibres with large aspect ratio results in different material
behaviour in the regions with local shape changes to the
behaviour of homogeneous material with similar material
properties.

Mechanical properties of composite material reinforced
by short fibres are even more complicated to simulate and
generally require three times more equations to solve the
problem [12] as the basic source functions are forces vectors
(in the heat flow the heat source is scalar) and its derivatives
are tensor functions. However, the behaviour of computa-
tional model is very similar to the presented problems.
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