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This study concerns structural and optothermal properties of iron ditelluride layered structures which were fabricated via a low-
cost protocol.Themain precursors were FeCl

3
⋅ 6H
2
O and Fe

2
O
3
. After a heat treatment within a tellurium-rich medium at various

temperatures (470∘C, 500∘C, and 530∘C) during 24 h, classical analyses have been applied to the iron ditelluride layered structures. A
good crystalline state with a preferential orientation of the crystallites along (111) direction has been recorded. Moreover, additional
opto-thermal investigation and analyses within the framework of the Lattice Compatibility Theory gave plausible explanation for
prompt temperature-dependent incorporation of tellurium element inside hematite elaborated matrices.

1. Introduction

Iron ditelluride is a good representative of crystalline transi-
tion metal ditelluride in the 3d series. It has been identified
as a particularly conductive marcasite containing the narrow
3d band (about 1.1 eV). Nanocrystalline iron ditelluride has
been elaborated by Zhang et al. [1] by a reaction of alkaline
aqueous solutions dissolving elemental tellurium and iron
(II) complex Na

2
[Fe(EDTA)] at 140∘C under atmospheric

pressure, while Liu et al. [2] used a hydrothermal coreduction
method in order to produce room temperature magnetic-
sensitive frohbergite iron ditelluride nanocrystallites [2]
using N

2
H
4
⋅H
2
O as reductant.

Consecutive attempts of chemical doping induced anti-
ferromagnetic (AFM) [3, 4] and orbital orders [5, 6] in iron
ditelluride compounds, but their applications faced several
problems [2–6]. The actual study reports structural and
optothermal properties of iron ditelluride layered structures
which were developed by a simple process consisting on

anneal amorphous iron oxide layers, predeposited by spray
pyrolysis of FeCl

3
⋅ 6H
2
O based aqueous solution onto heated

pyrex glass substrates, under tellurium atmosphere. This
simple and low cost process has been used by Ouertani et
al. to obtain FeS

2
and FeSe

2
and allowed us to obtain FeTe

2
-

marcasite phase thin films [7, 8].

2. Experiment

An aqueous solution of FeCl
3
-6H
2
O (0.015M) was prepared

and sprayed with a gas vector (N
2
) on glass substrates,

which were placed on a hotplate heated at 623K. 50mL of
the solution was sprayed on the heated glass substrates, by
means of a nozzle allowing a jet flow rate of 4mL/min. The
height distance between the nozzle and the substrate is about
30 cm and the N

2
flow is about 4 L/min. Layers obtained

are amorphous and have a red rust color. These as-prepared
amorphous iron oxide layerswere placedwith a small amount
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Figure 1: Transmission spectra of the as-grown iron ditelluride
layers.

of tellurium in a vacuum-sealed Pyrex tube and subjected to
a heat treatment under tellurium atmosphere in an electric
tubular oven at different temperatures (470∘C, 500∘C, and
530∘C) for 24 h.

3. Optical and Atomic Force
Microscopy Analyses

The optical transmission and reflectance spectra of iron
ditelluride films in the wavelength region of 300–1800 nm are
shown in Figures 1 and 2, respectively. All films are a thickness
of the order of 200 nm; it can also be seen that the interference
fringe patterns are absent in all transmittance and reflectance
spectra due to weak multiple reflections at the interface.
The films show a high transparency within the visible range
with an average transmittance lying between 78–88%. This
may be due to the thickness of the films. Consecutively,
band gap, refractive index, and extinction coefficient of films
have been obtained by fitting from the transmittance spectra
of the thin films in the spectral domain varying from 300
to 1800 nm. The model details have been calculated using
optical experimental measurements and the method of Bathe
and Patil [9] and Belgacem and R. Bennaceur [10]. Spectra
patterns confirm the records of Si et al. [11] and Nie et al. [12],
who stated that for deposition temperatures beyond 500∘C,
the rhombohedral phase of the oxide Fe

2
O
3
appears and

prevents the substitution of oxygen by tellurium.
On the other hand, AFM analyses have been applied to

investigate the topography of the FeTe
2
thin films. Root mean

square surface roughness value was determined on an area
of 3 𝜇m × 3 𝜇m for all samples. Figure 3 shows AFM surface
morphologies of iron telluride films synthesized at different
temperatures. The analysis results are presented in Table 1;
indeed the aspects of the explored layers areas show that the
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Figure 2: Reflectance spectra of the as-grown iron ditelluride layers.

optimized layer, elaborated at 500∘C, has the highest values of
rms and average height.

4. Updated Analyses

4.1. Optothermal Investigation. The effective absorptivity
�̂� [13, 14] is the mean normalized absorbance weighted
by 𝐼(

̃

𝜆)AM1.5, the solar standard irradiance is

�̂� =

∫

1

0
𝐼(

̃
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× 𝛼 (

̃
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,
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̃

𝜆 ∈ [0, 1] ,

𝜆min = 300.0 nm; 𝜆max = 1800.0 nm,

(1)

where 𝐼(

̃

𝜆)AM1.5 is the Reference Solar Spectral Irradiance,
fitted using the Boubaker Polynomials Expansion Scheme
BPES [15–35]: 𝐼(̃𝜆) = [(1/2𝑁

0
) ∑

𝑁0

𝑛=1
𝜃

𝑛
⋅ 𝐵

4𝑛
(

̃

𝜆 × 𝛽

𝑛
)],

where 𝛽
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are the Boubaker polynomials [18–29] 𝐵

4𝑛
min-

imal positive roots, 𝜃
𝑛
are given coefficients, 𝑁

0
is a given

integer, 𝛼(

̃

𝜆) is the normalized absorbance spectrum, and
̃

𝜆 is the normalized wavelength. The normalized absorbance
spectrum 𝛼(

̃

𝜆) is deduced from the BPES by establishing a
set of𝑁 experimental measured values of the transmittance-
reflectance vector (𝑇
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Figure 3: 3d AFM surface images of iron telluride films (470∘C (𝑖), 500∘C (𝑗), and 530∘C (𝑘)).

Table 1: Layers mean surface roughness and average height versus substrate temperature.

470∘C 500∘C 530∘C
rms (nm) 41.188 (±5%) 50.018 (±5%) 30.335 (±5%)
Average height (nm) 277.35 (±4%) 282.30 (±4%) 208.97 (±4%)

where 𝛽

𝑛
are the 4𝑛-Boubaker polynomials 𝐵

4𝑛
minimal

positive roots [36–41],𝑁
0
is a given integer, and 𝜉

𝑛
and 𝜉



𝑛

are coefficients determined through the Boubaker Polynomi-
als Expansion Scheme BPES.

The normalized absorbance spectrum 𝛼(

̃

𝜆) is deuced
from the relation:

𝛼 (

̃

𝜆) =

1

𝑑

4
√
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4

,

(3)

where 𝑑 is the layer thickness.
The obtained value of normalized absorbance spectrum

𝛼(

̃

𝜆) is a final guide to the determination of the effective
absorptivity �̂� through (1).

The Amlouk-Boubaker optothermal expansivity Ψ
𝐴𝐵

is a
thermophysical parameter defined in precedent studies [13,
14], as a 3d expansion velocity of the transmitted heat inside
the material. It is expressed in m3s−1, and calculated by

Ψ

𝐴𝐵
=

𝐷

�̂�

, (4)

where 𝐷 is the thermal diffusivity and �̂� is the effective
absorptivity. Values of the Amlouk-Boubaker optothermal
expansivity Ψ

𝐴𝐵
of the studied films iron telluride films (at

470∘C, 500∘C, and 530∘C) are gathered in Figure 4.

4.2. Lattice Compatibility Theory LCT Analysis. The Lattice
Compatibility Theory, as mentioned in some recent studies
[36–38], is based on the interaction of doping-element lattice
behavior versus host edifice. Preludes to this theory have
been established in the context of analysing Urbach tailing
controversial behaviour in some nanocompounds. It was also
confirmed by Boubaker [39] on the bases of investigation on
some copper-doped compounds. An original formulation of
the Lattice CompatibilityTheory [38, 39] has been established
as follows:

“The stability of doping agents inside host struc-
tures is favorized by geometrical compatibility,
expressed in terms of matching patterns between
doping agent intrinsic lattice and those of the host.”

In the actually discussed case (FeTe
2
lattice), the nature

of the highest occupied bands and the location of holes in
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Figure 5: FeTe
2
lattices elementary configuration.

elemental iron have been demonstrated to be determinant. In
this context, fundamental geometrical observations concern-
ing the structure of Te intrinsic lattice (Figure 5) along with
the host matrix were interpreted in terms of conventional
lattice-linked parameters (i.e., 𝑙 and 𝑙

 in Figure 5). The
similarities between the two structures, as evoked elsewhere
[40, 41], plea in favor of an easy substitution process between
copper and silver ions within ternary structures.

The Lattice Compatibility Theory LCT gives hence an
explanation to the incorporation of tellurium in the FeTe

2

orthorhombic phase matrix via the substitution of oxygen by
tellurium [42, 43].

5. Conclusion

We have studied the structure and the morphology of iron
ditelluride layered structures obtained by a heat treatment

within a Te-rich atmosphere of amorphous iron oxide
sprayed thin films. Morphological observations show that
all films have a relatively perturbed surface state. Additional
and original investigations in terms of Amlouk-Boubaker
optothermal expansivity Ψ

𝐴𝐵
showed amorphous iron oxide

oxygen substitution patterns. Temperature-dependent alter-
ations have been outlined in the framework of the Lattice
Compatibility Theory.
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